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ABSTRACT The star image suffers inevitably from degradation due to the high-speed motion of the space
target and the long exposure time of the camera, therefore the attitude information of the star is hard to
accurately obtain. This paper proposes a blind deblurring algorithm that combines shape features of space
targets. First, the astronomical image is preprocessed using saliency detection. Then, considering the shape
characteristics of space targets, the Minimum Bounding Rectangle (MBR) is introduced to describe the
space targets. Next, the parameters of the MBR are used to estimate the point spread function (PSF).
Finally, a regularization method is employed to recover the astronomical images. Experimental results
on both simulation and real star images demonstrate that the proposed method reduces the error of point
spread function estimation and decreases the error rate of identified space targets. At the same time, the
accuracy of the star centroid extraction improves 0.2786 on average and the error of the star centroid location
extraction reduces 0.059 comparing to the state-of-art method. The proposed method is of great significance
for positioning, recognition and attitude determination of space targets.

INDEX TERMS Blind deblurring, minimum bounding rectangle, point spread function, star image restora-
tion.

I. INTRODUCTION
With the further study of human beings in the field of deep
space exploration, the quality requirements for star images
are getting higher and higher. Space targets are man-made
targets including spacecraft and space debris [1]. Since most
of the targets are passive, passive detection equipment is
widely used for observation. The detection of the Mid-
dle Earth Orbit (MEO) space targets is mainly achieved
by ground-based optoelectronic telescopes with star sen-
sors [2], [3]. A star tracker, also known as star sensor,
is a high-precision, autonomous attitudemeasurement device,
which can carry out attitude estimationwithout prior informa-
tion and does not drift with time. It is widely used in various
types of spacecraft [4].

Typically, the attitude of satellite is determined by the fol-
lowing steps: star image preprocessing, star centroid extrac-
tion, star identification [5], attitude estimation [1]. When
observing and identifying space targets, obtaining the basic
parameters and physical features are the key to observation.

The associate editor coordinating the review of this manuscript and
approving it for publication was Larbi Boubchir.

The attitude accuracy of the star sensor mainly depends on
the accuracy of the star centroid. Therefore, the star image
processing of the star sensor before centroiding is very sig-
nificant to the attitude accuracy of the star sensor. Under
static conditions, star image processing steps usually include
background noise removal, binary operation and connected
component analysis [6]. However, compared with the static
situation, the star images captured under dynamic conditions
are no longer distributed in a Gaussian distribution [7], but
scattered in a long trail, which is seriously blurred. The space
target is moving at high speed, moreover, the exposure time
of the star sensor is long. Therefore, it has relative motion
with the camera. Slight movement may cause the star image
to be elongated and blurred. Coupled with the effects of
atmospheric turbulence [8], photon shot noise, readout noise,
and dark current noise, the signal to noise ratio (SNR) of the
star images will drop and the degradation of the star image is
more serious, whichmakes the star centroid [9]–[11] shift and
blur, even seriously affects the normal attitude of the space
target. Therefore, the restoration of the star image directly
determines the efficiency of the observation and the accuracy
of the detection.

131818 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4162-7486
https://orcid.org/0000-0002-3598-9352


P. Liu et al.: Blind Deblurring Using Space Target Features

Our study aims to design a deblurring method to solve
the above problems. Our paper is organized as follows. The
introduction is given in Section 1 and the relatedwork is given
in Section 2. The proposed method is described in detail in
Section 3. The experiment results are given in Section 4, and
the conclusion is drawn in Section 5.

