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ABSTRACT As the trend toward an increasingly aging global population accelerates, more attention is
being focused on healthcare services for the elderly. Traditional healthcare services for the elderly require
personal, meticulous care. With increasing numbers of the elderly and the “inverted pyramid” of family
structure, more and more elderly people are often unable to obtain the healthcare they need in their final
years. This paper introduces a Densely Convolutional Network for optimizing the algorithm model of an
RFID-based activity recognition system, leading to a more accurate analysis of the basic daily behaviors of
the elderly.During the experiment, We also optimized the original recognition process from combination of
a series object-use recognition to treating multiple object-use processes as a union process. Which improves

the efficiency and speed of activity recognition.

INDEX TERMS Activity recognition, deep learning, healthcare, passive RFID.

I. INTRODUCTION

Healthcare for the elderly is an increasingly significant soci-
etal issue. When the elderly are left alone, there is often a high
incidence of accidents. A more effective method for monitor-
ing the elderly could prevent many such accidents. In a senior
care facility, the staff usually needs to take care of many
residents at the same time, and if there is an emergency, such
as a fall or sudden illness, a staff person may not be immedi-
ately available, possibly resulting in the situation being made
worse, or even death [2], [4]. There are currently three main
types of intelligent monitoring methods. The first is wearable
monitoring equipment for the staff, along with corresponding
equipment for the residents. However, this equipment must
be recharged for the next use [1] and, in addition, is neither a
truly smart nor user-friendly solution. The second method is
to use a video camera to observe the activities of the elderly
through computer vision recognition technology, which can
send an alert to whoever is on duty if an issue occurs. The
problem with this method is that it can be an invasion of pri-
vacy and is not a good choice in certain situations [3], [5], [6].
The third method is to monitor activity by an infrared or
Bluetooth device. The problem with this approach is that
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it is expensive and may not be applicable to a family or
organization [7], [8].

This paper presents a method of activity recognition based
on the use of low-cost RFID tags and machine learning. This
method changes the existing RFID-based activity recognition
method, which uses either a received signal strength (RSS)
signal or a phase signal, and improves the accuracy of activity
identification. The activity recognition method based on RSS
primarily uses the change in the wireless signal caused by
the activity to recognize the activity [10]. However, because
RSS is susceptible to signal noise, the RSS-based activity
recognition method can only achieve 56%—72% accuracy.
This makes it difficult to accurately identify specific activities
simply by using the fluctuation of signal intensity over time.
For example, the accuracy of the methods mentioned by
Sigg [11] is only 56%. Kodeswaran et al. used radio software
devices to increase the accuracy of RSS to 72% [12].

This paper is based on the experimental methods and
research results of Ivan Marsic et al. This paper intro-
duces the densely convolutional network (DenseNet), which
is optimized from a convolutional neural network (CNN).
DenseNet’s dense connections can alleviate the problem
of gradient disappearance, enhance feature propagation,
encourage feature reuse, and greatly reduce the number of
parameters. Through an experiment in identifying the activ-
ities of daily living (ADL) of the elderly, we found that our
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FIGURE 1. Placement of the radio frequency identification antennas.
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FIGURE 2. Activity recognition system diagram.

RFID-based model achieved 81% accuracy. At the same time,
we designed and optimized the relevant experimental steps
and activity verification methods. Finally, we summarize
and analyze the advantages and limitations of RFID tech-
nology in activity recognition and give our views on future
developments.

Il. RELATED WORK

Our experiment was carried out in a senior care facility.
We chose one of the living rooms as the experiment’s site.
We deployed six RFID antennas and two readers on four
sides of the room, as shown in Fig. 1. The reading range
was 3—4 m to collect data transmitted by RFID tags. Since
the movement of label objects can be calculated by RSSI
fluctuations, we filter the collected data and divide the data
into training data and test data [7], [13], [14]. The training
data are used to train our DenseNet deep learning network,
and the test data are used to test the effect of our learning.
Through repeated experiments and tests, we were able to
obtain a relatively stable DenseNet.

We used the Model ALR-9900+ RFID reader from Alien
Technology [15]. We installed two readers in the living room,
hidden in a space above the ceiling. Antennas 1-3 were con-
nected to Card Reader 1, and antennas 4—6 were connected
to Card Reader 2. These connections allowed simultaneous
activation of a pair of antennas: 1 and 4, 2 and 5, and 3 and
6 in turn [14], [16].

The type and location of RFID tags were determined by the
composition and size of objects and their usage patterns [17].
We evaluated several tag configurations for each of these fac-
tors and selected configurations for each object that produced
the highest RFID readout rate.

136778

TABLE 1. List of tagged objects, number of tags, and activity involving the
object.

