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ABSTRACT We consider the distributed multitarget tracking over sensor networks, where each node only
communicates with its neighbors. We develop a diffusion-based distributed multisensor multitarget tracking
algorithm. The state update of the diffusion-based distributed algorithm ismainly composed of two phases: an
adaptation phase and a combination phase. During the adaptation phase, each node updates its local estimate
by using all its neighbors’ measurements. It is achieved based on a multi-sensor cardinalized probability
hypothesis density filter. During the combination phase, each node fuses all its neighbors’ local estimates. It is
achieved based on a generalized version of covariance intersection technique. Compared to the consensus-
based distributed algorithm, the proposed algorithm has two advantages. First, it can provide more accurate
and robust tracking results, especially when the detection probability that the sensors detect the targets is
low. Second, it has lower communication load because the consensus iterations are not required. Numerical
results are provided to illustrate the performance of the proposed algorithm.

INDEX TERMS Diffusion strategy, distributed estimation, multitarget tracking, sensor networks.

I. INTRODUCTION
Multitarget tracking is an important topic inmany civilian and
military applications [1]–[4]. The objective is to jointly esti-
mate the number of targets and their states from a sequence
of noisy and cluttered measurements as well as uncertain
associations between targets and measurements. With a set
theoretic approach [5], the targets and measurements can
be modeled using random finite sets (RFSs), which allows
multitarget tracking to be cast in a Bayesian framework. As an
approximation of the first order moment, the probability
hypothesis density (PHD) filter [6] propagates the multitarget
state’s intensity function over time. Improving on the PHD
filter, the cardinalized PHD (CPHD) filter [7] jointly propa-
gates the intensity function and the cardinality distribution of
targets.

Target tracking using a single sensor may face many limi-
tations such as the lack of robustness and accuracy. Recently,
the multitarget tracking with sensor networks constructed
by multiple sensors [8]–[10] has received much attention.
The sensors have sensing, processing and communication
abilities. Each sensor generates its local measurements about
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the targets and they cooperatively estimate the unknowns of
interest.

The performance of the sensor information fusion will
depend on the collaboration strategy. In the centralized solu-
tion [11], all nodes send their local measurements either
directly or via a multi-hop relay to a fusion center (FC), and
the FC is responsible for the state estimation. It can obtain
the optimal estimate since it uses all measurements from
all nodes. However, the centralized solution usually requires
energy-intensive communications over large distances. It is
also less robust to the unreliable network conditions such as
sensor node failures. Distributed solution [12] is an attractive
alternative. Each sensor only communicates with its neigh-
bors in the distributed solution and there is no FC in the
networks. Each sensor performs a local filter and interacts
with others to calculate a global state estimate. The dis-
tributed solution is in general more robust, may require fewer
communications, and allows parallel processing. The final
estimation results are available at all nodes.

There are basically two types of distributed solution for
sensor information fusion, namely, consensus and diffu-
sion strategies. In the consensus strategies [13]–[18], some
quantities that are related to the measurements of each
node are exchanged among neighbors by using consensus
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iterations [19]. The goal is to achieve a consensus among
all nodes for computing a desired, e.g., average value. How-
ever, a number of consensus iterations at each time step
are required such that the consensus of the whole network
can be reached, which may require potentially prohibitive
communication load between sensors.

Different from the consensus strategies which require the
consensus of the whole network to be reached for a number
of consensus iterations, the diffusion strategies [20] do not
impose this restriction and the consensus iterations are not
required. So the estimation performance may be improved
and the potentially prohibitive communication load because
of the consensus iterations can be avoided. The diffusion
strategies at each time step are composed of two phases: an
adaptation phase that updates the estimate of each node by
using its neighbors’ measurements, and a combination phase
that fuses the neighbors’ estimates. The diffusion strategies
may converge faster and reach lower mean-square deviation
than the consensus strategies [21].

In this paper, we consider the distributed multitarget track-
ing by using the diffusion strategies to exchange and fuse the
information over networks.

A. RELATED WORKS
The diffusion strategies were originally introduced for the
solution of distributed estimation and adaptation problems
[20]. They have been adopted to model various forms of
distributed estimation problems over networks. Specifically,
the basic diffusion based on the least-squares or recursive
least-squares methods has been proposed in [22]. In [23],
the diffusion Kalman filters were proposed for the linear
dynamic state-spacemodels.Many other diffusion algorithms
have also been studied for the sequential estimation over time
[24]–[27]. For example, Li and Jia [26] proposed a
diffusion-based algorithm for the distributed estimation of
Markov jump systems and maneuvering target tracking, and
it is a distributed single-target tracking problem. The perfor-
mance analysis of the diffusion strategies has been studied
under different conditions [28] as well.

The PHD filter with multiple sensors for multitarget track-
ing was first derived for the case of two sensors by Mahler
[29], [30]. Delande et al. [31] generalized it to the case of an
arbitrary number of sensors. In [32], Nannuru et al. derived
the update equations for the general multisensor CPHD fil-
ter as well as a computationally tractable implementation.
In [33], Saucan et al. derived a multisensor multi-Bernoulli
filter for multitarget tracking. These works are basically cen-
tralized solution of the multisensor multitarget tracking.

Distributed multisensor multitarget tracking has also been
studied. In [34], Üney et al. derived a distributed fusion
of PHD, CPHD and Bernoulli filters by combining a gen-
eralized version of covariance intersection. In [36], Battis-
telli et al. developed a consensus CPHD filter that provided
a distributed solution, where each node first calculates its
local estimate with its own measurements, and then it calls
for consensus iterations to achieve global fusion over the

network by iterating local fusion among neighbors. More
recently, Leonard and Zoubir [37] developed a distributed
particle filter implementation of the PHDfilter for multitarget
tracking. Since a large number of weighted particles are
generated at each node and communicated between neighbors
for the adaptation step and the combination step in [37],
this algorithm requires high computational complexity and
communication load.

B. OUR CONTRIBUTIONS
We develop a distributed multitarget tracking algorithm over
sensor networks by using the diffusion strategies and the
CPHDfilter. The proposed distributed algorithm is composed
of an adaptation phase and a combination phase. The adap-
tation phase updates the local estimate of each node with
all its neighbors’ measurements. It is basically a centralized
multitarget tracking with a small set of neighboring nodes.
We achieve it based on the general multisensor CPHD filter
in [32]. The combination phase improves the local estimate
of each node by sharing its estimate with its neighbors. It is
a fusion of local estimates among the neighboring nodes.
We achieve it based on the generalized version of covariance
intersection [34]. Finally, we present a Gaussian mixture
implementation of the proposed distributed multitarget track-
ing algorithm.

