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ABSTRACT This paper presents an ultra-low power current-mode circuit for a bionic ear interface.
Piezoelectric (PZT) sensors at the system input transduce sound vibrations into multi-channel electrical
signals, which are then processed by the proposed circuit to stimulate the auditory nerves consistently with
the input amplitude level. The sensor outputs are first amplified and range-compressed through ultra-low
power logarithmic amplifiers (LAs) into AC current waveforms, which are then rectified through custom
current-mode circuits. The envelopes of the rectified signals are extracted, and are selectively sampled as
reference for the stimulation current generator, armed with a 7-bit user-programmed DAC to enable patient
fitting (calibration). Adjusted biphasic stimulation current is delivered to the nerves according to continuous
inter-leaved sampling (CIS) stimulation strategy through a switch matrix. Each current pulse is optimized
to have an exponentially decaying shape, which leads to reduced supply voltage, and hence ~20% lower
stimulator power dissipation. The circuit has been designed and fabricated in 180nm high-voltage CMOS
technology with up to 60 dB measured input dynamic range, and up to 1 mA average stimulation current.
The 8-channel interface has been validated to be fully functional with 472 W power dissipation, which is
the lowest value in the literature to date, when stimulated by a mimicked speech signal.

INDEX TERMS Fully implantable cochlear implant, bionic ear, neural stimulation, ultra-low power,

current-mode.

I. INTRODUCTION

Hearing in mammals is induced by mechanical vibration
at the ear drum, which is transferred to the inner ear via
ossicles. Travelling waves in the cochlea of the inner ear bend
different hair cells on the basilar membrane, depending on the
frequency. The hair cells release electrochemical substances
that stimulate the auditory neurons [1]-[3].

Traditional hearing aids treat moderate hearing disorders
by amplifying the sound [4], [S]. Middle ear transducer
implants convert incoming sound to micro-vibrations through
a microphone in order to address disorders related to eardrum
and ossicles [6], [7]. Damage of the hair cells on the other
hand causes loss of fine tuning of the incoming sound,
resulting in hearing loss from severe-to-profound level.
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This kind of impairment can be fixed by Cochlear
Implants (CIs), which convert sound to electrical pulses for
stimulation of the auditory neurons [8]-[10]. While modern
ClIs are the most successful neural prostheses that target high
quality music perception [4], [11], [12], aesthetic concerns
and frequent battery replacement have redirected recent stud-
ies to fully-implantable cochlear implants (FICIs) [13]-[15].

Many studies on FICIs include design of implantable
microphones [16]-[18]. Single microphone output requires
electrical filters to process different frequencies as the main
disadvantage. In a previous study by our group, a PZT
acoustic sensor acts as a mechanical filter to sense the
incoming sound at certain frequency bands [19]. Interface
electronics has to accompany implantable sensors for detect-
ing sound in this approach. The previous studies are either
focused on the front-end amplification [20] and filtering
[21], [22] circuits or the neural stimulation [23], [24] part
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of the CIs. An ultra-low power programmable analog bionic
ear processor is proposed by Sarpeshkar et al. for electret
microphones [25], which provides 16-channel output to drive
stimulation electrodes external to the implant. The design by
Georgiou et al. includes a single-chip system with speech
processor and stimulator for a totally implantable cochlear
prosthesis with processor power dissipation of 126 uW [26].
Both of the cochlear implant circuits in [25] and [26] focus
on the design of the front-end signal conditioning where
they benefit from low power and low voltage operation
of current mode circuits [27]. Nevertheless, these works
exclude the high voltage neural stimulation unit for the
delivery of the current pulses to the auditory neurons. More
recently, an implantable low-power signal conditioning IC
has been reported in [28] for a piezoelectric middle-ear
sensor. Although energy-optimized (exponential-like) stim-
ulation pulse shape at the back-end reduces system power
dissipation to about 572 u'W, single-sensor architecture with
8 filters to isolate distinct frequencies results in a relatively
high power dissipation at the front-end circuit. Jang et al.
proposes a micro-electromechanical system that senses the
input sound through mechanical filters and delivers electrical
stimulation to the auditory neurons [29]. The neural stimula-
tion is implemented off-chip, and the system design does not
consider important FICI criteria such as power dissipation,
compression rate, stimulation current level, and patient fitting
compatibility.

In this work, a bionic ear interface is proposed, which
includes original power-efficient current-mode circuits to
process the acoustic sensor signals at the front-end, and
stimulates the auditory neurons through energy-optimized
exponentially decaying current waveforms at the back-end
with the lowest total system power dissipation to date. The
input sound is sensed by the low-volume 8-channel PZT
transducer operating with high sensitivity. The sensed sig-
nals are compressed into the dynamic range of the auditory
neurons, which are then stimulated by the current pulses at
the desired frequency and power level. The organization of
this paper is as follows: The design specifications of the
interface electronics is provided in Section II. Section III
includes the details of the interface, which is followed by
further discussion of neural stimulation scheme in Section IV.
Section V presents the test results and discussions. Finally,
conclusions are summarized in Section VI.