Object(# of tags) Activity
Chair (5) Sit/Bed-Chair Shift
Soup ladle (2) Eating
Chopsticks (2) Eating

Zipper clothing (5) Getting dressed

Trousers (5) Geotting dressed
Towel(2) Taking a bath
Toilet paper (inside) (2) Using paper
Desk (2) Eating
Bed (2) Shifting from Bed to Chair
Soap (1) Eating
Toothbrush (1) Brushing Teeth

1) Label type: We chose the type of label according to
the material of the object. Passive RFID tags do not
perform well when they are connected to metal surfaces
or liquid containers. We put hard metal labels on metal
objects such as spoons. Although these special tags
are expensive, they can be reused. Liquid containers
(e.g., water bottles) and objects in aluminium pack-
aging (e.g., bags of sugar) were labeled with conven-
tional labels to minimize contact with the liquids or
aluminium.

2) Number and location of tags: For each object, we iden-
tified surfaces that could be used for marking and
selection.. Surface availability depends on four factors:
item protection (for objects with strict hygiene require-
ments, only packaging surface can be marked); shape
constraint (flat surfaces were preferred, as tag fold-
ing degrades performance); smoothness (tags adhere
better to smooth surfaces); and size (most objects
were marked with two RFID tags, for better detec-
tion if one label is unreadable, the Other tags are still

readable).
As shown in Table 1, we used 29 passive RFID tags to

mark 11 objects of 19 types. Tagged objects included spoons,
towels, and chairs. Observing the daily lives of the elderly,
we have noticed that some tags cannot be detected (such as
clothes hanging on a stool), because these tags are small and
fold around the shape of the object. In these cases, if the initial
tag did not interfere with the use of the object, we replaced it
with a larger tag. If a larger label was not feasible, we kept
the small label but relocated it to improve its detection
rate.
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IIl. ACTIVITY RECOGNITION

Activity recognition is an area of much research [19], and
many researchers have explored approaches for activity
recognition algorithms. Sensor-based methods are increas-
ingly used in human activity recognition. Although simple
activities can be identified by body sensors, complex activ-
ities require additional cues, such as body position, speech,
or objects in use [18], [20], [21].

RFID technology can achieve high-precision interactive
detection, but it has limitations. First, it requires human par-
ticipation, which can be disruptive in practical applications.
Even in a relaxed home environment, participants must wear
or grab objects with an unarmed hand [22], [23]. Second,
in the course of conducting several long-term experiments,
it was found that near-field communication (NFC) is not
feasible, because they may affect the activities of human
beings. This restriction affected our work because we were
continually running experiments and collecting data in actual
living rooms, rather than performing a few experiments in
a laboratory environment. To ensure that intrusion was kept
to a minimum, we used deployment and evaluation methods
developed in our early work to design our tagging methods
in the living room and RFID antenna settings [24]. Finally,
the signle reader provides binary detection information rather
than signal strength values. Although the received signal
strength indication (RSSI) of passive radio frequency iden-
tification (PRID) often has noise interference, it contains an
abundant amount of information that can be extracted by
using multiple readers and data processing techniques.

IV. DATA COLLECTION

The experiment was carried out in a senior living community
institution. We installed hardware for RFID data collection
and system activation control in the actual living room. Two
Speedway R420 (8-port) RFID readers from Inpinj Inc. were
used to collect RFID data and to record the RFID data in Max
Miller mode and dual-target search mode [25]. We analyzed
the data by recording the specific daily activities of individual
elderly people in the living room. We developed a fully
automated system that was activated every morning when
the elderly woke up and recorded all the tags’ RFID data
during the activity. We set up a Microsoft Kinect for Windows
V2 sensor to monitor the number of people in the room [26].
When there was only one person in the room, the RFID
system was activated to record data. In order to identify ten
basic daily activities (as shown in Table 1), we tagged several
objects that need to be used in daily life according to existing
tagging strategies. Different objects may use more than one
tag, because objects in specific use scenarios help us to detect
RSS signals. The system records the RSS from tags in this
format during the daily activities of the elderly: [timestamp,
tag ID, RSS, card reader name, port number].

Aside from RSS, the attributes of RFID signals, such as
Doppler shift and phase angle, have been used for human-
object interaction detection or human tracking. Our experi-
ence with these demonstrated that the Doppler shift measured
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TABLE 2. Activities used in this paper and their ADL codes.

Activity Code Activity Code
Eating E Urinary Control ucC
Taking a Bath B Toilet Control TC
Brushing Teeth BT Bed-Chair Shift BCS
Getting Dressed GD Walking w

by the Inpinj Speedway R420 reader API was not sufficiently
accurate for our purposes.

