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ABSTRACT Semantic segmentation of videos helps in scene understanding, thereby assisting in other
automated video processing techniques like anomaly detection, object detection, event detection, etc.
However, there has been limited study on semantic segmentation of videos acquired using Unmanned Aerial
Vehicles (UAV), primarily due to the absence of standard dataset. In this paper, a new UAV aerial video
dataset (ManipalUAVid) for semantic segmentation is presented. The videos have been acquired in a closed
university campus, and fine annotation is provided for four background classes viz. constructions, greeneries,
roads, and waterbodies. Also, the performance of four semantic segmentation approaches: Conditional
Random Field (CRF), U-Net, Fully Convolutional Network (FCN) and DeepLabV3+ are analysed on
ManipalUAVid dataset. It is seen that these algorithms perform competitively on UAV aerial video dataset
and achieves an mIoU of 0.86, 0.86, 0.86 and 0.83 respectively.

INDEX TERMS Convolutional neural networks, semantic segmentation, shot boundary detection, UAV
video.

I. INTRODUCTION
Semantic segmentation refers to the process of assigning a
class label to each pixel in an image, enabling a high-level
description of the image. It has been used for various appli-
cations such as autonomous driving [1], medical image
processing [2], photo editing etc. The availability of afford-
able priced UAV has led to an increased focus on utilizing
UAV for surveillance oriented applications. As compared
to traditional CCTV based approaches which would require
multiple CCTVs to monitor a particular area, a single UAV
can monitor a larger area. Moreover, UAV can be rapidly
deployed and is particularly advantageous to be used for
temporary major events such as a concert or a marathon [3].
However, there is no standard dataset for semantic segmen-
tation of videos acquired using Unmanned Aerial Vehicles
(UAV). Although there have been several studies analysing
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UAV videos, most of these studies have focussed on object
detection [4], object tracking [5] and human action recog-
nition [3]. Typically, the semantic segmentation algorithms
are evaluated on standard datasets such as PASCAL [6],
COCO [7] etc, containing generic scenes. In addition, there
exists dataset such as KITTI [8], cityscapes [9] etc., focussing
on complex urban street scenes. To the best of our knowledge,
there is no standard dataset for semantic segmentation of
scene on images acquired using UAV.

A typical outdoor scene as viewed from a UAV consists
of multiple objects (such as people, vehicle, etc.) interacting
with each other or with their environment (roads, building,
etc). This work is focussed on semantic segmentation of
scene background (roads, building, etc.) as the definition of
foreground objects could be application-specific. Moreover,
the semantic segmentation of scene background can assist in
other autonomous tasks such as anomalous activity detection,
action recognition, and other high-level aerial video under-
standing by providing spatial information.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 136239

https://orcid.org/0000-0003-2582-9600
https://orcid.org/0000-0003-2164-2945
https://orcid.org/0000-0002-6133-5379
https://orcid.org/0000-0002-0916-0495


S. Girisha et al.: Performance Analysis of Semantic Segmentation Algorithms

The existing UAV datasets are designed for specific appli-
cations such as tracking [5], anomaly activity recognition [3],
action recognition [10] etc. These datasets are acquired at
various locations such as college campus, parking lot, or open
stadium. The creators of these datasets have focussed on
tracking/detection/recognition of foreground objects such as
a person, cars, etc. and subsequent high-level tasks such as
human-object interaction, anomalous activity recognition etc.
However, the background in these datasets is limited to a few
locations. For instance, the background in the EPFL mini
drone dataset [3] contains roads, building and lawns only,
while okutama action dataset [10] contains baseball field
and greenery as the background. Also, Stanford dataset [5]
contains road, lawns, and buildings as the background. There-
fore, labelling the existing UAV dataset would limit the back-
ground labels. As a result, a new UAV dataset is created by
grouping the different background elements into four generic
categories (viz. greenery, construction, road and water body).
Although the data is acquired at the institute campus, the data
is general enough to represent a typical background of an
outdoor image acquired using UAV. Even though the Stanford
Drone dataset [5] contains semantic labels for the background
to study object-space interaction, the labels are limited to
road, roundabout, sidewalk, grass, building, and bike rack.