The proposed diffusion-based distributed algorithm is
somewhat similar to the consensus-based distributed algo-
rithm in [36]. However, compared to the consensus-based
algorithm, the proposed algorithm has two differences and
advantages.

First, during the adaptation phase, each node in the pro-
posed algorithm updates its local estimate with all its neigh-
bors’ measurements (not only its own measurements). It can
enrich the statistical knowledge of each node by incorporation
of the neighbors’ measurements. It can provide more accurate
and robust local estimates at each node. Especially, when
the detection probability that the nodes detect the targets is
low, and if one node does not obtain its own measurements
from the targets, the node can still provide correct local
estimate about the targets.While, each node in the consensus-
based algorithm updates its local estimate only with its own
measurements. When the detection probability is low, and
if one node does not obtain its own measurements from the
targets, the node can not provide correct local estimate about
the targets, and the incorrect local estimate will be diffused to
the network by the consensus iterations, since the consensus
of all local estimates are generally required over network
for a number of consensus iterations. When the detection
probability that the nodes detect the targets decreases, the
performance of consensus-based algorithm will deteriorate,
while the proposed algorithm can still provide accurate and
robust tracking results.

Second, during the combination phase of the consensus-
based algorithm, a number of consensus iterations are
required such that the consensus of all the local estimates can
be reached over network, while each node in the proposed
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algorithm fuses its local estimate and all its neighbors’ local
estimates only once and does not require a number of iter-
ations. So the communication load of the proposed algo-
rithm over networks can be largely reduced compared to the
consensus-based algorithm.

On the other hand, compared to the distributed particle
filter implementation in [37], our method has much lower
computational complexity and communication load since the
large number of weighted particles are not required.

C. ORGANIZATION
The rest of this paper is organized as follows. Section II
describes the problem formulation and some background.
Section III presents the proposed diffusion-based distributed
multisensor multitarget tracking algorithm. The Gaussian
mixture implementation is presented in Section IV. Some
numerical examples are provided in Section V. The paper is
concluded in Section VI.

II. PROBLEM FORMULATION AND BACKGROUND
A. SENSOR NETWORK MODEL
We consider a sensor network consisting of a set of R nodes
V = {1, . . . ,R}. The nodes are geographically dispersed in
the surveillance region and each has processing, communi-
cation and sensing capabilities. Two nodes can communicate
directly with each other if their distance is less than a commu-
nication range ηc. The communication structure among nodes
is represented using an undirected graph G = (V, E) where
E ⊂ V × V is the set of edges. Two nodes r and s, if the
edge (r, s) ∈ E , are said to be connected. The set of nodes
connected to a certain node r is called as the neighborhood of
node r and is denoted as

Nr = {s ∈ V|(r, s) ∈ E}, (1)

where the node r is assumed to be a neighbor of itself. Each
node knows its immediate neighbors, but no node knows the
global communication structure of the network. It is assumed
that the graph or the network is connected, i.e., for any
two nodes r and s there exists a sequence of edges (r, t1),
(t1, t2), . . ., (tm−1, tm), (tm, s) in E .

B. MULTITARGET TRACKING
We review the multitarget tracking problem formulated in the
RFS framework [5]. Suppose that there are Nk targets in the
surveillance area at time k and the target states are x1k , · · · ,
xNkk respectively, each taking values in a state spaceX ⊂ Rnx .
Then, the multitarget state Xk at time k is defined as the RFS

Xk = {x1k , . . . , x
Nk
k } ∈ F(X ), (2)

where F(X ) denotes the collections of all finite subsets of
X . In the RFS Xk , both the number of targets and the state of
each target are not know and must be estimated.

We denote the surviving probability that the target with
state xk ∈ Xk will continue to exist at time k + 1 as pv(xk ).
If the target continues to exist, its state evolves according to

the transition distribution πk+1|k (xk+1|xk ). Consequently, for
a given multitarget state Xk at time k , its behavior at the next
time k + 1 is described as the RFS

Xk+1 =

 ⋃
xk∈Xk

Sk+1|k (xk )

⋃0k+1. (3)

Here the first term Sk+1|k (xk ) is the surviving RFS of target
that evolves from a target with previous state xk , which is
given by

Sk+1|k (xk ) =

{
{xk+1}, with prob. pv(xk ),
∅, with prob. 1− pv(xk ),

(4)

and xk+1 ∼ πk+1|k (xk+1|xk ). The second term 0k+1 =

{b1k+1, . . . , b
B
k+1} is the RFS of spontaneous births at time

k + 1. The number B of births is distributed according to a
discrete probability distribution pb(n) and the states bjk+1 are
distributed according to a birth density sb(x).
For a given multitarget state Xk at time k , the r th sensor

outputs a set of measurements, which account for detection
uncertainty and clutter. We denote the detection probability
that the r th sensor detects the target with state xk as pd,r (xk ),
and the probability of a missed detection as qd,r (xk ) = 1 −
pd,r (xk ). If it is detected, the measurement is characterized
by a likelihood function ξr,k (zr,k |xk ). Consequently, the mul-
titarget measurements at the r th sensor are given by

Zr,k =

 ⋃
xk∈Xk

2r,k (xk )

⋃Cr,k . (5)

Here the first term 2r,k (xk ) is the RFS of measurements
generated by the target with state xk , which is given by

2r,k (xk ) =

{
{zr,k}, with prob. pd,r (xk ),
∅, with prob. 1− pd,r (xk ),

(6)

and zr,k ∼ ξr,k (zr,k |xk ). The second term Cr,k is the RFS of
clutter measurements as Cr,k = {c1r,k , . . . , c

mr,k
r,k }. For the r th

node, the number of clutters mr,k is distributed according to
a discrete probability distribution pr,c(n) and the clutters c

j
r,k

are generated according to a clutter density sr,c(x). Denote
Zk , {Z1,k , · · · ,ZR,k} as the measurements from all sensors
at time k .