II. RELATED WORK
Image restoration is introduced into star image in the 1960s.
Nathan [12] proposes inverse filtering for obtaining clear
satellite images. Now, image restoration has beenwidely used
in various astronomical fields [13], such as image reconstruc-
tion observed to IRAS (Infrared Astronomical Satellite) [14],
revealing the internal structure of the mid-infrared image
processing of active galactic nucleus NGC 1068 [15], and
eliminating telescope tracking errors [16]. In order to esti-
mate the fuzzy kernel, McGlamery deconvolutes the image
in [17]. However, this method is sensitive to noise and the
restoration results are not satisfactory. To solve this problem,
a Wiener filter is proposed in [18]. Wu and Wang [19] and
Zhang et al. [20] discuss the degradation models and corre-
sponding PSFs, and they propose the constrained least square
filter andWiener filter for star image restoration, however this
method may easily cause the ringing effect. Sun et al. [21]
use the traditional Richardson-Lucy (RL) algorithm to effec-
tively remove the ringing effect. However, the method is
carried out in the case of known point spread function (PSF).
Moreover, the accuracy of the restored star image is not satis-
factory due to the equality of the deblurring star points. On the
basis of the RL algorithm, an attitude-correlated frames
(ACF) method to improve the accuracy of attitude acquisition
is further studied in [22]. The ACFmethod associates the atti-
tudes of adjacent frames. For existing algorithms, the PSF of
the blurred star image can be obtained by the gyroscope and
satellite attitude information [2], [19], [21], [23], [24] or esti-
mated by isolated star point [25]. Wang et al. [26] propose a
method to calculate blur kernel, aided by aMEMS gyroscope.
To improve the performance of the star sensor under dynamic
conditions, Liu et al. [27] propose a gyroscope-assisted star
image prediction method and an improved Richardson-Lucy
(RL) algorithm based on the ensemble back-propagation neu-
ral network (EBPNN). Amethod of star image under dynamic
conditions which is effective in themotion- blurred star image
processing is discussed in [28] and [29], and it is adaptive
to different dynamic conditions. Zhao et al. [30] propose an
improved median filtering and fast blind restoration method,
which can effectively remove noise and restore the star image,
but the energy of star points is not particularly concentrated.
However, ideal navigation images are different from natural
images, since most pixels of the navigation images are zero
and only a small amount of pixels contains beacon or star spot
information [25]. Ramos et al. [31] leverage deep learning
techniques to significantly accelerate the blind deconvolu-
tion process and produce corrected images at a peak rate of
∼100 images per second. This method can produce excellent
image corrections with noise suppression while maintaining

FIGURE 1. An example of a blurred star image and the 3D image intensity
profiles of its local areas; (a)Original star image;(b) Histogram of
region 1©; (c) Histogram of region 2© (d) Histogram of noise region 3©.

the photometric properties of the images. However, a large
training set with annotation is necessary in this method.

Krishnan and Fergus [32] propose a regularization method
for image restoration, which is greatly affected by noise.
The noise case can be addressed by introducing a regu-
larization term into the objective function to avoid noise
amplification [33]. Sparse representation is utilized to remove
the Poisson-Gaussian mixed noise of the low-resolution star
image [34]. However, the methods are complex for obtaining
the PSF.

Therefore, the estimation of the PSF becomes one of the
key issues in the restoration of blurred star images.

III. PROPOSED METHOD
Fig. 1 shows an example of a blurred star image and the
3D image intensity profiles of its local areas. Fig.1 (a) is
the original star image. Fig.1 (b) and (c) are the 3D image
intensity profiles of regions 1© and 2© in (a), which contain
space targets with different sizes, and (d) is the 3D image
intensity profiles of noise region 3©. From the 3D profile
images, it can be seen that the original star images have
more noise and scattered star points, which makes it difficult
to identify and fix the attitude. Figure 2 shows the block
diagram of the proposed method. The original star image is
preprocessed using saliency detection first. Then, the space
target is identified using MBR and the point spread function
is estimated based on motion length estimation and motion
angle estimation. Finally, the star image is deblurred by a
regularization method.

A. STAR IMAGE PREPROCESSING
The star image has obvious noise due to the influence of sky-
light, photon and electron of the camera. Therefore, the pre-
processing of star images and saliency detection [35], [36]
will be more helpful to subsequent star image restoration.

The histogram of the original star image is shown in Fig.3.
It can be seen that the pixel points are mainly concentrated
within the gray value from 0 to 80, and the distribution is
uneven. There is little difference between the light and dark
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FIGURE 2. Block diagram of the proposed method.

FIGURE 3. Histogram of a star image.

changes of the target, and it is difficult to carry out target
recognition and deblurring. Therefore, saliency detection of
star image is necessary. The mean of pixel values is used to
calculate the significance due to the high brightness of space
targets such as MEO relative to the background starry sky.
The saliency image H (x, y) is obtained by

H (x, y) =


S1 (x, y)− Smin
Smax − S1 (x, y)

(S1 (x, y) 6= Smax)

255 (S1 (x, y) = Smax)
(1)

where S1(x, y) is the square of the difference between the
pixel of the image and the arithmetic mean, which is calcu-
lated by (2), Smin is the minimum value of S1 (x, y), Smax is
the maximum value of S1 (x, y) which are given by (3) and
(4) respectively.