Typically, probabilistic models such as Conditional Ran-
dom Fields (CRF) are utilized to incorporate correla-
tion information between pixels for semantic segmentation.
In recent years, Convolutional Neural Network (CNN) has
been widely used for semantic segmentation [2], [11], [12].
To perform semantic segmentation, the common CNN
architecture such as VGG [13], AlexNet [14] is modified
by converting last fully connected layers into convolu-
tional layers. The ability of Convolutional Neural Network
to capture deeply learned features and context informa-
tion has made it a prominent choice for semantic seg-
mentation. Recently, a combination of CRF and CNN
have achieved excellent performance in semantic segmen-
tation as demonstrated in public benchmark such as Pascal
VOC [6].

The key contributions of this work are as follows:
• A new dataset (ManipalUAVid) is developed for seman-
tic segmentation of UAV aerial videos by acquiring
aerial videos from a UAV in a closed university campus.

• Performance evaluation of four different semantic seg-
mentation approaches (CRF and three CNN architec-
tures) are done on this new UAV video dataset.

The ManipalUAVid dataset presented in this paper is
an extended version of the dataset presented in the earlier
work [15]. This updated ManipalUAVid covers more loca-
tions and also contains more videos. Moreover, four class
annotation is presented for the videos as compared to two
class annotation in [15]. Besides, the performance evaluation
of only CNN based method was presented in [15], whereas
in this work the performance of four different semantic seg-
mentation approaches (CRF, and three CNN architectures)
are compared.

This paper is organized as follows: Section 2 presents the
recent developments in semantic segmentation and also sum-
marizes the existing datasets. Section 3 describes the acqui-
sition protocol and labelling policy for the new UAV aerial
video dataset. Section 4 presents the methodology for seman-
tic segmentation of UAV aerial videos. Results obtained on
the UAV aerial video dataset and a detailed discussion of the
same are presented in Section 5. Finally, the conclusion of the
work is presented in Section 6.

II. RELATED METHODS
Accuracy of semantic segmentation depends on individual
pixel and its correlation with the neighbouring pixels. The
ability of CRF and CNN techniques to capture the relation-
ship between a pixel and its neighbours havemade it a popular
choice for semantic segmentation. This section summarizes
the two approaches for semantic segmentation (CRF, CNN).
A more detailed description can be found in [16]. In addition,
a brief overview of the existing dataset for semantic segmen-
tation is presented in this section.

CRFs, a variant of Markov Random Field (MRF), con-
sists of clique potentials which are conditioned on input
features [17]. In literature, CRFs are widely studied for
semantic segmentation and scene understanding because of
their ability to capture spatial information [18]–[20]. Dif-
ferent handcrafted features like colour, texture, edge etc.
can be encoded as potential energy in CRF model [21].
In addition, higher-order potentials are often employed [22]
to improve segmentation accuracy. CRF post-processing
improves segmentation accuracy. However, learning the CRF
is time-consuming as it requires repeated inference steps [23].

CNN is a modification of multilayer perceptron and is
widely used for object recognition, image classification,
tracking [2], [11]–[14], [24] etc. A typical CNN architec-
ture for semanctic segmentation consists of encoding layers
which are used to extract features and decoding layers to
infer the class labels [2], [11], [12]. Some examples of this
encoder-decoder architecture are U-net [2], Segnet [12] etc.
In addition, there also exist other CNN architectures such
as DeepLab [11] where the filters were modified to have
dilations capturing the increased spatial information with a
reduced number of parameters. In another approach called
Fully Convolutional Network, the popular CNN architectures
(AlexNet [14], VGG net [13], GoogLeNet [25]) has been
modified for semantic segmentation by replacing the last fully
connected layers with convolutional layers [26].

Several authors have explored combining both CRF and
CNN for semantic segmentation [27]–[31]. These algorithms
have the ability to map complex input features to output
segmentation map by learning deep features from CNN and
uses CRFs to refine the output by modelling the interactions
of output variables.

In this work, the performance of CRF, U-Net, FCN and
DeepLabV3+ approaches for semantic segmentation are
analysed on the new UAV aerial videos dataset (Figure 1).
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FIGURE 1. Overview of the semantic segmentation method for UAV aerial videos.