We denote the transition of multitarget state Xk from time
k to k+1 by a multitarget transition density fk+1|k (Xk+1|Xk ),
which describes the births and deaths of targets, and the
time motion of surviving targets. The multitarget measure-
ment Zk is described by a multitarget likelihood gk (Zk |Xk ),
which characterizes the target generated measurements and
clutters. The goal is to construct the multitarget posterior
density pk (Xk |Z1:k ), where Z1:k , {Z1, . . . ,Zk} is the
cumulative measurements from all sensors up to time k .
The multitarget posterior is propagated with the Bayesian
recursion as

pk|k−1(Xk |Z1:k−1) =
∫
fk|k−1(Xk |X )pk−1(X |Z1:k−1)δX , (7)
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pk (Xk |Z1:k ) =
gk (Zk |Xk )pk|k−1(Xk |Z1:k−1)∫
gk (Zk |X )pk|k−1(X |Z1:k−1)δX

, (8)

where
∫
·δX denotes the set integral defined by∫

p(X )δX = p(∅)+
∞∑
n=1

1
n!

∫
p({x1, . . . , xn})dx1 . . . dxn. (9)

However, the multitarget Bayes recursion usually results
in the multiple integrations because of the set integral, so it
is intractable in most practical applications. Some computa-
tionally cheap approximations have been derived, such as the
PHD filer [6] and the CPHD filter [7]. The PHD is defined as
the first order moment of the multitarget density, also called
as intensity function, νk (x), which gives the expected number
of targets when integrated over the region Rnx as∫

Rnx
νk (x)dx = E{|Xk ∩ Rnx |}. (10)

The PHD and CPHD filter construct the prediction and
update equations in terms of the intensity function. The
PHD filter assumes that the number of targets is Poisson-
distributed, while the CPHD filter uses a general cardinality
distribution. Besides the intensity function, the CPHD filter
also propagates the cardinality distribution of targets. The
original PHD and CPHD filter are only derived for the case
of single sensor.

III. DIFFUSION-BASED DISTRIBUTED TRACKING
The proposed diffusion-based distributed algorithm are com-
posed of two phases at each time step, i.e., adaptation phase
and combination phase. The adaptation phase updates the
local estimate of a node with all its neighbors’ measurements,
which can enrich the statistical knowledge of each node.
Even when the detection probability that the nodes detect
the targets is low, and if one node does not obtain its own
measurements from the targets, the node can still provide
correct local estimate about the targets. The combination
phase diffuses and merges the neighbors’ local estimates at
each node. The diffusion of local estimates among neighbors
can further improve the estimation performance of the whole
network. Our method adopts the similar information process-
ing procedure as the diffusion Kalman filters in [23]–[28].

Our distributed algorithm is based on the CPHD filter,
which propagates the cardinality distribution and the intensity
function of the multitarget state with the Bayesian recursion
over time.

Suppose that each node r ∈ V at time k−1 has its estimate
of the posterior cardinality distribution, denoted as ρr,k−1(n),
and its estimate of posterior intensity function, denoted as
νr,k−1(x). With the arrival of new measurement Zk of the
sensor network at time k , each node r constructs its estimate
of the posterior cardinality distribution and intensity func-
tion, denoted as ρr,k (n) and νr,k (x), respectively. The process
will be described below in terms of the Bayesian recursion,
which includes three phases, i.e., prediction, adaptation and
combination.

A. PREDICTION PHASE
From its previous posteriors ρr,k−1(n) and νr,k−1(x) at time
k−1, each node r ∈ V in the network at time k calculates the
predicted cardinality distribution, denoted as ρr,k|k−1(n), and
the predicted intensity function, denoted as νr,k|k−1(x). All
nodes can perform the prediction phase independently and in
parallel because no information exchange is required in this
phase. So the prediction step for the multisensor case is same
as that for the case of single sensor.

The predicted cardinality distribution at the node r is given
by [7]

ρr,k|k−1(n) =
n∑
j=0

pb(n− j)χr,k (j), (11)

where

χr,k (j) =
∞∑
h=j

C j
h
〈νr,k−1, pv〉j〈νr,k−1, 1− pv〉h−j

〈νr,k−1, 1〉h

×ρr,k−1(h), (12)

and C j
h is the binomial coefficient h!

j!(h−j)! , 〈·, ·〉 is the inner
product between two real-value functions f and g defined as

〈f , g〉 =
∫
f (x)g(x)dx. (13)

The predicted intensity function is given by [7]

νr,k|k−1(x)=sb(x)+
∫
πk|k−1(x|w)pv(w)νr,k−1(w)dw, (14)

The normalized predicted intensity function is denoted as

µr,k|k−1(x) =
νr,k|k−1(x)
nr,k|k−1

, (15)

where nr,k|k−1 =
∑
∞

n=1 nρr,k|k−1(n).

B. ADAPTATION PHASE
The adaptation phase updates the local estimate of each node
with all its neighbors’ measurements (not only its own mea-
surements). The aim is to enrich the statistical knowledge of
each node by incorporation of the neighbors’ measurements.
Denote ZNr ,k , {Zs,k : s ∈ Nr } which includes the
measurements of all neighbors of the node r at time k . The
node r updates its local estimate with ZNr ,k and its local
prior information. It is actually a centralized multisensor
multitarget tracking problem with a small set of neighboring
nodes.

A multisensor PHD filter was first proposed in [29] and
[30] for two sensors. It was extended to an arbitrary number
of sensors in [31]. The update procedure was further general-
ized to the multisensor CPHD filter in [32] with an efficient
approximate implementation. A multisensor multi-Bernoulli
filter was also derived in [33] for the multitarget tracking.
We will achieve the adaptation phase at each node by means
of the multisensor CPHD filter in [32].

The update process of the multisensor CPHD filters
involves partitioning the measurement set ZNr ,k into disjoint
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subsets. We first introduce notations similar to [32]. For
the notation convenience, we rewrite the neighborhood of
node r as

Nr = {1, 2, . . . , dr }, (16)

where s (1 ≤ s ≤ dr ) means the sth neighbor of the node r ,
and dr , |Nr | is the number of neighbors in Nr . We rewrite
the measurement set ZNr ,k as

ZNr ,k = {Z1,k , . . . ,Zdr ,k}, (17)

where Zs,k (1 ≤ s ≤ dr ) denotes the measurements of the sth
neighbor of the node r .
Let Ws ⊂ Zs,k be a measurement subset that contains at

most one measurement from the measurements Zs,k of the
sth neighbor, i.e., |Ws| ≤ 1. To keep the expression compact,
we drop the time index k in Ws. Then an ordered subset of
measurement set is constructed as W1:dr , {W1, . . . ,Wdr },
where each subset includes at most one measurement from
each neighbor. It can be interpreted as the measurements
made by all neighbors in the set Nr from one same target.
Each subsetW1:dr can also be associated with a set of indices
as TW1:dr

= {(s, l)|zls,k ∈ Ws, s = 1, . . . , dr }, while (s, l)
means that zls,k is the lth measurement in Zs,k of the sth
neighbor. It is said that two subsets W i