S1(x, y) = (I (x, y)− µ)2 (2)

Smin = min (S1 (x, y))
{
x = 1, 2, . . . ,M − 1
y = 1, 2, . . . ,N − 1

(3)

Smax = max (S1 (x, y))
{
x = 1, 2, . . . ,M − 1
y = 1, 2, . . . ,N − 1

(4)

where µ is the arithmetic mean of the pixel of the star image,
M × N is size of the image I (x, y). After saliency detection,
the contrast between the space target and background is
increased. In addition, the background noise is removed, and
only the space targets are retained.

B. SPACE TARGET DESCRIPTION BASED ON MINIMUM
BOUNDING RECTANGLE
After the saliency detection, the contrast between the star spot
and the background is improved, and there is almost no noise

interference. Our method is to study and restore a certain
space target. The objects we concern aremotion blurredMEO
space targets. We restore the space targets for accurate posi-
tioning and tracking. After a long exposure time, the motion
blurred length is large, and the space target is obvious, which
is helpful to edge detection. Therefore, the Canny operator is
used for edge detection for the preprocessed star image and
the outline of each target can be obtained. Space target often
has the shape of a bar due to the relativemotion between space
target and the camera, therefore the space target is described
by MBR in our paper.

Given n boundary points (xi, yi) i = 1, 2, . . . , n of a space
target, the centroid (x̄, ȳ) of the boundary can be given by (5):

(x̄, ȳ) =

(
1
n

n∑
i=1

xi,
1
n

n∑
i=1

yi

)
(5)

As shown in Fig.4, l1 is a line passing through the centroid
which is defined by (6), where θ is the angle between l1 and
the horizontal axis.

l1: (y− ȳ)− tan θ (x − x̄) = 0 (6)

The perpendicular distance from the edge point (xi, yi), i =
1,2,3, . . ., n to the line l1 is

pi = (x i − x̄) sin θ − (yi − ȳ) cos θ (7)

The sum of square of the perpendicular distance of each edge
point (xi, yi) is defined by

P =
n∑
i=1

[(x i − x̄) sin θ − (yi − ȳ) cos θ]
2 (8)

In order to calculate the angle θ , we minimize P respect to
θ . Therefore, ∂P

∂θ
= 0 gives

tan 2θ =
2
∑n

i=1
(xi − x̄) (yi − ȳ)∑n

i=1

[
(xi − x̄)2 − (yi − ȳ)2

] (9)

The major axis of MBR l1 can be obtained as shown in Fig.4,
and the line perpendicular to the major axis is the minor axis
l2 which is defined by

l2: (y− ȳ)+ cot θ (x − x̄) = 0 (10)

Consequently, the directions of the major and minor axes can
be determined.
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FIGURE 4. The illustration of an MBR.

As shown in Fig.4, the four intersection points
between MBR, the major axis and minor axis are
(x1, y1), (x2, y2), (x3, y3), (x4, y4) respectively. And the four
vertices of the MBR are determined as follows

A : (ax =
x1 tan θ + x3 cot θ + y3 − y1

tan θ + cot θ
,

ay =
y1 cot θ + y3 tan θ + x3 − x1

tan θ + cot θ
) (11)

B : (bx =
x1 tan θ + x4 cot θ + y4 − y1

tan θ + cot θ
,

by =
y1 cot θ + y4 tan θ + x4 − x1

tan θ + cot θ
) (12)

C : (cx =
x2 tan θ + x3 cot θ + y3 − y2

tan θ + cot θ
,

cy =
y2 cot θ + y3 tan θ + x3 − x2

tan θ + cot θ
) (13)

D : (dx =
x2 tan θ + x4 cot θ + y4 − y2

tan θ + cot θ
,

dy =
y2 cot θ + y4 tan θ + x4 − x2

tan θ + cot θ
) (14)

C. ESTIMATION OF POINT SPREAD FUNCTION
Image restoration can be regarded as the inverse process of
image degradation. In frequency domain, the relationship
between the blurred image G (u, v) and the original image
F (u, v) is

G (u, v) = F (u, v)H (u, v)+ N (u, v) (15)

where N (u, v) represents Fourier transform of noise, and
H (u, v) is the fuzzy kernel, which is Fourier transform of the
point spread function. In a short exposure time T , the relative
motion between the space target and the astronomical camera
can be considered as a uniform linear motion. Given x0(t)
and y0 (t) be the motion components of the space target along
horizontal and vertical directions respectively, the H (u, v) is
given by

H (u, v) =
∫ T

0
exp{−j2π [(ux0 (t)+ vy0 (t)]}dt (16)

FIGURE 5. A point spread function model.