Existing Semantic Segmentation Datasets: There are
several popular semantic segmentation datasets like MS
COCO [7], Pascal VOC [6], CamVid [32], KITTI [8] and
CityScape [9]. MS COCO focuses on semantic segmentation
of general scenes with class labels as person, car, animal etc.
Pascal VOC provides a benchmark and consists of classes
like bus, car, cow etc. KITTI is semantic segmentation bench-
mark, which consists of common city scenes. Cityscape is a
benchmark suite consisting of various target classes such as
a human, vehicle, construction etc, for urban street scenes.
CamVid is a video dataset with 32 target classes captured
from the perspective of a driving vehicle. A more exhaustive
review of the existing dataset can be found in [16]. It is
observed that there is no standard dataset for semantic seg-
mentation of UAV aerial videos. There are some studies on
semantic segmentation of aerial images but these are limited
to SAR images [33]. Also, popular UAV aerial video datasets
like Stanford dataset [5] focus on multiclass target tracking,
or anomaly detection [3], which lacks the annotations for
semantic segmentation. Recently, a new data set was pro-
posed for semantic segmentation of SAR images [17]. This
SAR image dataset contains annotations for road, water, built-
up area, and vegetation. However, semantic segmentation
of SAR image is a challenging task due to the presence
of speckle noise and scattering phenomena. An alternative
approach to identify the road, water-bodies, built-up area,
etc. is by analyzing UAV aerial videos. Indeed, semantic
segmentation of UAV aerial videos can be utilized for a more
finer analysis of the region.

III. MANIPALUAVID: MANIPAL UAV AERIAL
VIDEO DATASET
Analyzing UAV aerial video has been limited to detection
and tracking of objects [5]. In this work, a new UAV aerial
video dataset is developed for semantic segmentation. This
dataset is named as Manipal UAV aerial video (ManipalU-
AVid) dataset after the location where the videos have been
collected. The purpose of this dataset is to serve for the
semantic segmentation on UAV aerial images enabling better
scene understanding.

TABLE 1. Summary of the ManipalUAVid dataset.

TABLE 2. Location details of the ManipalUAVid dataset.

UAV aerial videos are captured by using DJI Phantom 3
Professional drone with 1280 × 720 resolution at 29 frames
per second. The videos are captured in the campus ofManipal
Institute of Technology, Manipal, India at an approximate
altitude of 25 meters. Videos are captured from six different
locations such as parking lot, swimming pool, library, aca-
demic blocks, etc. at different timings during the day. The
videos have been acquired under different weather conditions
such as sunny, cloudy and after rains, etc. In total, 33 videos
have been acquired with the minimum duration of a single
video being about 30 seconds and the maximum duration
of 12 minutes. Out of 33 videos, 11 videos were acquired
in morning, 14 videos in the afternoon and 8 videos in the
evening. A summary of the data set is shown in Table 1 and 2.
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TABLE 3. Class details of ManipalUAVid dataset.

In this work, four classes of objects are considered for
semantic segmentation (Greenery, Road, Construction and
Waterbody). Various objects grouped under particular class
is shown in Table 3. Labelling individual pixels (fine annota-
tions, the annotations are provided by domain experts with the
help of LabelMe annotation tool) is a challenging and time-
consuming task. In case of video, fine and/or coarse anno-
tation for each frame would be redundant. Indeed, a small
number of finely labelled data achieves the same performance
for semantic segmentation as compared to a large number
of coarse labelled data [34]. In continuation of the standard
practice followed for video semantic segmentation dataset,
annotations are provided for certain frames (keyframes) in
the video in ManipalUAVid. While labelling the dataset,
‘‘Foreground class must not have any hole’’ policy is fol-
lowed [9]. Moreover, labelling individual pixels at the bound-
ary of two classes (especially trees) of objects is a challeng-
ing task because of the ambiguous object boundary. Few
original frames and corresponding ground truth masks are
shown in Figure 2. The complete dataset is available at
https://github.com/uverma/ManipalUAVid.