Il. DESIGN SPECIFICATIONS

Fig. 1 shows the FICI system proposed at FLAMENCO
Project! as a bionic ear with five distinct units: PZT
transducers for multi-frequency sound detection, signal
conditioning electronics to stimulate the auditory neurons
according to transducer outputs, a cochlear electrode for
neural stimulation, a rechargeable battery to supply the sys-
tem, and an RF coil for patient fitting and battery charging.

11FLAMENCO Project with ERC Consolidator Grant 2015
(GA:682756), https://cordis.europa.eu/project/rcn/204134_en.html.
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FIGURE 1. FICI system proposed at FLAMENCO Project.

The connections between PZT sensor, interface electronics,
and battery can be sustained through flexible interconnects
that minimize the damping on the vibration of the eardrum
and the ossicles. Previous studies have shown that mass of
the implantable sensor placed on the ossicles must be lower
than 20 mg in order to limit the loading effect on the umbo
vibration [14]. A flexible material (e.g. polyimide) will be
utilized as the substrate with interconnect metallization paths,
which will be optimized for minimum parasitic line resis-
tance and maximum flexibility for the vibration of ossicles.
The subject of this paper is the signal conditioning interface
unit, for which design specifications are outlined in this
section.

The conditioning electronics and the transducers must fit
into the middle ear (2 cm?®), and the transducer footprint
must be less than the size of the eardrum (55 mm? with
8-10 mm diameter) [30]. The low volume PZT sensor by our
group [19] includes 8 cantilever beams with different resonant
frequencies for sound detection, covering the common sound
band from 200 Hz to 5 kHz. The center frequencies of the
sensor channels are distributed linearly between 200-1300 Hz
(300, 600, 900 and 1200 Hz), and are logarithmically spread
above this range to cover the common sound band up to
5 kHz (1600, 2200, 3200 and 4800 Hz). High sensitivity
of the PZT material provides higher signal amplitude and
consequently higher signal to noise ratio can be achieved at
the sensor output. The characteristics of the 8-channel PZT
sensor are projected by considering miniaturization to fit the
sensor to the middle ear, and provide multi-bandpass filtering
with a similar peak voltage at the resonance frequency of
each channel. The neural stimulation output at each chan-
nel can be programmed for per-patient calibration through
digital control of stimulation current generator, as will be
explained in Section III. The same control allows compensa-
tion for variances across PZT sensors. The number of can-
tilever beams determines the number of spectral channels,
which highly influences the speech perception of the patients.
Previous studies report that speech perception gets better with
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increasing number of channels, but does not significantly
improve beyond 7 channels [31]. Hence, 8 channels are uti-
lized in the proposed design to provide sufficient spectral
resolution with acceptable hardware complexity and power
dissipation associated with the conditioning circuits.

PZT transducers collectively provide mechanical filter-
ing since each one oscillates with the frequency component
of the incoming signal that matches with its resonant fre-
quency. The power requirement of the circuits that condi-
tion the PZT signals is the crucial part of the design. For
a 200 mAh - 3.6 V implantable rechargeable battery [32],
the total power consumption must be lower than 600 W
to dissipate 1% of the total energy with 12 hours continu-
ous usage per day. Using this usage model, the battery is
10% depleted after 10 days, with battery voltage reduced
to the marginal level for recharging. Typical power conver-
sion (regulation) circuits have about 85% efficiency at best.
Therefore, implantable signal conditioning system, such as
the one presented in this work, must consume less than
500 uW to achieve lifetime beyond 30 years by recharging
the battery for 1000 cycles [28], after which point recharge-
able batteries start losing significant capacity.

Another critical design parameter for the signal condi-
tioning circuit is the input dynamic range, which highly
influences the speech perception of the patient. Daily sound
level ranges between 40 dB SPL (e.g. in a quite library) and
100 dB SPL (e.g. helicopter noise) [14]. Previous studies
have shown that an input dynamic range of 50 dB provides
adequate speech perception in multichannel CIs [33], which
is thus used as the lower bound for signal conditioning and
transducer design.