FIGURE 6. Motion angle of blurred image.

Since the actual blurred star image is a digital image, the (16)
should be transformed to its discrete form, which is

H (u, v) = T
sin

(
π
(
uLsinβ
M +

vL cos β
N

))
π
(
uLsinβ
M +

vL cos β
N

)
× exp

[
−2jπ (

ux0 (t)
M
+
vy0 (t)
N

)
]

(17)

where M and N represent the width and height of the star
image, L is the motion blurred length, β is the motion blurred
angle, as shown in Fig.6.

In optical images, point impulse is a bright spot in the dark
background, whose two-dimensional impulse response is the
point spread function. Therefore, in our paper, the star point
can be expressed by the point impulse δ(x, y). A star point
becomes a line segment due to motion blur. From the nature
of the impulse function, the Fourier transform of the impulse
function is 1.

Without considering the influence of noise, (15) can be
turned into

G (u, v) = H (u, v) (18)

The line segment at this time represents the point spread
function during the degradation process. Fig.5 shows a point
spread function model with the motion blurred angle of zero
degrees and the motion blurred length of 10. Therefore,
we only need to study the parameters of the blurred image
to estimate the point spread function. For the blur caused by
uniform linear motion, the point spread function is

h (x.y) =
1
L

∏
L
(x cos β + y sin β) (19)
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∏
L (u) is a rectangle function defined by

∏
L
(u) =


1 (|u| ≤

L
2
)

0 (|u| ≥
L
2
)

(20)

It can be seen from (20) that the estimation of the point spread
function mainly depends on two parameters: motion blurred
length and motion blurred angle.

1) ESTIMATION OF MOTION BLURRED ANGLE
Since the star point is a uniform linear motion during a
short exposure time, that is, blurring occurs along the moving
direction, the distance perpendicular to the moving direction
is the shortest for the blurred process.

In the process of finding theMBR of the space target, when
we determine the direction of the major axis, we minimize P
respect to θ . Whether the space target is translated, rotated
or scaled, the calculation method of the major axis direction
is invariable. Therefore the direction of the major axis is the
direction of motion blurred angle, and the motion blurred
angle is given by

β = arctan
y4 − y3
x4 − x3

(21)

2) ESTIMATION OF MOTION BLURRED LENGTH
Motion blurring can be understood as the ‘‘tailing’’ phe-
nomenon caused by the overlapping of pixels in the motion
process. Then each pixel overlaps with the previous cell
position during the motion, and the overlapping distance
is the motion blurred length. It is known from the motion
blurred angle estimation that the direction of the main axis
is the direction of the blurred angle. Since the main axis
passes through the centroid, the long side length of the MBR
corresponding to the main axis direction is the blurred length.
Therefore the motion blurred length is calculated by

L =
√
(x4 − x3)2 + (y4 − y3)2 (22)

D. IMAGE RESTORATION BASED ON REGULARIZATION
In recent years, with the introduction of the image sparse
representation theory, it has been found that the proportion
of abrupt scenes in star images is small like that in natural
images. Therefore, the sparse prior information of the image
can be used to guide the sparse regularization restoration of
the image.

Once the point spread function h (x, y) of the finest level
has been estimated, we can use method in [37], which is
fast and robust to small kernel errors, to recover the blurred
star image to obtain target image f (x, y) from h (x, y) and
g (x, y). This algorithm uses a continuation method to solve
the following cost function:

min
f
α ‖f (x, y) ∗ h (x, y)− g (x, y)‖22

+‖∇xg(x, y)‖1+
∥∥∇yg(x, y)∥∥1 (23)

FIGURE 7. A 40-cm horizontal optical telescope.