A. DENSENET MODEL

DenseNet is a CNN with dense connections. In this network,
there is a direct connection between any two layers, that is to
say, the input of each layer of the network is the union of the
output of all the previous layers, and the feature maps learned
by this layer will be passed directly to all the layers behind
it as input. Fig. 1 shows the Dense Blocks of DenseNet. The
blocks’ structure is as follows: BN-ReLU-Conv (1*1)-BN-
ReLU-Conv (3*3).

A DenseNet consists of several such blocks. The layer
between each Dense Block is called a transition layer, which
consists of BN>Conv(1*1)>average Pooling(2*2). Dense
connections greatly increase the number of network param-
eters and the speed of computation, making DenseNet more
efficient than other neural networks, due to a reduced com-
puting load and the ability to reuse features in each layer of
the network. DenseNet lets the input of layer L directly affect
all subsequent layers, and its output is XL = HI ([XO0, X1,. ..
(xI_1]), where [x0, x1,..., xI_1] merges previous feature
maps in channel dimensions. Since each layer contains the
output information of all previous layers, it only needs a few
feature maps, which is why there are fewer parameters in
DenseNet than in other CNN models. Generally speaking,
DenseNet, as a CNN with deeper layers, has fewer parameters
than a residual neural network (ResNet). Meanwhile, bypass
enhances the reuse of features, makes the network easier to
train, has a certain regularization effect, and alleviates the
problems of vanishing gradients and model degradation.

B. DENSE CONNECTIVITY

We know that the structure of ResNet can be described as
X1 = HI (XI-1) + XI-1. X1 denotes feature maps generated
by the Ith layer, while Hl denotes corresponding calcula-
tions on the Ith layer (generally, BN+ReLU+Conv, etc.).
Accordingly, DenseNet’s network structure can be described
as X1 = HI ([XO0, X1,..., XI-1]), where [XO0, XI1...., XI-1]
represents the set of feature maps generated by the previous
layers, which are the same as the Ith layer feature map size.
Compared with ResNet, DenseNet uses not only the input of
the previous layer as the input of the successor layer but also
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FIGURE 3. A five-layer dense block with a growth rate of k = 4. Each layer
takes all preceding feature-maps as input.

all the layers with the same features as its. In addition, unlike
ResNet, DenseNet does not add these prelayers as input but
propagates them backward by direct simple concatenation.

C. GROWTH RATE

DenseNet’s design does not need to be very wide (i.e., there
are not too many trainable parameters for each layer) because
it can better reuse features between layers. In our experiment,
if each layer produces k output feature maps, then the input
feature maps corresponding to the Ith layer (HI) should be
KO + (I-1) * K. Here, KO corresponds to the input feature map
channels of the input layer, so we set K = 12. Here, k, also
known as growth rate, determines how many fresh features
each layer can add to the global feature set.

D. BOTTLENECK LAYER

Although each layer in DenseNet blocks produces only K
feature map output, it has a good deal of feature map input.
For this reason, in ResNet/Inception series/SqueezeNet and
other networks, in our experiment we introduced a bottleneck
layer of 1 x 1 Conv before each 3 x 3 Conv operation,
effectively limiting the number of input feature maps to a
reasonable range. So the real calculation (Hl) of each layer
is BN-ReLU-Conv (1 x 1) - BN-ReLU-Conv (3 x 3).

E. TRANSITION LAYERS

Because every conv_block in a dense block increases the
growth_rate feature map, it is necessary to add transition
layers after a dense block, in order to compress a certain
number of feature maps and thereby ensure the efficiency of
training.

F. MODEL TRAINING

We trained two DenseNets to detect five process stages and
ten daily activities using a three-week preprocessing of the
daily activities in the living room. Labels of data per second
(one of five process stages or ten activities) were manu-
ally generated by paramedics according to the corresponding
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TABLE 3. Confusion matrix for five ADL phases.

PA IP A SA PSA

PA 67.98% 2.78% 5.97% 8.97% 3.21%
IP 26.98% | 89.19% | 12.87% | 11.89% 9.86%
A 3.78% 478% | 7891% | 11.27% 2.35%
SA 12.91% 3.98% 1.23% | 79.23% 0.12%
PSA 11.38% 711% 3.67% 0.97% | 67.91%

SVM

Bayesian Network

0.75 Random Forest
Logistic Regression [l
ResNet [l
0.50
DenseNet
D T T T T T ——
Prec. Rec. F-5 Info. Mark. MCC

FIGURE 4. Performance comparison using different classifiers to predict
ADL phases.

behavioral activity video review. Because each subject’s body
and living habits are different, and the duration of each activ-
ity is unpredictable, some of the ten activities are not well dis-
played. This is different from the five behavior stages, these
stages are well performed [27]. In the case of unbalanced
datasets, random selection of sample size does not guarantee
sufficient data for all activity classes during training and
testing. We selected a percentage of data from each class for
training and used the remainder for testing.