IIl. INTERFACE CIRCUIT DESIGN

Fig. 2 shows the block diagram of the bionic ear interface
that senses voltage signals from 8 piezoelectric (PZT) sensors
with different center frequencies. The interface circuitry pre-
dominantly operates in current mode to minimize power dis-
sipation due to current-to-voltage conversion and vice versa.
Size constrained PZT sensors generate signals of limited
amplitude. Therefore, a low-power wide-range Logarithmic
Amplifier (LA) is designed as the first stage. Although the
dynamic range of daily observed sounds is around 60 dB,
the electrical dynamic range of the cochlea is about 20 dB
[33], [34]. Thus, the LA is designed to logarithmically com-
press the input sound range to the electrical dynamic range
of the cochlea. The AC current delivered by the LA feeds
an original current rectifier and multiplier with a low-pass
filter at the next stage. A sample/hold circuit samples the filter
output to generate a reference for the stimulation current gen-
erator, which drives the current level required by the auditory
neurons. The generated signal is converted into a biphasic
pulse through a switch matrix, which directs the current
pulse to the correct electrode (E;-Eg) to stimulate the cor-
responding auditory neurons. The enable signals for the
LAs and corresponding channel selection signals at sample/
hold blocks are provided by the control unit. The selection

132142

signals are level shifted to be compatible with the high voltage
switch control block for the biphasic current. Design and
analysis of each sub-circuit are provided in the following
sections.

A. POWER OPTIMIZED LOGARITHMIC AMPLIFIER

Each sensor output at the first stage is amplified using a
custom designed logarithmic amplifier that also compresses
the incoming sound to the electrical dynamic range of neu-
rons. The dual function of the amplifier optimizes system
power dissipation better compared to the previously reported
cochlear implant interfaces, which implement a separate DC
compression stage after the downstream envelope detector
[34], [35]. The LA is a modified version of the one presented
in [36] to accommodate a number of circuit power optimiza-
tion features, in addition to system level power gating of the
lower supply voltage (Vpp = 1.8 V) illustrated by switches
in Fig. 2: The subthreshold design delivers a single ended
AC current output and eliminates the load resistor compared
to [36], which increases the dynamic range by trading off less
critical per-stage gain. The number of stages in the circuit is
otherwise minimized with the constraint to deliver the desired
input compression range. Fig. 3 (a) depicts the five-stage LA
utilized to amplify the sensor voltage range (0.1-100 mV)
provided in [19] to the acceptable level of 20 dB range.
As the input amplitude increases, each stage of the LA enters
the limiting state (saturation) one by one from the last stage
toward the first.

Fig. 3 (b) presents the details of the staging amplifiers
(same for all stages) that form the LA, where each stage in the
chain is driven through differential Vx ., outputs of the pre-
vious stage. M4 current is mirrored to the output through Ms.
DC component of the current (Ipjys) is extracted with the bias
branch, allowing only the AC component (Ic in Fig. 3 (b),
Iout,i in Fig. 3 (a)) to be summed with the output of the other
stages as IpyT in Fig. 3 (a). The relationship between output
current and input voltage is provided by Eq. (1) in terms of
the circuit parameters for the low input voltage level when all
amplifier stages operate in the linear region:

8m.M2
tour =vin P52 (144, + (402 + A7 + @A), (D
where A, is the voltage gain of one differential pair stage and
can be written as Ay = g, 1 /8y m3- The output current
of the logarithmic amplifier can be rewritten using Taylor
series as:

M2 k—1 .
Tour = Vingsz Zi:o Ay, k=1,2...5 (2
gmm2 (A" =1
I = y;, 2= , 3
OUT = Vin > (Av—l 3)

where k is the number of amplifiers operating in linear region.
The logarithmic compression of the gain comes from the
nonlinear characteristic of the saturated amplifiers. When
all the amplifiers are in linear region, the output current
in Eq. (3) has the highest slope with respect to the input.
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FIGURE 3. (a) Logarithmic amplifier circuit with offset cancellation
feedback from the last stage to the 2nd stage, (b) amplifier stage design,
with the 2" stage additions for enhanced offset cancellation highlighted
in red color.

However, increase in the input voltage leads to stage by stage
saturation of the amplifier, and reduces the gain. The input
output characteristic of the amplifier exhibits a logarithmic
variation by proper tuning of the stage gain.

The amplifier stages are biased to operate in the subthresh-
old domain for lower power dissipation and higher gain due
to increased transconductance. When a particular channel is
not sampled, the LA is dynamically disabled through a power
management control signal (Vgy in Fig. 3 (b)). The utilized
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diode loaded differential input and output stages enable fine
definition of the common mode without feedback, which
further reduces power dissipation compared to alternatives.

In viewpoint of noise performance, the input referred noise
of the logarithmic amplifier is mainly determined by the first
stage, while the noise generated by next stages are suppressed
by the voltage gain (Ay) of the staging amplifiers, and can
be ignored [36]. The input referred noise of the first stage is
provided by Eq. (4).

2 =22 4+ 43;%14 W2 42
eq,stgl — n,Mp 2 n,My n,Ms
m2
2
Em6 (2 2
T3 (vn,Ms +Vn,Mo> @

mS

where E is the total noise of a transistor. As the logarithmic

amplifier operates in subthreshold region, v2 is expressed as
in (5).

