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ABSTRACT The problem of duplicate track determination called “Track-to-Track association” occurs
when a target is reported by different sensors, and it is regarded as one of the most important challenges
in distributed multi-sensor tracking systems. The present study aimed to propose a density-based fuzzy
clustering method for solving the track-to-track association problem in distributed multi-sensor tracking
systems. Unlike the previously published solutions, the proposed method does not need any information
about the number of targets, due to the use of the density-based clustering approach. Proposed method has
low computational overhead and can be used in real-time tracking systems. In addition, the proposed method
uses the maximum entropy approach to determine the membership degree of single target related tracks
and combines them. This paper presents three scenarios including sensors with complete and incomplete
overlapping by considering the bias and a different number of sensors and targets for evaluating the proposed
method based on the Monte Carlo simulation. The results indicate the improvement of the efficiency in
comparison with the FTF approach. The efficiency of proposed method’s results is close to the results of

Bayesian minimum mean square error criterion that gives best possible results.

INDEX TERMS Density clustering, distributed target tracking, multi sensor fusion, track association.

I. INTRODUCTION

During recent years, the combination of information obtained
from multi-sensor systems has been considered as one of
the attractive research areas regarding the variety of its
applications. Targets tracking is one of the most important
applications of multi-sensor systems that achieves more accu-
rate and reliable results. Based on the sensor’s architecture,
multi-sensor based tracking systems can be categorized into
1) centralized and 2) distributed. In centralized architecture-
based tracking systems, sensors send the received raw mea-
surements to the fusion center (FC), which combines these
measurements and estimate target’s state [1]-[4].

Other type of multi-sensor tracking system is the dis-
tributed tracking system, which each sensor estimates target’s
state individually and sends them to the FC. Centralized
tracking methods yields more accurate results in compari-
son with distributed tracking methods. However, centralised
methods in comparison with distributed methods 1) require
higher computing power in the FC, 2) need for high data
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transfer rate for sending measurements of sensors to the
FC and 3) have high vulnerability in the case of failure in
the FC [5], [6]. Given the expressed issues, the distributed
tracking systems have higher acceptability and application
than that of centralized tracking systems [7].

The distributed tracking systems benefits from modular-
ity, practicality and scalability compared to the centralized
tracking systems. In this architecture, after local tracking by
each sensor, all tracks are sent to the FC for combination.
Due to the lack of information of the sensor overlapping and
the number of targets in FC, it is necessary to determine the
number of targets and duplicate tracks for combining. The
action of determining duplicate tracks is known as track-to-
track association (TTTA) [8]-[12].

Different types of TTTA methodologies have been devel-
oped in recent years, which are usually computationally
expensive and are unsuitable for real-time applications.
Accordingly, TTTA techniques based on fuzzy clustering
have been interested. However, due to the lack of information
about number of targets, fuzzy clustering based TTTA algo-
rithms have significant computational complexity. To over-
come this problem, a novel density-based fuzzy clustering
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TTTA for tracking multiple targets in distributed multi-sensor
tracking systems that do not need number of targets to be
known in advance is proposed in this paper. Beyond that,
the proposed technique has a negligible computational cost
and can be used in real-time applications.

The rest of paper is organized as follows. Section II
presents the related works. The problem formulation and
assumptions are presented in Section III. The proposed
fuzzy density-based spatial clustering track association
(FDBSC-TA) is described in Section IV. Computer simula-
tions’ results are shown in Section V. Finally, the conclusions
are presented in Section VI.

Il. RELATED WORKS

During recent years, highly efficient track—to-track asso-
ciation methods are presented, which can be classified to
1) distance based algorithms, 2) probability-based algorithms
and 3) other information-aided algorithms [13]. Singer and
Kanyuck [14] developed the first TTTA technique in 1970 to
estimate two tracks from two different systems based on using
Gates. In [15], the TTTA technique using the covariance-
based test statistic by assuming the independence of the error
of various systems was proposed. A robust Dempster-Shafer
fusion (RDSF) algorithm was proposed based on accumu-
lated information [2]. This method uses a heuristic Dempster-
Shafer to determine the relationship of local tracks and fused
tracks. A novel track-association approach according to com-
bined of the track disposition and the estimated track history
is designed by Lee et al. [16]. Their approach was based
on geometric arrangement of the track and the estimated
track history, respectively. Liu er al. [17] have suggested
a new track-to-track association algorithm based on well-
known iterative closest point (ICP) and global nearest neigh-
bour (GNN). The proposed method is employed for marine
surveillance by GF-4 satellite in the specific area of the East
China Sea. These studies haven’t considered the biases of the
sensors, which are existed in reality.

Presence of sensor biases lead to performance degradation
of the traditional TTTA algorithms. Therefore, it is necessary
to remove sensor biases before applying TTTA. Existence of
biases in sensors lead to large deviations between estimated
state and real state of a target. Also, bias estimation is highly
conditioned on the results of TTTA. In consequence, TTTA
and sensor bias estimation are highly coupled with each other
[8], [18]. Therefore, effective methods were introduced to
solve TTTA and sensor bias estimation [6]-[8], [19]-[21].
A joint approach for solving problem of track-to-track asso-
ciation and sensor bias estimation is suggested by Zhu and
Wang [6]. In [20], an anti-bias track-to-track association tech-
nique is designed for aircraft platforms according to statistical
characteristic of Gaussian random vectors. Tian et al. are
stated a track-to-track association algorithm based on the
reference topology (RET) feature [18], which avoids estimat-
ing the relative bias. However, most of these methodologies
have considered just two sensors for tracking, whereas in real
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applications like wireless sensor networks there are more than
two sensors.