IV. SEMANTIC SEGMENTATION OF UAV AERIAL
VIDEOS: CRF AND CNN
This section describes the methodology followed for seman-
tic segmentation of UAV aerial videos. As discussed earlier,
four approaches (CRF, U-Net, FCN and DeepLabV3+) are
studied for semantic segmentation of UAV aerial videos.
Analyzing each frame would be time-consuming and redun-
dant, therefore a keyframe is identified using shot bound-
ary (Section IV-A). Subsequently, semantic segmentation is
performed on these keyframes using CRF (Section IV-B),
U-Net (Section IV-C), FCN (Section IV-D) andDeepLabV3+
(Section IV-E).

A. SHOT BOUNDARY DETECTION
Processing every frame of a video at 29 fps is redundant
and time-consuming. Hence it is advantageous to process
keyframes that represent a group of frames in a video.
Keyframes are identified by using the shot boundary detec-
tion algorithm (Figure 1). To compute shot boundary each
colour frame of the video is divided into a non-overlapping
grid of size 16 × 16. The histogram difference is com-
puted between two corresponding windows of two consec-
utive frames by using Chi-square distance. These histogram
differences of all corresponding windows of two consecu-

FIGURE 2. Few images of UAV aerial video dataset along with
corresponding four class annotation.

tive frames are averaged to find the average histogram dif-
ference between two consecutive frames which is given as
follows,

Di =
1
N

N∑
p=1

(Hi(Ip)− Hi+1(Ip))2

Hi(Ip)
(1)

where Hi(Ip) represents the histogram of pth image patch Ip
of ith frame. Similarly, Hi+1(Ip) represents the histogram of
pth image patch Ip of (i+1)th frame,Di represents the average
histogram difference between ith and (i + 1)th consecutive
image frames and N represents the total number of grids
in an image. For an image of size 1280 × 720, 3600 grids
are obtained. This difference Di is calculated for every pair
of consecutive frames and shot boundary is identified as
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FIGURE 3. The modified U-Net architecture [15]: Contracting path followed symmetric expanding path.

follows.

Shot boundary =

{
True if |Di − Di+1| > Tshot
False otherwise

(2)

where Tshot is determined experimentally. The shot boundary
is identified as the frame where Di −Di+1 is greater than the
threshold. All frames within one shot are known as a shot
and this shot is represented by the middle frame (key frame)
in that shot.

B. CRF: TextonBoost
Conditional Random Field (CRF) is a probabilistic approach
for semantic segmentation incorporating the correlation
among the pixels. The energy of CRF consists of unary poten-
tial energy ϕ(xi) and a pairwise potential energy λ(xi, xj).

E(x) =
∑
i

ϕ(xi)+
∑
i,j

λ(xi, xj) (3)

where, xi represents the ith input pixel. The unary poten-
tial energy captures features which are local to pixel itself.
Pairwise potential energy acts as a smoothness term adding
penalties based on neighbouring pixels.

One of the widely used CRF approaches utilizes a novel
feature called ‘‘texture-layout filter’’ which incorporates
texture, context and layout information [21]. This feature
response is computed by first generating a texton map.
This map is generated by convolving the image with a 17-
dimensional filter bank at varying scale and then applying
K-means clustering algorithm. Subsequently, for each texton,
t , the area in the rectangle mark that matches t is computed.
This process is repeated for each texton and rectangular mask,
thus generating a texton histogram of area response for the
rectangular region, texton pair. Finally, an adapted version of
the joint boost algorithm is used to compute the texture layout
potential.

In addition to the texture layout filter response, two
unary potentials (colour and location) and one pairwise

potential (edge) are also considered to refine the results. The
parameters for each of these potentials are learned indepen-
dently. The aim of the model is to identify the most probable
class label for a given pixel. Once the parameters are learnt,
the labels are inferred by using alpha-expansion graph-cut
algorithm. More details about this approach can be found
in [21].

C. CNN: U-Net
One of the popular CNN architecture for semantic segmenta-
tion is U-Net [2], which derives its name from its U shaped
architecture (the contracting path followed by symmetric
expanding path). The contracting path is similar to a typical
convolutional neural network architecture viz. convolution
operation followed by ReLU activation function and then
max pooling. The expansive path consists of deconvolution
layers, flowed by concatenation with corresponding cropped
feature map from the contracting path. Subsequently, two
consecutive 3× 3 convolution operation followed by a ReLU
activation function is applied. The network relies on data
augmentation and gradient descent for training. The main
advantage of the U-Net architecture is that it is not dependent
on large dataset. However, due to the unpadded convolutions,
the output image is smaller than the input by a constant
border width. At the last layer, SoftMax activation is used
to obtain the probability distribution of each pixel to every
class.