1:dr
, {W i

1, . . . ,W
i
dr }

and W j
1:dr

, {W j
1, . . . ,W

j
dr } are disjoint if W i

s
⋂
W j
s = ∅

for s = 1, . . . , dr . For a number of n disjoint subsets W 1
1:dr

,
· · · , W n

1:dr
, we define V = {V1, . . . ,Vdr }, where Vs =

Zs,k\(∪nj=1W
j
s ) (1 ≤ s ≤ dr ). The set V can be interpreted

as the collection of clutter points made by all neighbors.
For a given integer n ≥ 0, we define

P = {W 1
1:dr , . . . ,W

n
1:dr ,V } (18)

as a partition of the measurements ZNr ,k . Each element of the
partition P can be interpreted as the measurements generated
by one target (i.e., eachW j

1:dr
for one target), or generated by

the clutter (i.e., V for the clutter). Let P denote the set of all
partitions P of ZNr ,k .
With the predicted cardinality distribution ρr,k|k−1(n) and

intensity function µr,k|k−1(x) as well as the neighbors’ mea-
surements ZNr ,k , the update equation of the cardinality dis-
tribution and the intensity function at the r th node are given
by [32]

ν̃r,k (x) =

[
α0

dr∏
s=1

qd,s(x)+
∑
P∈P

αP

(∑
W∈P

%W (x)

)]
×µr,k|k−1(x), (19)

ρ̃r,k (n) =



∑
P ∈ P
|P| ≤ n+ 1

kp
n!

(n− |P| + 1)!
γ n−|P|+1

∏
W∈P

dW

∑
P∈P

kpM (|P|−1)(γ )
∏
W∈P

dW


×ρr,k|k−1(n). (20)

where

%W (x) =

 ∏
(s,l)∈TW

pd,s(x)ξs,k (zls,k |x)

 ∏
(t,∗)/∈TW

qd,t (x)

D
, (21)

and the denominator D in the above equation has the form

D =
∫
µr,k|k−1(x)

 ∏
(s,l)∈TW

pd,s(x)ξs,k (zls,k |x)


×

∏
(t,∗)/∈TW

qd,t (x)dx. (22)

The quantities α0, αP, γ , kp and dW have cumbersome
expressions, which are given in Appendix, and M (t) is the
probability generating function of the predicted cardinality
distribution defined as

M (t) =
∞∑
n=0

tnρr,k|k−1(n), (23)

and its vth order derivative M (v)(t) = dvM
dtv (t). To keep the

expressions compact, we drop the index inW1:dr and write it
as W in the above equations.

C. COMBINATION PHASE
We denote the estimated multitarget density of the sth neigh-
bor of node r as p̃s,k (X ) after the adaptation phase. If the
multitarget state is modeled as an i.i.d cluster process, the
multitarget density will has the form as [5]

p̃s,k (X ) = |X |!ρ̃s,k (|X |)
∏
x∈X

µ̃s,k (x), (24)

where µ̃s,k (x) is the normalized intensity function of ν̃s,k (x)
in (19). These estimates can be shared by the node r because
of the direct communication link between nodes r and s.
During the combination phase, the node r improves its

local estimate by fusing these shared estimates. It is a mul-
tisensor multitarget fusion problem over the set of neighbor-
ing nodes. There have been several interesting contributions
about the multisensor multitarget fusion, such as the general-
ized covariance intersection for multitarget density in [38].

We adopt the Kullback-Leibler optimal fusion, which is
to construct a posterior intensity at the node r , denoted as
pr,k (X ), whose divergence from the posterior p̃s,k (X ) of all
the neighbors s ∈ Nr is minimal. The weighted Kullback-
Leibler divergence (KLD) for multitarget density is defined
as [34], [35] ∑

s∈Nr

εsDKL(pr,k ||̃ps,k ), (25)

where

DKL(pr,k ||̃ps,k ) =
∫
pr,k (X ) log

pr,k (X )
p̃s,k (X )

δX , (26)

and the weights εs satisfy εs ≥ 0 and
∑

s∈Nr
εs = 1.
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The notion of KLD has been analyzed in the context of
single target density, and it was extended to multitarget den-
sity in [34] and [35]. It is a consistent information-theoretic
relative entropy measure. The weighting parameters εs may
reflect the statistical properties, e.g., their covariances, of the
multitarget density of the nodes. We will discuss the selection
of the value of weights εs in Section IV-E.

In the KLD optimal fusion for the multitarget density, the
multitarget density pr,k (X ) that minimizes the weighted KLD
in (25) has the form [36]

pr,k (X ) =

∏
s∈Nr

[̃ps,k (X )]εs∫ ∏
s∈Nr

[̃ps,k (X )]εsδX
. (27)

It is the exponential mixture of the densities. It has shown that
it can prevent double counting in arbitrary network topologies
[39].

If themultitarget state is modeled as an i.i.d cluster process,
it has been shown that the fusion density in (27) has the form
as [34]

pr,k (X ) = |X |!ρr,k (|X |)
∏
x∈X

µr,k (x), (28)

where

µr,k (x) =

∏
s∈Nr

[µ̃s,k (x)]εs∫ ∏
s∈Nr

[µ̃s,k (x)]εsdx
, (29)

ρr,k (n) =

∏
s∈Nr

[ρ̃s,k (n)]εs


∫ ∏

s∈Nr

[µ̃s,k (x)]εsdx


n

∞∑
j=0

∏
s∈Nr

[ρ̃s,k (j)]εs


∫ ∏

s∈Nr

[µ̃s,k (x)]εsdx


j . (30)

From the equations (29) and (30), the fused cardinality dis-
tribution ρr,k (n) and the intensity functionµr,k (x) at the node
r can be directly computed from the cardinality distribution
ρ̃s,k (n) and the intensity function µ̃s,k (x) of all its neighbors
s ∈ Nr .

IV. GAUSSIAN MIXTURE IMPLEMENTATION
We derive a closed-form solution to the distributed mul-
tisensor multitarget tracking for the special case of linear
Gaussian dynamical and measurement models. We consider
the following assumptions on the targets and sensors.
A.1: Each target evolves independently and follows a linear

Gaussian dynamical model as

πk+1|k (xk+1|xk ) = N (xk+1;Akxk ,Qk ), (31)

where Ak is the state transition matrix and Qk is the process
noise covariance.