V. RESULTS AND ANALYSIS

First, we applied DenseNet to detect five stages of daily
life behavior: pre-action (PA), in-position (IP), primary
action (A), secondary action (SA), and post-secondary action
(PSA). Phase detection was a challenge because the pro-
cess phases are a high-level concept that are defined using
lower-level concepts, such as objects used or constituent
activities [28]. We preprocessed all recorded RFID data and
randomly selected 3 h from each stage as training data and
used the remaining data for testing. This meant that less than
50% of the total data were used for training. We used the
TensorFlow open-source platform to train our DenseNet and
stopped training when the cross-validation error remained
unchanged for a period of time. The average detection accu-
racy of the system for five phases was 76.84%.

We compared the performance of DenseNet with the
commonly used classifiers and CNN: one for all support
vector machines (SVMs), one for all logistic regression,
random forest, and Bayesian networks, using the previously
introduced features on the same dataset. We regarded the
phase detection as a multi-class classification problem and
the phase detection of each process as a binary classification
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TABLE 4. Confusion matrix for recognition of ten ADL activities. “OT” for activity other than selected nine activities.

oT E TB BT GD SC ucC TC BCS W UDS
oT 73.19% | 12.80% 1.78% 3.28% 28.91% 9.88% 311% 0.91% 11.70% 0.91% 0.06%
E 1891% | 96.31% | 46.91% 0.81% 0.01% 0.01% 0.03% 1.31% 0.01% 1.26% 0.01%
TB 16.13% | 67.74% | 61.92% 0.96% 0.03% 0.02% 0.13% 3.12% 0.01% 0.00% 0.03%
BT 31.28% 1.53% 8.91% 52.69% 0.01% 0.01% 1.52% 1.56% 0.03% 0.00% 0.21%
GD 7.91% 0.91% 21.81% 0.16% 81.34% 0.04% 0.13% 0.01% 0.01% 0.16% 0.05%
SC 7.30% 0.87% 1.27% 0.00% 0.00% 63.78% 0.05% 0.01% 0.86% 0.01% 0.01%
ucC 4.51% 0.86% 1.31% 0.00% 0.00% 67.8 32.56% 0.01% 0.01% 0.01% 0.01%
TC 3.28% 0.00% 0.98% 0.01% 0.01% 0.01% 0.01% 11.78% 0.01% 0.01% 0.00%
BCS 7.56% 0.00% 0.01% 0.01% 0.01% 0.01% 0.01% 0.01% 67.91% 0.01% 1.28%
W 3.98% 0.56% 8.99% 7.13% 2.91% 0.06% 0.08% 0.17% 21.88% | 97.32% 3.78%
UDS 4.67% 0.00% 0.01% 0.00% 0.02% 0.02% 0.00% 0.03% 0.13% 1.25% 76.45%
problem. We used F-scores, informativeness, markup, and REFERENCES

Matthew correlation coefficient (MCC) [29] as common
indicators. As can be seen in Fig. 4, the results demon-
strated that our DenseNet achieved the highest perfor-
mance, including a 15% performance gain compared with
ResNet (which had the second highest classifier performance
in Fig. 4).

VI. CONCLUSION AND FUTURE WORK

This research offers two main contributions. The first is the
creative application of DenseNet to the field of activity recog-
nition. This model is a method of activity recognition using
passive RFID devices. Its recognition accuracy demonstrates
obvious improvement compared with the traditional method
of using RSS only or object-use combined with a classifier.
The second contribution is the use of DenseNet, based on a
CNN algorithm, to match features, which improves the accu-
racy of activity recognition. Through cross-testing in several
experimental environments, the average recognition accuracy
reached 82.78%, which we believe proves the effectiveness of
this method.

We have identified some problems during the experiment
we did, which needed to go deeper to research in future work.
First, the complex activity recognition issue. We have many
complex activities which may be formed of sub-activity. e.g.
Think about the activity a man who has some problem with
his legs may using a crutch to walk with. Which is consist
of two sub-activities: Walking and Using a Crutch. The pro-
cess of recognition will take more time than handling two
independent sub-activities. The more complex the activity is,
the more cost will have. This issue will have a great impact
on us. Second, Speed and efficiency of recognition. In actual
application scenarios, the sooner you discover a problem with
the elderly‘s behavior, the more we can prove the value of
our research. Therefore, in the following research, the recog-
nition of complex activities, speed, and accuracy are the main
directions.
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