TABLE 1. Parameters of telescope.

where, h (x, y) is the PSF that we figured out before, f (x, y)
is the currently estimated recovered image, ∇x and ∇y are
regularizing operators, α is the weight. The resulting image
f (x, y) is used as the input of the next iteration until the
number of iterations is satisfied. The output is the restored
image.

IV. EXPERIMENTAL RESULTS
In order to verify the effectiveness of the proposed blind
deblurring algorithm comprehensively, the experiments are
based on both simulation and real star images. Testing of this
algorithm was carried out in the Windows 8 system, using
matlabR2017b environment in a 64-bit address space and the
experimental machine is stored as 8G.

The real images are provided by the Changchun Satellite
Observatory of the National Astronomical Observatory of the
Chinese Academy of Sciences. A 40-cm horizontal optical
telescope on an alt-azimuth mounting is used in our exper-
iments, which is shown in Fig.7. The telescope is dedicated
for surveying space target, and the parameters of the telescope
are shown in Table 1. The space targets are the MEO space
targets.

A. PERFORMANCE OF SALIENCY DETECTION
Fig. 8 shows the results after saliency detection filtering.
Three groups of real space target images are selected in the
experiment which are provided by the Changchun Satellite
Observatory of the National Astronomical Observatory of the
Chinese Academy of Sciences. The parameters are same as
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FIGURE 8. Results of saliency detection; (a) (c) (e) Original star images; (b) (d) (f) Saliency-detected images.

FIGURE 9. Results of edge detection; (a) (c) Original star images after saliency detection; (b) (d) Edge-detected star images.

FIGURE 10. Three images of space targets described by the MBR.(a) Space
target image 1©; (b) Space target image 2©;(c) Space target image 3©.

those in Table 1. The size of the star image is 512×512. It can
be seen from Fig.8 that the noise is large, and the energy of
the blurred star image is distributed in the adjacent pixels,
among which a few targets are almost embedded into the
background noise, and the signal-to-noise ratio is very low.
The contrast between the target and background is difficult to
meet the subsequent detection and deblurring due to the weak
dark space target. After performing the saliency detection as
shown in Fig.8 (b), (d), (f), the image contrast is significantly
increased and most of the noise has been filtered out, leaving
only stars and space targets.

B. EDGE DETECTION
Edge detection based on Canny operator is needed for
the image after saliency detection to assist the subsequent

recognition and deblurring of space target image. In order to
show the effectiveness of edge detection for small and weak
targets, the following experiments are carried out.

In our experiments the size of the blurred star image is
512×512. The upper and lower limits of the threshold of
edge detection are 0.9 and 0.5 respectively. Fig. 9 gives
the results of space target edge detection. Fig. 9 (a) (c)
are the original star images after saliency detection;
Fig. 9 (b) (d) are edge-detected star images. It can be seen
that the edge is thinner and the edge line is continuous
after canny operation. The positioning accuracy of edge
detection is mainly reflected in the estimation of point
spread function. Therefore, we will show it in subsequent
experiments.

Figure.10 are three space targets identified by the MBR.
We can see that almost all space targets are identified and
marked with blue rectangles.

C. RESULTS OF POINT SPREAD FUNCTION ESTIMATION
In the simulation experiments, in order to meet the require-
ments of the space targets detection accuracy simulation, and
the exposure time T of the star sensor is 1.5s, the imaging area
array size is 512 pixels × 512 pixels, the lens focal length is
60 cm, the star sensitivity is 5 Mv, and the rotational angular
velocity is 10 ◦ / s.

VOLUME 7, 2019 131823



P. Liu et al.: Blind Deblurring Using Space Target Features

FIGURE 11. Results of different estimation algorithms; (a) (b) (c) errors with different motion lengths (d) errors with
different motion angles.

The motion blurred star image used in this part is sim-
ulated under the noise with zero mean and mean square
error of 0.1. The traditional Radon transform [21], the tra-
ditional Radon transform combined with different denoising
algorithm, the method in [38], the method in [26] and the
method in this paper are applied to the estimation of motion
parameters respectively.