4kTy
gm

Ky

Cox WLf ®

V2=
where k is the Boltzman constant, T is operation tempera-
ture, g, is transconductance of the MOSFET, and y is the
excess noise factor, which is around 1/2 for weak inversion
region [37]. K¢ is the flicker noise coefficient. Coy, W, and
L are technology and design parameters that represent the
oxide capacitance, width and length of the MOSFET. f is
the operation frequency. In order to minimize the noise at
the input differential pair (M1_»), which are the most domi-
nant components, the following measures are implemented:
Their transconductance is increased to reduce the thermal
noise and their gate area is increased to minimize the flicker
noise. Moreover, high transconductance of M contributes to
suppression of noise induced by M3_g.
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FIGURE 4. Measurement result of the input refer noise of LA.

Input DC offset is compensated through feedback from the
last stage to the 2" stage. Although applying feedback to
the second stage is expected to impact the performance of
the offset cancellation by a small fractional amount, the input
referred noise of the amplifier is reduced by about 3x com-
pared to the logarithmic amplifier design with feedback at the
first stage (~10 uVims). The total input referred noise of the
designed logarithmic amplifier with feedback at the second
stage is measured as 2.7 uVys (Fig. 4). Fig. 3 (b) highlights
the offset cancellation enhancements (in red color) to the
amplifier at the 2" stage. The offset voltage has a direct effect
on saturation of the amplifiers especially at the final stages of
the amplifiers. As seen in Eq. (3) the output current is directly
related to the differential input voltage. The uncontrolled DC
offset at the input of the LA leads to saturate the staging
amplifiers earlier, hence reduces the overall gain of the sys-
tem. The feedback amplifier helps to keep the gain in the
stable range by cancelling the differential offset. An RC filter
has been applied as the feedback loop with cut-off frequency
<0.1 Hz to avoid feedback interactions within the hearing
band (20 Hz — 20 kHz). High value required from the RC
product to achieve the target cut-off frequency is challenging
for on-die integration of the filter. A pseudo-resistor MOS
structure with high resistance has hence been utilized as
shown in Fig. 5 (a). The pseudo-resistor is built from a para-
sitic source-body-drain pnp transistor, and is activated when
the diode connected PMOS transistors are forward biased.
Two series pseudo-resistor structures have been utilized to
provide resistive operation at a wider offset range. Since
this structure passes current only in one direction, another
resistive pair with reverse direction has been connected in
parallel to provide bidirectional operation. Fig. 5 (b) shows
that the resistance of the structure is more than 450 GS2 for
voltage difference lower than +250 mV. The capacitance
in the RC filter can thus be decreased below 10 pF, and is
implemented using on-die MIM caps.

Fig. 6 (a) depicts the measured input/output characteristics
of the LA operating at 5 kHz, with input representing the
sensor output range from [19]. The amplifier compresses
the 60 dB input dynamic range into 17 dB electrical range,
while providing AC current output. The trendline in the figure
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FIGURE 6. Measured (a) output current of the LA versus input voltage,
(b) offset cancellation performance, and (c) gain response of the LA.

illustrates the logarithmic compression of the output current
with respect to the input voltage. Fig. 6 (a) also includes the
error at the output of the amplifier with respect to the ideal
linear response. The error at the amplifier increases at the
range boundaries to a maximum of around 8 nA. Moreover,
the error at the output is always lower than 10%, which
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shows that the LA design effectively utilizes the full sensing
range. Fig. 6 (b) shows the amplifier response with varying
input and offset voltage values. Results indicate the output
voltage is slightly deviated with the applied offset voltage;
however, the circuit is still functional. In absence of feedback,
the staging amplifiers would have been saturated with a small
offset voltage, and broken the overall LA operation, whereas
the amplifier with the feedback circuit operates well with a
slight deviation. Fig. 6 (c) shows the frequency response of
the LA at 1 mV (60 dB) input. The LA has flat response up
to 5 kHz which covers operation frequency range across the
PZT sensors at the input. —3 dB bandwidth is > 10 kHz, that
provides enough margin for the flatness of the gain.
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Current
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Current
Rectifier Mo

@, _________ TV T o __T_____-__1
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Tl T
(b) I 0

FIGURE 7. (a) Current rectifier and current amplifier with low-pass filter,
(b) sample and hold circuit.