The U-Net architecture proposed in [2] was designed to
process the grey scale image of size 572 × 572. In the
proposed work, the existing U-Net architecture is modified
to process colour image of size 256 × 256 by using three
filters for each color channels at the input layer (Figure 3).
In addition, the last layer is modified for multiclass classifi-
cation. Note that the padding is considered for each layer by
assuming that values outside the bound are the same as the
boundary pixels.
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FIGURE 4. The FCN-8 architecture [20].

D. CNN: FCN-8 WITH VGG16 BACKBONE
Fully convolutional neural network [20] is a widely used
semantic segmentation algorithm which adopts classifica-
tion networks like AlexNet [14], the VGG net [13], and
GoogLeNet [25]. These classification networks are used
as feature extractor and the last fully connected layers are
replaced by fully convolutional layers to obtain segmentation
output. Different versions of FCN exists such as FCN-8,
FCN-16 and FCN-32. All these three FCN architecture
uses same downsampling path but differs in their respective
upsampling path. The downsampling path is used to recover
semantic/contextual information while the upsampling path
recovers the spatial information.

In the present study, FCN-8 is used for semantic segmen-
tation with VGG16 (Figure 4) as the backbone architecture
because of its simple structure. The downsampling path is
similar to the VGG-16 architecture except for the last fully
connected layers. In FCN-8, the dense layer of VGG16 is
replaced with fully convolutional layer. To obtain the output
image of the same size as the input image, segmentation
map is obtained by using transposed convolution layer with
stride 8 at the last layer. The FCN-8 architecture is shown
in Figure 4.

E. CNN: DeepLabV3+
DeepLabV3+ [35] is another encoder-decoder based CNN
architecture that achieved state-of-the-art semantic segmen-
tation performance on Pascal VOC and CityScape dataset.
The earlier iteration DeepLabV3 uses several parallel atrous
convolutions with different rates, thus capturing multiscale
contextual information. DeepLabV3+ utilizes the output of
DeepLabV3 as the encoder output. In addition, DeepLabV3+
consists of a decoder module which improves the segmenta-
tion at object boundaries.

The encoder module for DeepLabV3+ consists of the last
ResNet block which is duplicated and arranged in cascade.

Also, image-level features are included in atrous spatial pyra-
mid module, consisting of atrous convolution of different
rates. The last feature map of DeepLabV3 (before logits) is
used as the encoder output for DeepLabV3+.

The encoder feature maps are upsampled bilinearly and
concatenated with the corresponding low-level feature maps
from the backbone network. Subsequently, 1 × 1 convo-
lution is applied to reduce the number of channels. Then,
3× 3 convolution is applied followed by bilinear upsampling.
More details about DeepLabV3+ can be found at [35]. The
architecture of DeepLabV3+ is shown in Figure 5.

V. RESULTS AND DISCUSSION
As discussed earlier, a keyframe is first identified, and then
the four semantic segmentation approaches (CRF, U-Net,
FCN-8, DeeplabV3+) are applied on these keyframes. This
section discusses the results obtained for semantic segmen-
tation of UAV aerial videos. For this study, the dataset was
manually split into training, validation and test images so
as to capture variations of different scenes. This manual
split ensured that each split contains data from all the loca-
tions under different conditions. The use of this manual
split instead of a random split is in accordance with the
policy adapted for standard video semantic segmentation
datasets [9]. In total, the training split contains 535 images,
while validation and test split contains 66 and 66 images
respectively. The performance of these algorithms are eval-
uated by using mean Intersection over Union (mIoU), Pixel
Accuracy (PA), mean Pixel Accuracy (mPA), Precision,
Recall and F1-score, by comparing it with the ground truth,
as defined below.

mIoU =

∑
i xii

C(
∑

i
∑

j xij +
∑

j xji − xii)
(4)

PA =

∑
i xii∑

i
∑

j xij
(5)
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FIGURE 5. The DeepLabV3+ architecture [35].

mPA =
1
C

∑
i xii∑
j xij

(6)

Precision =
TP

TP+ FP
(7)

Recall =
TP

TP+ FN
(8)

F1− score = 2 ∗
Precision ∗ Recall
Precision+ Recall

(9)

whereC is the number of classes (four in this study). xij repre-
sents the number of pixels belonging to class i and predicted
as class j. TP, FP and FN are true positives, false positives
and false negative respectively. All these models were trained
on Intel Xeon Silver 4110 CPU clocked at 2.10 GHz with
32 GB RAM and Nvidia GeForce GTX 1080Ti GPU.