In the experiment, the parameter estimation error is utilized
to evaluate the performance of our proposedmethod. The esti-
mation error of motion blurred parameters is the difference
between the estimated motion blurred parameters obtained
from the experiment and the motion blurred parameters set
by the original blurred star images. Detail error analysis data
is shown in the Fig.11. The experimental conditions are as
follows: in Fig.11 (a), the blurred angle is fixed at 10◦, and
the blurred distance is changed from 10 pixels to 70 pixels.
In Fig.11 (b), the blurred angle is fixed at 20◦, and the blurred
distance is changed from 10 pixels to 70 pixels. In Fig.11 (c),
the blurred angle is fixed at 10◦, and the blurred distance
is changed from 10 pixels to 70 pixels. As for Fig.10 (d),
the length blurred is fixed at 40 pixels, and the range in the
angle of motion blur is from 10◦ to 90◦.

It can be seen from Fig.11 that there is no correlation
between the increase of the motion angle and the estima-
tion error. However, the estimation error will increase as the
motion distance increases. The error of the proposed method
is significantly smaller than that of the algorithms in [21], [38]
and [26], especially when the motion blurred length and
motion blurred angle are large. When the motion blurred
length is fixed, motion blurred angle error is within 0◦ to 2 ◦;
when the motion blurred angle is fixed, the error range of
the motion blurred length is between 0 pixel and 1 pixel.
The errors of the proposed method decrease dramatically
comparing with the methods in [21], [38] and [26]. Therefore
our algorithm can better estimate the point spread function
and ensure the robustness of the algorithm.

D. ANALYSIS OF RESTORATION RESULTS
1) STAR IDENTIFICATION RESULTS OF A STAR IMAGE FRAME
In order to verify the validation of the proposed method,
the star images were captured at Changchun Observatory of
National Astronomical Observatories Academy of Science,
where there is no stray light from city. The parameters of
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FIGURE 12. (a)Original motion blurred star image; (e) Identification result of the original image; (b) Processed image using method in [28];(f)
Identification result using method in [28]; (c) Processed image using method in [26];(g) Identification result using method in [26];(d)
Processed image using our method; (h) Identification results using our method. Extracted stars are marked in circles.

the optical telescope used for the shooting are described
in Table1. We carried out simulation experiments according
to the parameters of the captured images under different
dynamic conditions and noise levels. For the method of reg-
ularization, the weight α is 3000. The number of iterations
is 20.

Fig. 12 (a) shows the simulated star image under dynamic
conditions and the parameters of the star image which are
shown in Table 2. The exposure time is 90 ms. With the
given attitude information, the signal-to-noise ratio (SNR)
limit [38], and themotion degradationmodel [40], [3], we can
simulate the motion-blurred star image. The Gaussian white
noise with standard deviation 30 (the saturated gray level of
a pixel is 65535) to the blurred star image is subsequently
added. The star image corresponding to each angular velocity
and noise gray level is simulated 50 times randomly, and the
average value is taken as the final result. In this way, we can
generate motion-blurred star image.

Fig.12 (b), (c), (d) provide the deblurred images using
the fuzzy kernel restoration method in [28], [26] and the
proposed method respectively. And the identification results
are shown in Fig. 12 (f), (g), (h). The star points recovered
by the method in [28] have ringing effect, and the brightness
of the restored star points is low, which increases the burden
of location calculation. It can be seen that the restoration
image of method in [26] has a great improvement in star point
brightness compared with the method in [28], but there are
still many artifacts on the edge. Our algorithm can restore
more star points, and increase the brightness of star points.

According to the theory provided by Pascu and
Schmidt [41], when there are sufficient background stars,
the astronomical positioning accuracy of the object depends
on the centering accuracy of the object image. The captured
images are affected by the image degradation, which results
in the large position errors of star centroid. Therefore, it is
unacceptable for practical engineering applications. In our
experiments, the recognition rate and the error of the centroid
location are used to evaluate the performance of our proposed
method. The center of moment method is used to calculate the
centroid and the coordinates of star points. The four groups
of centroid coordinates shown in Table 2 are calculated from
original image, the restored image using method in [28],
the restored image using method in [26] and the restored
image of our method. Table 2 also shows that the number
of the detected stars increases after restoration. As the false
detection caused by star blur decreases, the centroid accuracy
improves. The number of star points in the original star
image is 26 as shown in Fig.12 (e). The number of star
points identified by the method in [26] is 16, which is shown
in Fig. 11 (f). The number of star points identified by the
method in [26] is 17, which is shown in Fig.12 (g). While
our algorithm can identify 18 star points which is shown
in Fig.12 (h). Therefore, our algorithm has a higher recogni-
tion rate. Furthermore, the centroid accuracy of our method is
higher. It is vital for the improvement of the centroid accuracy
and satellite positioning.