A.2: Each sensor generates measurements independently
and follows a linear Gaussian measurement model as

ξr,k (zr,k |xk ) = N (zr,k ;Br,kxk ,Rr,k ), (32)

where Br,k is the measurement matrix and Rr,k is the mea-
surement noise covariance.
A.3: The survival probability of each target is state

independent

pv(x) = pv. (33)

A.4: The detection probability at each sensor is state
independent

pd,r (x) = pd,r . (34)

A.5: The intensity of the birth is a Gaussian mixture of the
form

sb(x) =
Nb∑
i=1

ω
(i)
b N (x;m(i)

b ,P
(i)
b ). (35)

It is easy to prove the following standard results for
Gaussian densities that will be used in the following deriva-
tion.
R.1: Given A, Q, m, and P with appropriate dimensions,

where Q and P are positive definite, then [40], [41]∫
N (x;Aw,Q)N (w;m,P)dw=N (x;Am,Q+APAT ). (36)

R.2: Given B, R, m, and P with appropriate dimensions,
where R and P are positive definite, then [40], [41]

N (z;Bx,R)N (x;m,P) = q(z)N (x; m̃, P̃), (37)

where q(z) = N (z;Bm,R + BPBT ), m̃ = m + K (z − Bm),
P̃ = (I − KB)P and K = PBT (BPBT + R)−1.
R.3: The power of a Gaussian component is a Gaussian

component [36]

[αN (x;m,P)]w = αωk(ω,P)N (x;m,P/ω), (38)

where k(ω,P) = [det(2πP/ω)]1/2

[det(2πP)]ω/2
.

R.4: The product of two Gaussian components is a
Gaussian component [36]

[α1N (x;m1,P1)][α2N (x;m2,P2)]=α12N (x;m12,P12), (39)

where P12 = (P−11 +P
−1
2 )−1,m12 = P12(P

−1
1 m1+P

−1
2 m2)−1

and α12 = α1α2N (m1 − m2; 0,P1 + P2).

A. GAUSSIAN MIXTURE IMPLEMENTATION OF THE
PREDICTION PHASE
Suppose that the posterior intensity νr,k−1(x) of the node r at
time k − 1 is a Gaussian mixture of the form

νr,k−1(x) =
Nr,k−1∑
i=1

ω
(i)
r,k−1N (x;m(i)

r,k−1,P
(i)
r,k−1). (40)
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Then with the equations (31), (33), (35) and (36), the pre-
dicted intensity νr,k|k−1(x) in (14) is also a Gaussian mixture
of the form

νr,k|k−1(x) =
Nr,k|k−1∑
i=1

ω
(i)
r,k|k−1N (x;m(i)

r,k|k−1,P
(i)
r,k|k−1), (41)

where Nr,k|k−1 = Nb + Nr,k−1, and

ω
(i)
r,k|k−1 = ω

(i)
b ,m

(i)
r,k|k−1 = m(i)

b ,P
(i)
r,k|k−1 = P(i)b , (42)

for i = 1, . . . ,Nb, and

ω
(i+Nb)
r,k|k−1 = pvω

(i)
r,k−1, m(i+Nb)

r,k|k−1 = Akm
(i)
r,k−1, (43)

P(i+Nb)r,k|k−1 = Qk + AkP
(i)
r,k−1A

T
k , (44)

for i = 1, . . . ,Nr,k−1.
Moreover, from the posterior cardinality distribution

ρr,k−1(n) of the node r at time k − 1 and the equation (33),
the predicted cardinality distribution ρr,k|k−1(n) in (11) can
be simplified as

ρr,k|k−1(n)=
n∑
j=0

pb(n− j)
∞∑
h=j

C j
hp
j
v(1−pv)

h−jρr,k−1(h). (45)

From the above results, the normalized predicted intensity
function µr,k|k−1(x) in (15) is also a Gaussian mixture form
and we denote it as

µr,k|k−1(x)=
Nr,k|k−1∑
i=1

$
(i)
r,k|k−1N (x;m(i)

r,k|k−1,P
(i)
r,k|k−1). (46)

B. GAUSSIAN MIXTURE IMPLEMENTATION OF THE
ADAPTION PHASE
With the equations (32) and (37), the expression ξs,k (zls,k |x)
µr,k|k−1(x) is a Gaussian mixture form as

ξs,k (zls,k |x)µr,k|k−1(x)=
Nr,k|k−1∑
i=1

ω̃
(i)
rs,k|kN (x;m̃(i)

rs,k|k , P̃
(i)
rs,k|k ), (47)

where

ω̃
(i)
rs,k|k = $

(i)
r,k|k−1

×N(zls,k ;Bs,km
(i)
r,k|k−1,Rs,k+Bs,kP

(i)
r,k|k−1B

T
s,k ), (48)

m̃(i)
rs,k|k = m(i)

r,k|k−1 + K (zls,k − Bs,km
(i)
r,k|k−1), (49)

P̃(i)rs,k|k = (I − KBs,k )P
(i)
r,k|k−1, (50)

K = P(i)r,k|k−1B
T
s,k (Bs,kP

(i)
r,k|k−1B

T
s,k + Rs,k )

−1. (51)

Then, under the assumption in (34) that the detection prob-
ability is constant, the expression %W (x)µr,k|k−1(x) in (19) is
also a Gaussian mixture form, where the integration in (22)
can be analytically calculated with the equation (36).
Because the detection probability is constant, the quantities

α0 and αP in Appendix can be easily calculated. So the update

posterior intensity function ν̃r,k (x) in (19) is a Gaussian mix-
ture form. We express it as

ν̃r,k (x) =
Ñr,k∑
i=1

ω̃
(i)
r,kN (x; m̃(i)

r,k , P̃
(i)
r,k ), (52)

and its normalized intensity function as

µ̃r,k (x) =
Ñr,k∑
i=1

$̃
(i)
r,kN (x; m̃(i)

r,k , P̃
(i)
r,k ). (53)

However, the number of all partitions P in P from all pos-
sible measurement subsets is prohibitively large, so the ana-
lytical implementation is still numerically infeasible. In [32],
it has shown an approximation to overcome this limita-
tion, which follows two-step greedy approximation with the
Gaussian mixture framework. It does not construct all possi-
ble measurement subsets, but only sequentially keeps a few
best-scoring measurement subsets.

C. GAUSSIAN MIXTURE IMPLEMENTATION OF THE
COMBINATION PHASE
There have been considerable efforts in the area of distributed
fusion of Gaussian mixtures, such as the pairwise compo-
nent covariance intersection [42], pseudo-Chernoff fusion
[36], [43], and sigma-point based Chernoff fusion [44].
We achieve the pseudo-Chernoff fusion method in [36] and
[43] for the combination phase here because of its simplicity
and performance.