A. SHOT BOUNDARY
The shot boundary is identified by comparing the histogram
difference between two consecutive frames with a threshold
Tshot (Section:IV-A). Figure 6 shows the variation of the
histogram difference (Di − Di+1) for a particular video. The
peak at regular interval signifies the presence of a significant
change in the two consecutive frames. Tshot value is exper-
imentally determined to be 0.2 as shown in Figure 6. If the
histogram difference is greater than Tshot , a shot boundary is
identified. All the frames in between two shot boundaries is
called as a shot.

B. CRF: TextonBoost
The CRF based approach [21] which includes the texture,
colour, location and edge potential is applied for seman-
tic segmentation of keyframes identified. The parameters
(the number of textons, the number of boosting rounds) for
this model are estimated experimentally as explained below.

FIGURE 6. Variation of histogram difference (Di − Di+1) for a particular
video.

In this study, the number of textons for the texture layout
feature is set to different values and the corresponding
pixel-wise segmentation accuracy is calculated on the test
set images (Figure 7). It is observed that the segmentation
accuracy increases as the number of textons increases to
k = 300 and subsequently decreases. As a result, the value
of number textons is set to k = 300. Another parameter
in this model is the number of boosting rounds used in
joint boost algorithm for computing texture layout potential.
The effect of varying boosting round on pixel-wise seg-
mentation accuracy is analysed and is shown in Figure 7.
It is seen that the segmentation accuracy increases until the
number of boosting rounds equals to 700 and decreases
later on. In this work, the number of boosting rounds is set
to 700.

To evaluate the performance of semantic segmentation
precision, recall, F1-score, class confusion matrix, mIoU,
PA, mPA and ROC curves are computed. The precision,
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FIGURE 7. Variation of pixel wise segmentation accuracy with respect to
number of textons and boosting rounds.

TABLE 4. Precision, Recall and F1-score of TextonBoost algorithm on
ManipalUAVid.

TABLE 5. PA, mPA and mIoU of TextonBoost, U-Net, FCN-8 and
DeepLabV3+ algorithms on ManipalUAVid.

recall and F1-score obtained on the ManipalUAVid dataset
is shown in Table 4. In addition, metrics such as mIoU,
PA and mPA are shown in Table 5. It is observed that
the average F1-score of the CRF based approach is 0.892.
This approach classifies water bodies and roads accurately
with F1-score of 0.93 followed by greeneries. However,
a slightly low F1-score for construction class is obtained
as few pixels belonging to construction class is misclassi-
fied into road and greenery class as shown in the confusion
matrix (Figure 8). The ROC curve of the system is shown
in Figure 10.

It can be observed that the water bodies (swimming pool)
is accurately segmented compared to other classes due to
the distinct colour and texture features (Figure 9). Moreover,
the CRF model obtains an accurate segmentation while cap-
turing the fine details of the greenery class. Indeed, the foliage
(leaves) are generally scattered and sparse, but CRF model
is able to capture these fine details as shown in Figure 9.
However, a poor segmentation is obtained in case of variation
in colour or texture of roads such as wet roads, presence of
shadow etc. as shown in Figure 9.

C. CNN: U-Net RESULTS
The U-Net architecture is utilized for semantic segmenta-
tion of keyframes identified. The model is trained from
scratch and no transfer learning is used. The batch size
is fixed to 5 because of memory constraints. The training

FIGURE 8. Confusion matrix for TextonBoost classifier for ManipalUAVid
with four classes.

FIGURE 9. (a) Original images. (b) Ground truth images. (c) Semantically
segmentated images using TextonBoost algorithm. Last row shows the
poor results of TextonBoost algorithm.

procedure is not dependent on data augmentation as in [2],
due to the availability of sufficient training samples.
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FIGURE 10. ROC curves obtained for TextonBoost algorithm.