Table 3 gives the accuracy comparison of star point
extraction for restored star image. The methods, which
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TABLE 2. Star identification results of a star image frame.

TABLE 3. The average centroid position of different restoration methods.

are the Wiener filter [39], accelerated RL method in [28],
l-p regularization [29], and the method in [26], are
compared respectively. The parameters are set according
to [39], [28], [29], [26]. All of the restoration methods above
are with the corrected blur kernel as the common condition.
The centroid coordinates of the star points calculated from
the restored images are compared with the original centroid
coordinates of the star points.

The first column in Table 3 is the result of the Wiener
filter [39], which has large error of the centroid position.
The second column is the result of the accelerated RL
method [28]. The accelerated RL method [28] is robust to
noise, but the ringing phenomenon limits its accuracy. The
third column is the result of l-p regularization [29], which

solves the ringing phenomenon. Its accuracy is higher than
that of the accelerated RL method, however, the overall
brightness is low, which limits the accuracy improvement.
The forth column is the method in [26]. This method can
obtain a higher precision centroid position. The fifth column
is the method in this paper, which has the smallest average
error of centroid position. Table 3 shows that the recon-
structed image is more similar to the truth using the method
proposed in this paper, which verifies that the proposed recon-
struction method has better performance.

A fuzzy star image with a blurred angle θ = 20◦ and
a motion blurred length from 10 to 50 pixels is simulated.
The centroid extraction accuracy, the number of misidentified
stars, the star image recognition failure rate of the blurred
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TABLE 4. The accuracy of centroid extraction before and after recovery with L/pixels in the case of θ = 20◦.

FIGURE 13. Comparison results for different deblurring algorithms; (a)Original star image; (b) Method in literature [21]; (c) Method in literature [38];
(d) Proposed method; (e) 3D image intensity profiles of original star image; (f) 3D image intensity profiles of method in literature [20]; (g) 3D image
intensity profiles of method in literature [32]; (h) 3D image intensity profiles of proposed method.

star image, the restored star images compared with different
deblurred length are given in Table 4. The centroid extraction
accuracy is the average accuracy of the correctly identified
star points. The number of misidentified stars refers to the
average number of stars in each star image that are not
recognized in the star image.

It can be seen from Table 4 that with the increase of the
motion length, the accuracy of centroid extraction is declining
whether it is a fuzzy star image or a restored star image.
In different motion blurred lengths, the recognition error rate
and the number of misidentified stars decrease significantly.
The recognition error rate is reduced from 75.62% to 14.06%
using our method when the motion blurred angle is 20◦ and
the motion blurred length is 50 pixels. It can be observed that
the number of misidentified stars decreases from 5.0113 to
0.3366. From this comparison, we can see that our method is
more robust to different dynamic conditions. Therefore, the
attitude information can be obtained more accurately by the
proposed method.

2) RESULTS OF RESTORATION
Fig.13 (a) is the acquired space target image and (e) is the
3D image intensity profiles. Fig. 13 (b), (c), (d) provide the

deblurred images using the fuzzy kernel restoration method
in [21], the method in [38], the proposed method respectively.
The star point in the Fig.13 (c) has a better restoration effect,
but the brightness is still low, which is not beneficial to the
subsequent detection. In the Fig.13 (d), after the blind deblur-
ring of the algorithm, the star spot is clarified, the distribution
is close to the Gaussian distribution, and the brightness is
higher than that of the fuzzy star image. Furthermore, it can
be seen that our algorithm reduces the ringing effect in com-
parison with other two methods. It can be used in a low SNR
environment.

V. CONCLUSION
This paper proposes a blind deblurring algorithm capturing
space target features. By analyzing the sparse characteris-
tics of the star image, we find the relationship between
the degraded image and the restored image. The minimum
bounding rectangle algorithm is used to estimate the motion
direction and motion length of the space targets and conse-
quently to help the space target restoration. The identification
rate and the error of the centroid location are used to evaluate
the performance of restoration. The experiments show that the
restoration effect is significantly improved. The positioning
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accuracy is enhanced and the number of star points recog-
nized is more.
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