B. CURRENT RECTIFIER AND AMPLIFIER

WITH LOW-PASS FILTER

The AC current signal from the logarithmic amplifier is
rectified, amplified, and filtered by the next stage illustrated
in Fig. 7 (a). Diode connected NMOS (Ms) and PMOS (Mg)
transistors provide low resistance at the rectifier input. The
operation principle is as follows: Input current (Irny) flows
through Mg (Ms) with Ms (Mg) turned OFF during the
positive (negative) phase. Both positive and negative half
cycles are summed at M7 through the cascode current mirror.
The rectified current is amplified through M7_19 and M11_14
cascodes with a total gain of 25, and is delivered to the low-
pass filter (ILp) made up of a diode connected high voltage
NMOS transistor M5 and a 25 pF capacitor. Although the
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mechanical filters discriminate different frequencies in the
speech band, the information carried by these frequencies are
determined by the envelope variation of the signals. There-
fore, a low pass filter with 400 Hz cut-off frequency is added
to cover the frequency of temporal pitch observed in daily life
[1], [8]. The settling time of the LPF is below 5 us, which is
a much lower than the characteristic period of the signal at
the rectifier output (1/5 kHz = 200 us). The settling time can
be further reduced by utilizing a 2™ order filter with addi-
tional power dissipation penalty. A 1% order filter provides a
favorable power-delay product in this design. The amplified
and rectified current (I.p) is converted to voltage by the LPF
MOSFET (Mj5), whose gate is sampled to determine the
least significant bit of the stimulation current generator. The
voltage on the filter capacitor (Crp) is buffered through a
simple single-stage low-gain low-power differential amplifier
to isolate LPF from the loading of the sampling circuit. The
buffered voltage is sampled by the sample and hold circuit
(Fig. 7 (b)) for 100 us. A shorted switch located after the
sampling capacitor is activated out of phase with the sampling
switch to reduce charge injection effect. The system includes
8 Sample and Hold (S/H) circuits for which corresponding
outputs are multiplexed to bias the current generator unit.
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FIGURE 8. Process corner simulations of the (a) LA and the (b) rectifier
circuits with 1 mV input amplitude and 1 kHz frequency.

In order to observe the effect of process and temperature
variations on the design, the logarithmic amplifier and the
current rectifier circuits have been simulated at the process
corners. Fig. 8 presents the simulation results with 1 mV input
peak voltage at 1 kHz, where TYP is typical, WP is worst
case power, WS is worst case speed, WO is worst case ONE,
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and WZ is worst case ZERO corner. The results show that
process variations lead to slight deviations from the typical
characteristics, but the variations are well within the calibra-
tion range of the stimulation current generator block, and can
be accounted for during the per-part calibration procedure.
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FIGURE 9. Measurement result of variation of the stimulation current
level with respect to the 7-bit DAC setting.

C. STIMULATION CURRENT GENERATOR

The sampled voltage (Vg) from the previous stage controls
the current source MOSFETs (Fig. 2). The current generator
embodies a programmable 7-bit digital-to-analog converter
(DAC) to set the stimulation current threshold for maximum
comfort. Fig. 9 shows variation of the generated stimulation
current level with respect to the 7-bit DAC control signals
Do-Dg, where the least significant bit (LSB) corresponds
to 3 wA. Thanks to the analog layout techniques applied,
the percent error of the generated current with respect to the
LSB is negligible (<10%). Therefore, the utilized current
generator circuit provides reliable calibration of the minimum
threshold and maximum comfort level of the stimulation cur-
rent at each channel according to patient’s needs. Moreover,
the 7-bit DAC circuit provides control of the stimulation
current with high sensitivity, and the error at the front-end
circuit response can be eliminated through calibration per
patient, after implantation.

Digital pins Dg-Dg are utilized to modify stimulation cur-
rent pulse shape for optimal operation in terms of providing
comfortable stimulation with lowest average power dissi-
pation. The topology yields easy control with wide range.
Moreover, integration of the DAC reduces power dissipation
compared to the previous generator circuits [28], [38]. The
circuit can generate more than 1 mA of stimulation.

D. SWITCH MATRIX

The generated stimulation current is converted into a bipha-
sic pulse, and is transferred to the corresponding electrode
(E1-Eg) through a switch matrix. Fig. 10 depicts schematic
diagram of the switch matrix for the first channel, and the
generated biphasic stimulation current in time domain. After
the cathodic pulse is generated through Sc and S ¢ switches,
the anodic pulse is applied with S4 and S; A in order to supply
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FIGURE 10. (a) Switch matrix utilized at Electrode 1, and (b) generated
biphasic stimulation current.

the discharged current back to the neurons. Sc and S A in
the switch matrix are PMOS switches whereas Sa, S1,s, and
Si,c are NMOS switches to enable better transmission at
high and low voltage, respectively. Switch Sy g is utilized to
remove the residual charge remaining on the capacitor at the
load, and prevents charge imbalance at the electrodes. The
switch matrix is supplied by high voltage (Vppp) to deliver a
sufficiently high potential at the stimulation electrodes. The
electrodes are enabled according to the well-known Continu-
ous Interleaved Sampling (CIS ) sound processing strategy,
which provides sequential interleaved stimulation at fixed
frequency, and delivers better performance compared to other
synchronous implementations [39], [40]. CIS switch control
signal timing is explained in the next section.