We first consider to fuse the intensity functions of two
neighbors s ∈ Nr and t ∈ Nr . It is assumed that the estimated
intensity functions of the node s and t after the adaption phase
are

µ̃j,k (x) =
Ñj,k∑
i=1

$̃
(i)
j,kN (x; m̃(i)

j,k , P̃
(i)
j,k ), j = s, t. (54)

For two nodes, the expression in (29) is described as

µ̃st,k (x) =
[µ̃s,k (x)]εs [µ̃t,k (x)]εt∫
[µ̃s,k (x)]εs [µ̃t,k (x)]εtdx

. (55)

Although µ̃j,k (x) (j = s, t) is a Gaussian mixture form,
the power of µ̃j,k (x), i.e., [µ̃j,k (x)]εj in (55), is not a Gaussian
mixture form. Under the condition that the cross-products of
the different terms in the Gaussian mixture are negligible,
the power of the Gaussian mixture is approximated with
another Gaussian mixture by using the first order series
expansion [43]

[µ̃j,k (x)]εj =

 Ñj,k∑
i=1

$̃
(i)
j,kN (x; m̃(i)

j,k , P̃
(i)
j,k )

εj

≈

Ñj,k∑
i=1

[
$̃

(i)
j,kN (x; m̃(i)

j,k , P̃
(i)
j,k )
]εj
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=

Ñj,k∑
i=1

($̃ (i)
j,k )

εj
κ(εj, P̃

(i)
j,k )N

(
x; m̃(i)

j,k ,
P̃(i)j,k
εj

)
, (56)

where it has applied the result in (38).
Substituting (56) into (55), we will have

µ̃st,k (x) =

Ñs,k∑
i=1

Ñt,k∑
j=1

$̃
(ij)
st,kN

(
x; m̃(ij)

st,k , P̃
(ij)
st,k

)
Ñs,k∑
i=1

Ñt,k∑
j=1

$̃
(ij)
st,k

, (57)

where

P̃(ij)st,k =
[
εs (̃P

(i)
s,k )
−1
+ εt (̃P

(j)
t,k )
−1
]−1

, (58)

m̃(ij)
st,k = P̃(ij)st,k

[
εs (̃P

(i)
s,k )
−1m̃(i)

s,k + εt (̃P
(j)
t,k )
−1m̃(j)

t,k

]
, (59)

$̃
(ij)
st,k = ($̃ (i)

s,k )
εs
($̃ (j)

t,k )
εt
κ(εs, P̃

(i)
s,k )κ(εt , P̃

(j)
t,k )

×N
(
m̃(i)
s,k − m̃

(j)
t,k ; 0,

P̃(i)s,k
εs
+
P̃(j)t,k
εt

)
, (60)

where it has applied the result in (39).
Moreover, the integral for (30) is approximated as∫

[µ̃s,k (x)]εs [µ̃t,k (x)]εtdx ≈
Ñs,k∑
i=1

Ñt,k∑
j=1

$̃
(ij)
st,k . (61)

Sequentially, if there are three neighbors s, t and y of node
r , then the fusion in (29) is described as

µ̃sty,k (x) =
[µ̃s,k (x)]εs [µ̃t,k (x)]εt [µ̃y,k (x)]εy∫
[µ̃s,k (x)]εs [µ̃t,k (x)]εt [µ̃y,k (x)]εydx

. (62)

The fusion can be rewritten as

µ̃sty,k (x) =
µ̃st,k (x)[µ̃y,k (x)]εy∫
µ̃st,k (x)[µ̃y,k (x)]εydx

, (63)

and the integral for (30) is expressed as∫
[µ̃s,k (x)]εs [µ̃t,k (x)]εt [µ̃y,k (x)]εydx

=

∫
[µ̃s,k (x)]εs [µ̃t,k (x)]εtdx ·

∫
µ̃st,k (x)[µ̃y,k (x)]εydx.

(64)

So with the pairwise fusion, the fusion can be easily extended
to dr ≥ 3 neighbors.
After the fusion, the number of Gaussian components will

increase without bound. It can be simplified with a pruning
and merging step in [40]. The basic idea is to discard compo-
nents with negligible weights and merge components that are
close together.

We denote the final estimate of the normalized intensity of
node r as

µr,k (x) =
Nr,k∑
i=1

$
(i)
r,kN (x;m(i)

r,k ,P
(i)
r,k ). (65)

With the estimated cardinality distribution ρr,k (n) in (30),
the intensity function νr,k (x) of node r can be easily calcu-
lated from µr,k (x), and we denote it as

νr,k (x) =
Nr,k∑
i=1

ω
(i)
r,kN (x;m(i)

r,k ,P
(i)
r,k ). (66)

D. MULTITARGET STATE EXTRACTION
With the estimated cardinality distribution ρr,k (n), the node r
can estimate the number of targets via a maximum a posterior
(MAP) estimator [41] as

n̂r,k = argmax
n
ρr,k (n). (67)

Then, the state extraction in [41] is implemented to extract
the n̂r,k local maxima of the intensity function νr,k (x) as the
estimated states of the n̂r,k targets.

E. CHOOSING THE WEIGHTING PARAMETERS
The weighting parameters εs in (27) control the relative
weighting on p̃s,k (X ). Motivated by the original covariance
intersection [45] which is for the case of Gaussian distribu-
tion, we present a suboptimal non-iterative method for fast
choosing the weighting parameters in the case of Gaussian
mixture.
From the intensity function ν̃r,k (x) in (52) before the

combination phase, each component N (x; m̃(i)
r,k , P̃

(i)
r,k ) in the

Gaussian mixture can be integrated as the estimate of one
target with weight ω̃(i)

r,k . Since the trace of covariance matrix
P̃(i)r,k provides a scalar measure of the estimation uncertainty
of the target, the estimation uncertainty if the intensity func-
tion ν̃r,k (x) in Gaussian mixture form is used to estimate the
states of multiple targets can be expressed as

3i ,
Ñr,k∑
i=1

ω̃
(i)
r,k tr(̃P

(i)
r,k ). (68)

The constraint for choosing the weighting parameters will be
selected such that3s = 3t implies εs = εt , and3s/3t → 0
implies εt = 0 [45]. The constraint is satisfied by

εs3s − εt3t = 0, s, t ∈ Nr . (69)

The largest linearly independent subset in the above system
can be described as

εs3s − εs+13s+1 = 0, s = 1, . . . , dr − 1. (70)

In addition, the nonnegativeweighting parameters ε1, . . . , εdr
satisfy

ε1 + · · · + εdr = 1. (71)

Applying Cramer’s rule, the weighting parameters that
satisfy the linear system (70) and (71) are

εs =
1/3s∑dr
i=1 1/3i

. (72)
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F. THE COMPLEXITY OF ALGORITHMS
We compare the communication load of the proposed
diffusion-based distributed algorithm with that of the
consensus-based distributed algorithm in [36].