FIGURE 11. (a) Accuracy and (b) loss curve of U-Net architecture for
semantic segmentation of ManipalUAVid.

Categorical cross entropy is used as the loss func-
tion and weights are initially assigned using the normal
distribution [36].

The model is trained for 50 epochs. The loss and accuracy
curve for training and validation set are shown in Figure 11.
Dropout regularization is used to avoid overfitting of the
model.

The performance metrics (precision, recall and F1-
score) of U-Net model on ManipalUAVid dataset is shown

TABLE 6. Precision, Recall and F1-score of U-Net on ManipalUAVid.

FIGURE 12. Confusion matrix for U-Net architecture for four class
semantic segmentation of ManipalUAVid.

in Table 6. In addition, mPA, PA and mIoU for U-net archi-
tecture is shown in Table 5. A high F1-score is obtained for
three classes viz. greenery, road and water bodies. However,
a low F1-score of 0.77 is obtained for construction class. This
low F1-score for the construction class is primarily due to low
precision (misclassification of road and greenery pixels as
construction pixels as shown in the confusion matrix in Fig-
ure 12). The ROC curve for the system is shown in Figure 14.
The ROC curve for water bodies has the largest area under
its curve which is followed by the curve for road, curve for
greenery and lastly curve for construction class.

Some semantic segmentations of UAV aerial videos
obtained using U-Net architecture are shown in Figure 13.
It can be seen that U-Net architecture is able to identify the
pixels belonging to four classes. However, theU-Net architec-
ture fails to capture the fine details as compared to the CRF
based approach. This substantiates the previous finding in
the literature. Moreover, in some images, the road pixels are
misclassified as constructions (bottom row in Figure 13). This
misclassifications is primarily due to similar colour/textures
features.

D. CNN: FCN RESULTS
Semantic segmentation is performed on keyframes identified
in Section V-A by using FCN-8. No transfer learning is
adopted and initial weights are assigned based on normal
distribution [36]. Categorical cross entropy is used as the
loss function. The model is trained for 35 epochs. Model
overfitting is prevented by the usage of dropout layers.
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FIGURE 13. (a) Original image. (b) Ground truth image. (c) Semantic
segmentation results by applying U-Net.

TABLE 7. Precision, Recall and F1-score of FCN-8 on ManipalUAVid.

The respective loss and accuracy curve for training and vali-
dation set is shown in Figure 15.
The different performance metrics such as precision,

recall and F1-score for FCN-8 architecture on ManipalU-
AVid dataset is shown in Table 7. Other metrics such as
mPA, PA and mIoU for FCN-8 are shown in Table 5.
The ROC curve of FCN-8 is shown in Figure 18.

FIGURE 14. ROC curves obtained for U-Net architecture for semantic
segmentation of ManipalUAVid.

FIGURE 15. (a) Accuracy and (b) loss curve of FCN-8 architecture for
semantic segmentation of manipalUAVid.

A high F1 score is obtained for all four classes except
construction class indicating a robust segmentation. In addi-
tion, a high mPA is observed as compared to TextonBoost,
U-Net and DeepLabV3+ methods. The usage of deep
CNN architecture VGG16 enabled the model to learn
deep features which resulted in less false positives
for all the four classes as compared to U-Net. How-
ever, mIoU of FCN-8 is similar to TextonBoost and
U-Net.
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FIGURE 16. Confusion matrix for FCN-8 architecture for four class
semantic segmentation of ManipalUAVid.

FIGURE 17. (a) Original image. (b) Ground truth image. (c) Semantic
segmentation results by applying FCN.

Few sample results of FCN-8 semantic segmentation on
UAV aerial videos is shown in Figure 17. The confusion
matrix of FCN-8 model is shown in Figure 16.

FIGURE 18. ROC curves obtained for FCN architecture for semantic
segmentation of ManipalUAVid.

FIGURE 19. (a) Accuracy and (b) loss curve of DeepLabV3+ architecture
for semantic segmentation of manipalUAVid.