E. CONTROL UNIT

The control unit generates power enable signals for the
logarithmic amplifiers, selection signals to switch between
channels for sampling, and switch matrix control signals for
8-channel CIS stimulation. The core is a resettable one-hot
finite state machine (FSM), as depicted in Fig. 11 (a). The
state machine generates interleaved enable signals (S[1:8])
that stimulate the electrodes sequentially according to CIS
strategy. The stimulation is timed using a low frequency clock
(CLKy o) with 1 ms period. A 100 pus stimulation pulse at
each channel enables 50 ps cathodic and anodic phase widths.
After CLK] o falling edge starts the operation, channel select
signals are consecutively enabled through the one-hot FSM
running on a higher frequency clock (CLKyp) at 10 kHz.
CLKy; is generated by a ring oscillator and is also used to
trigger a ring counter, as shown in Fig. 11 (b), in order to
generate CLK] o. This implementation ensures the two clocks
have synchronous timing. The logarithmic amplifier enable
and sampling signals (EN[1:8]) are acquired for 100 us,
and generated just before the enabling period of the corre-
sponding channel. After the stimulation of the last channel,
a done signal is generated to reset the machine, and the
process repeats at the next falling edge of the low-frequency
clock. The anodic and cathodic pulses at each stimulation
electrode are obtained from the selection (S[1:8]) and clock
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FIGURE 11. (a) Schematic diagram of the resettable one-hot state machine implementation for the control unit, (b) ring counter for generating CLK, o from
CLKpy. (c) designed combinational circuit that generates switch matrix control signals, and (d) timing diagram of the control unit for 8-channel operation.

signals using the combinational logic circuit in Fig. 11 (c).
Fig. 11 (d) illustrates the control unit timing diagram, which
comprises of the control signals for the 8-channel CIS stimu-
lation. Different channel modes can be programmed through
“CH_MODE]JO0:1]” signals. The system can operate with 1,
4, 6 or 8 channels, which allows tradeoffs between sound
perception quality and power dissipation. Since the digital
control unit is on the 1.8 V supply for reduced power dis-
sipation, control signals are level shifted at the unit interface
before being delivered to the high voltage switches.

IV. EFFICIENT NEURAL STIMULATION

The neural stimulator is the most power hungry part of the
design, and accounts for more than 90% of the total power
dissipation due to the high voltage requirement at the stimula-
tion electrodes. The well-known rectangular constant-current
stimulation that is also utilized at commercial cochlear
implants suffers from inefficiency of charge transfer and high
voltage levels with few undesired consequences, including
formation of undesirable chemical products. Although recent
studies has improved the efficiency of charge transfer through
modified stimulation current waveform shape [28], [41],
the peak voltage remains high. Stepped decreasing current
in [42] reduces the maximum electrode voltage for retinal
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prosthesis, but the waveform is not slope-optimized and uti-
lizes limited number of steps at each phase.

FIGURE 12. (a) Three-element model of the electrode tissue interface,
and (b) the electrode current and voltage waveforms.

The conventional model of the electrode tissue interface
is depicted in Fig. 12 (a) with three lumped system compo-
nents. Bulk resistor (Ryyx) models the substance between two
electrodes, whereas the electrode-tissue interface is modeled
with a capacitor (Cgyf). The leakage resistor (Rjeak) is used
to model the redox reactions occurring at the electrode sur-
face that is connected in parallel with the Cgyrr [43]. Rieak
is typically ignored, since it has a very large value. Bulk
resistance and surface capacitance values have been reported
in 1-10 k€2 and 1-10 nF range, respectively [23], [43], [44].
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Fig. 12 (b) shows the rectangular stimulation current and the
electrode voltage for the given R-C model. The electrode volt-
age increases during the stimulation and reaches its maximum
value at the end of the pulse phase. The maximum electrode
voltage can be reduced by applying a non-rectangular pulse
shape, i.e. a decreasing current waveform, which maintains
a low electrode voltage. Different waveforms such as linear
decreasing, exponential decreasing, and Gaussian distributed
current pulse shapes were tested with the electrical model to
minimize the electrode voltage. The average current per phase
must be identical for all to provide the same charge level.
Since the stimulation current is supplied through a constant
current generator circuit for simplicity, the waveform shape
can only be changed in stepped manner, which is the most
efficient and practical approach to apply different shapes. The
discrete time expressions for different waveform shapes are
given in Eq. (6)-(9).