During the combination phase of the consensus-based
algorithm, a number of consensus iterations are required such
that the consensus of all the local estimates can be reached
over networks. At each iteration step of the consensus itera-
tions, each node transmits its normalized intensity function,
with the same form as µr,k (x) in (65) to its neighbors, which
includes the scale $ (i)

r,k , the vector m(i)
r,k ∈ Rnx , and the

symmetric matrix P(i)r,k ∈ Rnx×nx for i = 1, . . . ,Nr,k (totally
[1 + nx + nx(nx + 1)/2] × Nr,k scales), as well as the car-
dinality distribution ρr,k (n). So the total communication load
of consensus iterations is [1+nx+nx(nx+1)/2]×Nr,k ×Nc
scales and Nc times of ρr,k (n), where Nc denotes the number
of consensus iterations. While, for the proposed algorithm,
each node transmits its normalized intensity function and the
cardinality distribution to its neighbors only once, so its total
communication load is [1+nx +nx(nx +1)/2]×Nr,k scales,
and one time of ρr,k (n).

During the adaptation phase, each node in the proposed
algorithm needs transmit its measurements to its neighbors
and receive the measurements from its neighbors. It is the
added communication load compared to the consensus-based
algorithm because each node in the consensus-based algo-
rithm updates its local estimate only with its own measure-
ments. Since each node r has its estimate about themultitarget
state at each time step, it can compute the predicted intensity
µr,k|k−1(x) in (46) before the adaptation phase. Then it con-
structs ameasurement validation region [46] fromµr,k|k−1(x)
as

Rr,k =

Nr,k|k−1⋃
i=1

R(i)
r,k , (73)

R(i)
r,k = {z ∈ Zr,k : (z− z

(i)
r,k )

T (S(i)r,k )
−1(z− z(i)r,k ) 6 γ }, (74)

where γ is the gate threshold, z(i)r,k = Br,km
(i)
r,k|k−1 is the pre-

dicted measurement mean and S(i)r,k = Rr,k+Br,kP
(i)
r,k|k−1B

T
r,k

is the predicted measurement covariance. For example, if the
threshold is selected as γ = 9, the gate probability [46] will
be pg ≈ 0.99. The node r only transmits its measurements
that are in Rr,k to its neighbors. If the clutter intensity is
not high, there is usually at most one measurement in the
measurement validation region corresponding to each target.
So each node usually transmits at most ny × Nk scales to its
neighbors, where the ny is the dimension of measurements
and Nk is the number of targets. The added communication
load during the adaptation phase of the proposed algorithm
will be limited.

V. NUMERICAL RESULTS
We investigate the performance of the proposed diffusion-
based distributed algorithm by numerical results. Mul-
titarget tracking is considered over a surveillance area

FIGURE 1. Sensor network and communication structure.

of 1000m×1000m. R = 16 sensors are deployed in the
surveillance area. The communication structure of the sensors
is depicted in Figure 1.

The target state is denoted by xk , (px,k , ṗx,k , py,k , ṗy,k )T ,
where pk , (px,k , py,k )T represents the target position, and
vk , (ṗx,k , ṗy,k )T represents the target velocity in the (x, y)
coordinate system at the time k . The target dynamics are
described by the constant velocity model as [47]

xk = Akxk−1 + uk , (75)

where Ak = I2 ⊗
[
1 T
0 1

]
, the process noise uk is with zero

mean and covariance Qk = σ 2
u I2 ⊗

[
T 3

3
T 2

2
T 2

2 T

]
, T = 1(s) is

the sampling time period, I2 is the 2× 2 identity matrix, and
⊗ is the Kronecker operator.

The measurement of the r th node satisfies the linear model

zr,k = Br,kxk + vr,k , (76)

where Br,k =
[
1 0 0 0
0 0 1 0

]
, and the measurement noise vr,k is

with zero mean and covariance Rr,k = σ 2
v,r I2.

We investigate and compare the following algorithms:
1) Independent algorithm (IA). Each node independently

tracks the multitarget state with its own measurements.
2) Consensus-based distributed algorithm (CDA) in [36].

Each node first tracks the multitarget state with its own
measurements and its prior statistical knowledge, and
then the estimates are fused by the consensus iterations
over the network.

3) Local algorithm (LA). Each node tracks the multitarget
state with all its neighbors’ measurements.

4) The proposed diffusion-based distributed algorithm
(DDA). Each node first tracks the multitarget state with
all its neighbors’ measurements and its prior statistical
knowledge, and then the estimates are fused among the
neighbors.
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FIGURE 2. Simulated target trajectory and estimated target trajectories of
one Monte Carlo run. The simulated trajectory is denoted as ‘‘·’’. The
estimated trajectories by the CDA and DDA are denoted as ‘‘◦’’ and ‘‘?’’,
respectively.

In the simulation scenario, the survival probability of target
is set to pv = 0.98. The process noise variance in (75)
is σ 2

u = 0.5. The parameters of the birth intensity sb(x)
in (35) are Nb = 4, ω(1)

b = · · · = ω
(4)
b = 0.005,

m(1)
b = (250,−4, 250,−4)T , m(2)

b = (250,−4,−250, 4)T ,
m(3)
b = (−250, 4, 250,−4)T , m(4)

b = (−250, 4,−250, 4)T ,
and P(1)b = · · · = P(4)b = diag((25, 1, 25, 1)T ). Clutter is
modeled as a Poisson process with the mean λc = 20 and
uniform spatial distribution over the surveillance area. The
number of consensus iterations for the CDA is set to Nc = 6.

We repeat independent Monte Carlo runs to evaluate the
performance of these algorithms. The length of time interval
in eachMonte Carlo run is set to K = 100(s). We assume that
no target exists at the initial time k = 0. Two targets appear
at the time k = 1, three targets appear at the time k = 21,
k = 41 and k = 61 respectively, and two targets disappear
at the time k = 81. Figure 2 presents the simulated target
trajectory in the (x, y) coordinate system of one Monte Carlo
run. The estimated target trajectories by the CDA and DDA
are also depicted in Figure 2, where the measurement noise
variance in (76) is set to σ 2

v,r = 10 and the target detection
probability at each node is set to pd,r = 0.99. From Figure 2,
both the DDA and CDA can give accurate estimation results,
including the number of targets and the state of each target.