E. CNN: DeepLabV3+
DeepLabV3+ is utilized to perform semantic segmenta-
tion of the keyframes identified in the ManipalUAVid
aerial video dataset. The model is trained for 100 epochs
on the dataset using categorical cross-entropy loss with
Adam optimizer. Transfer learning is not utilized due to
the availability of sufficient dataset. The model loss and
accuracy curve for training and validation set is shown
in Figure 19.
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FIGURE 20. Confusion matrix for DeepLabV3+ architecture for four class
semantic segmentation of ManipalUAVid.

FIGURE 21. ROC curves obtained for DeepLabV3+ architecture for
semantic segmentation of ManipalUAVid.

The performance metrics such as precision, recall and
F1-score using DeepLabV3+ approach is shown in Table 8.
A high F1 score (greater than 0.8) is observed for almost all
class. PA, mPA and mIoU metrics utilizing DeepLabV3+ is
shown in Table 5. A mIoU of 0.83 is obtained along with a
mPA of 0.90 indicating a good segmentation. The ROC curve
of DeepLabV3+ is shown in Figure 21. The area under the
curve for all the four class is large indicating the high accu-
racy of the algorithm. The confusionmatrix for DeepLabV3+
is shown in Figure 20. Few segmentation outputs obtained
using DeepLabV3+ are shown in Figure 22. It can be seen
that the four classes are segmented accurately with a sharp
class boundary which is consistent with the previous find-
ings. However, the occurrence of slightly higher false pos-
itives for construction and water body class has resulted in
low precision of 0.76 and 0.75 respectively (bottom row
in Figure 22).
As discussed earlier, semantic segmentation of aerial

images has been studied in [17] using PolSAR images.
In their study, the SAR images were semantically segmented

FIGURE 22. (a) Original image. (b) Ground truth image. (c) Semantic
segmentation results by applying DeepLabV3+.

TABLE 8. Precision, Recall and F1-score of DeepLabV3+ on
ManipalUAVid.

into four classes viz water, vegetation, road, built up area and
others using CNNbased approaches. A pixel accuracy of 84%
was obtained in their study. However, the presence of clouds
limits the visibility of the Po1SAR images.

Instead, videos acquired using UAV can provide com-
plementary information for semantic segmentation. More-
over, the semantic segmentation of UAV aerial videos using
CRF and CNN (U-Net, FCN and DeepLabV3+) based
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FIGURE 23. First row represents the original image. Second row shows the corresponding ground truth image. Third, fourth, fifth and sixth row
shows the results obtained by applying Texton Boost, U-Net, FCN-8 and DeepLabV3+ algorithm.

approaches have achieved a higher pixel accuracy of 90%
and 92% (average of U-Net, FCN and DeepLabV3+)
respectively.

VI. CONCLUSION
Semantic segmentation is an important tool for scene under-
standing and plays a dominant role in various applica-
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tions such as autonomous driving, object tracking, activity
recognition, etc. However, a standard UAV aerial video
dataset is essential to evaluate the performance of semantic
segmentation algorithms. The new dataset consisting of aerial
videos (more than 2 hours duration) acquired in a closed
university campus is created as part of this work and is
made available in public domain. The dataset contains fine
annotations with four background classes (greenery, roads,
construction and water bodies) describing the general outline
of the scene for 650+ keyframes. The videos are captured
with high-resolution cameras at different locations, during
different weather conditions and different time of the day. The
UAV aerial video dataset created through this research work
has given a standard platform for analysing the performance
of the developed semantic segmentation algorithms.

The aerial video dataset created as part of this work has
been used to analyze the performance of the four standard
approaches for semantic segmentation viz Conditional Ran-
dom Field (CRF), U-Net architecture [2], FCN-8 [20] and
DeepLabV3+ [35] architecture. For the CRF based approach,
the texture layout feature along with colour, location and edge
potential is incorporated [21]. It has been demonstrated that
these approaches perform competitively for semantic seg-
mentation with a pixel accuracy of 0.90 (CRF), 0.93 (U-Net),
0.92 (FCN) and 0.91 (DeepLabV3+). However, the CRF
and DeepLabV3+ based method captures finer details as
compared to CNN based approach, which is consistent with
the previous findings. The comparative study of CRF, U-Net,
FCN-8 and DeepLabV3+ has helped in gaining the insight
of these algorithms and hence created an opportunity to
develop state-of-the-art algorithm for multiclass semantic
segmentation.
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