Lect = Arect, (6)
n(2egauss) 2
—(.5( ==84quss)
Igauss(n) = Agausse ( N ) , @)
liin(n) = Ajin(K — ajipn), (®)
Lox(n) = Agre™ %", 9)

where A is the amplitude coefficient of the applied currents,
Qgauss 18 the coefficient that determines the standard devia-
tion, N is the window length that is determined according
to maximum step number, K = 127 is the design constant
that is obtained from 7-bit current generator (28-1), i, and
oy are the constants used to determine slope of the linear
and exponential currents. The maximum step number of
the current waveform is determined as N = 10 since any
higher N does not provide significant resolution benefit at
the electrode [42] while increasing the power dissipation
due to higher switching losses. The net charge transferred
to the electrodes is preserved at the same level to provide
fair comparison across different waveform shapes, with total
charge per phase given by:

10
> Im)ATy, (10)

n=1

where I(n) is the current amplitude at the n™ step and ATy
is the current step size. For 50 us stimulation phase width
(Tpr) and 10 steps, waveform ATy, = 5 us. The electrode
voltage for a given electrical model is the sum of resistor and
capacitor voltages, which can be expressed in discrete time
domain as in Eq. 11:

k
1
Velec(k) = Rbulklstim(k) + E Istim(i)At (1 1)
i=0

CSMIf .

where At is the time step for summation, which is cho-
sen as 1 ns (Ktrc and Tpp) to provide accurate calcula-
tion. Fig. 13 illustrates stimulation currents with different
pulse waveform shapes, and corresponding electrode volt-
ages, where all pulses provide 500 ;A average current at each
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FIGURE 13. Stimulation current and corresponding electrode voltages for
(a) rectangular, (b) Gaussian, (c) linear and (d) exponential pulse shapes.
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FIGURE 14. Variation of the normalized Vy;,, with the slope
parameter («).

stimulation phase. The electrode-tissue interface model has
Rpuik = 3 k€2 and Cgyf = 10 nF [28]. The waveform shapes
are optimized by varying the slope parameter («) to obtain the
lowest maximum electrode voltage at each shape. Maximum
electrode voltage (Vmax) is shown for each waveform type
in Fig. 14, where all values are normalized with respect to the
maximum of the rectangular waveform. The optimized wave-
forms provide 9%, 17% and 20% electrode voltage reduction
for Gaussian, linear decreasing and exponential decreasing
current pulses, respectively. Hence, the lowest electrode volt-
age is obtained for exponential decreasing waveform shape,
which allows reduction in supply voltage by 20%. The power
dissipation of the interface is thus reduced by at least 20% for
the same average current, and potentially more depending on
the extend of leakage diminution with voltage, which varies
significantly with process technology.

V. RESULTS AND DISCUSSION
The micrograph of the 8-channel FICI interface circuit,
designed and fabricated in 180nm high-voltage CMOS
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FIGURE 15. Die micrograph of the implemented FICI interface electronics.
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FIGURE 16. Generated 8-channel stimulation (CIS) currents where input
peak voltage increases linearly from 0.5 mV (15t channel) to 64 mv
(8th channel).

technology, is depicted in Fig. 15, with 1.4x1.4 mm? active
die area. The interface circuit can be attached to the flexible
interconnects through wire bonds or a small package such as
QFN32, which has an area of 5x5 mm? and can be easily fit
into the middle ear. The interface is validated by applying dif-
ferent input voltage levels as sensor output. Fig. 16 illustrates
the measurement of the generated 8-channel stimulation cur-
rents based on CIS, where current level at each channel
can be tuned by changing the digital control signals Dg-Dg.
As illustrated, although the input voltage increases linearly
from 1% to 8" channel, the stimulation current level changes
logarithmically to fit the input to the electrical dynamic range
of the ear.

Efficiency of the system is validated next by changing the
neural stimulation waveform shape via Dy-Dg control pins,
which are driven from an external FPGA in an automated test
environment. Once identified, the most efficient waveform
configuration can be permanently stored on-chip using a
7x10 bit ROM to generate the required control bits with negli-
gible power consumption(<1 W) during regular user mode.
Fig. 17 depicts the stimulation current and the electrode
voltage for rectangular and optimized exponential decreasing
waveforms with artificial neural load (Rpyx = 3 k2 and
Csurf = 10nF [28]). As expected from simulations, optimized
waveform shape leads to reduction in the maximum electrode
voltage by 20%. Although the amplitude of the optimized
stimulation current waveform is higher, the average value
is not. The result firmly concedes 1.5 V reduction in high
voltage supply, from7 Vto 5.5 V.
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FIGURE 17. Stimulation current and electrode voltage for (a) rectangular
and (b) optimized exponential current waveforms.

Testing Board

FIGURE 18. Test setup of the FICI Interface electronics with speech signal.