Next, we investigate the performance of these algorithms
for different values of target detection probability. The track-
ing performance is evaluated in terms of the optimal subpat-
tern assignment (OSPA) metric [48]. The parameters for the
OSPA metric are set to p = 1 and cutoff parameter c = 5.
The measurement noise variance in (76) is set to σ 2

v,r = 10.
The target detection probability at each node is set to pd,r =
0.84, 0.85, · · · , 0.99. The time-average OSPA performances
for different algorithms, which are averaged over G = 100
Monte Carlo runs, are shown in Figure 3. From Figure 3,

FIGURE 3. OSPA performances of different algorithms versus target
detection probability.

FIGURE 4. OSPA performances of different algorithms versus time step.
The target detection probability is set to pd ,r = 0.99.

the DDA outperforms the LA, and both outperform the CDA
and IA. By incorporation of the neighbors’ measurements,
it can largely improve the performance of algorithms. It is
also noted that the performance of CDA quickly deterio-
rates as the target detection probability decreases and it is
even worse than the IA. For the CDA, when the detection
probability is low, and if one node does not obtain its own
measurements from the targets, the node can not provide
correct local estimate about the targets since the node updates
its local estimate only with its own measurements. Moreover,
the incorrect local estimate will be diffused to the network
by the consensus iterations, since the consensus of all local
estimates are generally required over network for a number of
consensus iterations. If several nodes provide incorrect local
estimate, the estimation performance of the whole network
will deteriorate.
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FIGURE 5. OSPA performances of different algorithms versus time step.
The target detection probability is set to pd ,r = 0.80.

FIGURE 6. OSPA performances of different algorithms versus
measurement noise variance. The target detection probability is set to
pd ,r = 0.99.

Third, we investigate the OSPA performance of different
algorithms for different time step k . The measurement noise
variance σ 2

v,r is selected to σ 2
v,r = 10. Two values of target

detection probability, i.e., pd,r = 0.80 and pd,r = 0.99, are
considered. The OSPA performances of different algorithms
with pd,r = 0.99 are shown in Figure 4. The OSPA perfor-
mances of different algorithms with pd,r = 0.80 are shown
in Figure 5. From Figure 4 and Figure 5, the DDA outper-
forms the LA, CDA and IA. From Figure 4, the CDA can
provide the accurate tracking results with the target detection
probability pd,r = 0.99. But from Figure 5, the CDA can not
provide the accurate tracking results if the target detection
probability decreases to pd,r = 0.80. The performance of
CDA is even worse than that of the IA, which confirms again
that the incorrect local estimates at some nodes, because of
the low target detection probability, will be diffused to the

FIGURE 7. OSPA performances of different algorithms versus
measurement noise variance. The target detection probability is set to
pd ,r = 0.80.

network for a number of consensus iterations, and the esti-
mation performance of the whole network will deteriorate.

Finally, we investigate the time-average OSPA perfor-
mance of different algorithms for different values of mea-
surement noise variance σ 2

v,r . The values of σ
2
v,r are selected

to 2, 4, . . . , 20. The time-average OSPA performances of
different algorithms with pd,r = 0.99 are shown in Figure 6.
The time-averageOSPAperformances of different algorithms
with pd,r = 0.80 are shown in Figure 7. From Figure 6,
the CDA can provide the accurate tracking results with the
target detection probability pd,r = 0.99. But from Figure 7,
the performance of CDA will deteriorate if the target detec-
tion probability decreases to pd,r = 0.80, and it is even worse
than that of the IA.

From Figure 4-Figure 7, the DDA clearly outperforms the
LA, which illustrates that the combination step in the DDA
can clearly improve the estimation results of each node. Both
the DDA and LA largely outperform the CDA and IA, which
shows that the incorporation of the neighbors’ measurements
can largely improve the estimation performance of each node.

VI. CONCLUSION
We developed a diffusion-based distributed multitarget track-
ing algorithm over sensor network. The proposed distributed
algorithm is composed of two phases: an adaptation phase
that updates the estimate of each node by using all its neigh-
bors’ measurements, and a combination phase that fuses the
neighbors’ local estimates. A Gaussian mixture implementa-
tion of the proposed algorithm are also provided. Numerical
results for different target detection probability and mea-
surement noise variance confirmed the effectiveness of the
proposed algorithm. Compared to the consensus-based dis-
tributed algorithm, the proposed algorithm can provide more
accurate and robust estimation results, especially when the
detection probability that the sensors detect the targets is low.
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The complexity of the algorithms are also analyzed which
shows that the proposed algorithm has lower communication
load.

APPENDIX
For the partition P in (18), it denotes

|P|j =
n∑
i=1

|{z ∈ W i
1:dr : z ∈ Zj,k}| (77)

as the number of measurements from the jth neighbor (1 ≤
j ≤ dr ) that are generated by the targets.
For the jth neighbor, it defines Cj(t) as the probability gen-

erating function of the clutter cardinality distribution pj,c(n)

Cj(t) =
∞∑
n=0

tnpj,c(n), (78)

and its vth order derivative as C (v)
j (t) = dvCj

dtv (t).
The quantities γ , kp and dW has the form as [32]

γ =

∫
µr,k|k−1(x)

dr∏
j=1

qd,j(x)dx, (79)

kp =
dr∏
j=1

C
(|Zj,k |−|P|j)
j (0), (80)

dW =

∫
µr,k|k−1(x)GW (x)

∏
j:(j,∗)/∈TW

qd,j(x)dx∏
(j,l)∈TW

sj,c(zlj,k )
, (81)

where GW (x) =
∏

(j,l)∈TW

pd,j(x)ξj,k (zlj,k |x), z
l
j,k ∈ Zj,k is the

lth measurement of the jth neighbor at time k , and sj,c(·) is
the clutter density for the jth neighbor. To keep the expres-
sions compact, we drop the index in W1:dr and write it as W
in the above equations.

The quantities α0 and αP have the form as [32]

α0 =

∑
P∈P

(
kPM (|P|)(γ )

∏
W∈P

dW

)
∑
P∈P

(
kPM (|P|−1)(γ )

∏
W∈P

dW

) , (82)

αP =

kPM (|P|−1)(γ )
∏
W∈P

dW

∑
Q∈P

(
kQM (|Q|−1)(γ )

∏
W∈W

dW

) . (83)
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