The implemented FICI interface electronics is then tested
with a speech signal “A white silk jacket goes with any
shoes”, which is a common sentence utilized in speech-in-
noise tests [45]. The environmental sound noise was mea-
sured at around 40 dB (sound level of a quite library) with a
sound dB meter, before recording the speech. Fig. 18 depicts
the test setup. The sound is detected through a microphone,
and is converted into digital speech data through Matlab.
The mechanical filters presented in [19] are imported into
Matlab, and applied to the speech data to mimic the 8 channel
PZT sensor output. The mimicked signals are then applied
to the FICI interface electronics through Keysight 33522B
signal generator, which is controlled by BenchVue software.
The output response of the interface electronics is measured
through N19232 high voltage data acquisition board (DAQ)
and LabVIEW software. Fig. 19 (a) and (b) show the his-
togram of the speech signal, and the measured electrodogram
from the 8-channel FICI interface, respectively, confirming
that different frequency components of the speech are cor-
rectly obtained at the corresponding FICI channels. The FICI
outputs have high precision at low frequency (<3 kHz),
which captures the voice range. The reconstructed speech
signal from the stimulation electrodes of the FICI interface
electronics (Fig. 20 (b)) is compared against the time-domain
waveform of the speech signal recorded by the microphone
(Fig. 20 (a)). Although mechanical filters lead to limited
perception of high frequency components, the envelope of the
reconstructed signal coincides with the envelope of the real
speech signal, which validates operation of the interface in a
real application (when the input is not a pure sine tone). The
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FIGURE 19. (a) Histogram of the speech signal recorded by the
microphone, and (b) electrodogram from the stimulation electrodes of
8-channel FICI interface.
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FIGURE 20. Time-domain waveform for (a) the speech signal recorded by
the microphone, and (b) the reconstructed speech signal from stimulation
electrodes of the FICI interface electronics.

power dissipation for the given speech signal is measured as
472 W, while operating with the optimized current wave-
form. The 3-second test, which includes 3000 stimulation
pulses, provides a representative average power dissipation
for the interface circuit.

Table 1 details the power dissipation analysis of the
8-channel FICI interface electronics for rectangular and opti-
mized exponential current pulse shapes. The optimized wave-
form enables reduction of the supply voltage of the current
stimulator (switch matrix and HV switch control), which is
the most power hungry part of the design. Hence, the total
power dissipation of the system is reduced by about 20%
through waveform shape optimization. Moreover, the front-
end signal conditioning circuit (system excluding the stim-
ulator) operates with 19.7 u'W, which is one of the lowest
values provided in the literature. Table 2 presents compar-
ison of the FICI interface with the state-of-the-art circuits.
The input dynamic range of the proposed circuit is similar to
the previous reports, and provides adequate perception of the
input sound. The input noise floor of the designed system is
comparable with the previous state-of-the-art designs. 7-bit
patient fitting resolution provides better control of minimum
threshold and maximum comfort level of the stimulation
current. The circuit predominantly operates in current mode,
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TABLE 1. Power consumption of the 8-channel FICI interface circuit.

System Components Voltage (V) Power (uW)
Logarithmic Amplifier 1.8 2.1
Current Rectifier 1.8 2.0
Current Multiplier with LPF 33 23
Sample and Hold 33 32
Control Block 1.8 2
HV Switch Control 7-10% / 5.5-8%* 10.2% / 8.1%*
Switch Matrix (Stimulator) 7-10% / 5.5-8** 570% / 452%*

Total Power 591.8*% / 471.7%*

*Rectangular and **Optimized Exponential current wavcforms

TABLE 2. Comparison of FICI interface circuit with state-of-the-art.

Sarpeshkar  Georgiou Yip This
Parameters
[25] 126] 28] Work
Technology 1.5 pm 0.8 pm 180 nm 180 nm
Active Die 9.6x9.2 35x60 ~1.76x1.9 14x14
Area (mm”)
Number of
Electrodes 16 16 8 8
Dynamic Range
(dB) 77 60 60 60
Input Noise
Floor (1Vms) 3 . 23 27
Patient Fitting 7-bit 5-bit 6-bit 7-bit
Front-End
Power (W) 211 126 93 19.7
Stimulator «
Power (1W) - 2000 479 452

* Estimated by the authors and not implemented on the chip

with minimum overhead associated with current-voltage sig-
nal translations, and provides the lowest power dissipation
both for the front-end signal conditioning and stimulator
units.

VI. CONCLUSION

The presented ultra-low power bionic ear interface senses the
implantable PZT outputs and stimulates the auditory neurons
accordingly. The interface is designed, implemented, and
fabricated in 180 nm HV process, and is validated through
a speech signal to demonstrate proof-of-concept operation
with both circuit design and waveform optimizations. The
proposed system is the first FICI interface with 60 dB input
dynamic range and patient fitting compatibility (stimulation
current from 0 to 1 mA, minimum threshold and maximum
comfort levels, respectively) that operates with total power
dissipation of ~470 uW. The superior power dissipation
profile of the system results from the concomitant optimiza-
tions in system architecture, circuit design, and stimulation
waveform shape. Sub-500 W operation of the interface elec-
tronics enables long-term system reliability with a lifetime
of more than 30 years, using a typical implantable battery
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with limited capacity. A major impediment in the prolonged
use of cochlear implants is hence overcome, which results in
reduction of healthcare cost and risks associated with surgical
battery replacements.
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