Generally, determining the optimal response for TTTA and
track fusion (TF) has high computational load. Accordingly,
the use of suboptimal techniques are more preferred than
complex optimal methods [1], [22], [23]. The suboptimal
techniques are based on neural network [24], [25] and fuzzy
clustering [13], [26], [27]. The neural network-based tech-
niques have been less considered due to the high number
of neurons and the training based on a large number of
tracks collections, while fuzzy TTTA techniques have been
developed in recent years. The fuzzy clustering-based TTTA
was developed to determine the membership degree of obser-
vations in a multi-sensor multi-target environment. The fuzzy
TTTA was presented based on the Dempster—Shafer theory by
Fan et al. [28]. Authors have evaluated the feature of sensors
and use tracks to determine the combined belief functions.
Aziz [1] applied the fuzzy C-means (FCM) to determine the
membership degree of tracking targets with overlapping and
information such as sensor resolutions to combine tracks.
Also, he presented TTTA and fuzzy TF techniques in a dis-
tributed multi-sensor multi-target environment for scenarios
with incomplete overlapping of sensors. In addition, due to
the complexity of determining duplicate and non-duplicate
tracks in applications with a large number of sensors and tar-
gets, it is necessary to use the cluster analysis-based methods.
The number of ways used to cluster n tracks into c¢ clusters is
calculated as follows [1]:

1 c c
© — n
0= 2 2 (1) g

This problem becomes more complex when FC does not
know the number of clusters (targets). Generally, creating
an optimal solution to the TTTA problem and tracks com-
bination are usually costly and inappropriate for real-time
systems. The lack of knowing the actual number of targets
in multi-sensor multi-target tracking systems increases the
complexity of the problem, which necessitates clustering and
clusters analysis.

The density-based clustering approach is regarded as one
of the most widely used clustering methods in data mining
[29]-[33]. The lack of need to know the number of clusters,
one scan, noise management and the ability to discover clus-
ters with any desired shape are among the most important
features of this clustering method. In [34], we developed a
robust fuzzy density clustering joint probability data associa-
tion filter (FD-JPDAF) to solve the data association problem
in single sensor tracking systems. In single sensor tracking
systems, the gating technique is usually used prior to data
association to eliminate invalid measurements. Our proposed
fuzzy density-based data association filter (FD-JPDAF) facil-
itates valid measurement selection and does not need gating
technique.

In current study, an adaptive density-based fuzzy clustering
is used for determining the duplicate tracks and doing fusion
in FC, while FD-JPDAF are used as local tracks estimators
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in sensors. Proposed TTTA method of this paper gets tracks
of targets from different sensors and then relates them. After
that, it uses prior estimated state of each target as basis for
determining fuzzy membership of reported tracks of sensors
that are related to a single target. These fuzzy membership
values will be used for weighted combinations of reported
tracks of a single target to produce a fused target state that
will be used by applications. The ability to perform TTTA and
TF of the proposed algorithm in presence of sensor bias are
presented by simulation results based on Monte Carlo simu-
lation. Finally, the main contributions and significant features
of the developed method can be summarized as follows:

« Itisnotlimited to specific number of targets and sensors.

o It does not need to know the number of targets and
Sensors as priori.

o Computational cost of proposed method in worst case
scenario is quadratic.

« It can integrate with other track fusion methods.

« The bias of the sensors is considered and the proposed
approach has tried to reduce its effect.

Ill. PROBLEM FORMULATION & ASSUMPTIONS

A. FORMULATION

Table 1 lists the notations used in this article. Let assume a
set of n sensors, which monitor 7 targets in the distributed
sensor networks. In addition, the sensors are overlapped and
their position is well-known.

TABLE 1. Main mathematical symbols.

X s(k|k) target state at the sensor s at time k

% (klk) target state at the fusion center of target t at time k

p:(klk)  target covariance matrix at the sensor s at time k

Pe(k|k)  target covariance matrix at the fusion center of
target t attime k

Crx center of cluster t at time k

U, local tracks set of target t

uk fuzzy membership degree of track i belonging to
the target t

% bias vector of sensor s at time step £
the number of targets

nt the number of tracks belonging to the target t

n the number of tracks report by sensor s

D, the set of local tracks states

D, the set of local tracks covariance matrix

The dynamics and measurement models of targets are
defined as:

x (k) =f (x (k= 1) +w(k) @
2 (k) = h(x (k) + ni +v (k) 3
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where x(k) = [xk, Xk, Yk, yk]T is an n-dimensional state vec-
tor, and z(k) = [rg, Ox]7 is an m-dimensional measurement
vector of the j target at time k. f (.) is a known non-linear
function, & (.) is a known non-linear function and 7y is the
bias vector. The process noise wy and measurement noise v(k)
are assumed to be zero mean Gaussian noise vectors with
known covariance Qy andRy, respectively.

O = Cov (w (k)) “)
R = Cov(v(k)) (&)

Each sensor independently estimates the state of the targets
based on the measurements received from its surveillance
environment and sends it to the FC. The local estimates are
displayed as a tuple {{X; ;(k|k),p} (k|k)}|ls =1,...,n,t =
1..T}, where x; ;(k|k) and p? (k | k) respectively are the state
estimate and corresponding covariance matrix which are sent
to the FC for combination.

B. ASSUMPTIONS

As mentioned above, one the most important property of
proposed method is that, it is not limited to specific number
of targets and do not require prior assumption about num-
ber of targets. However, we have considered the following
assumptions.

Assumption 1: Sending and receiving of signals in both of
sensors and fusion center are reliable and considered to be
without delay, and local tracks are simultaneous.

Assumption 2: The multiple local sensors may detect mul-
tiple targets in cluttered environments.

Assumption 3: The process and measurement noises and
environment clutter are assumed zero mean Gaussian noise
and spatially Poisson distributed, respectively.

IV. FUZZY DENSITY BASED SPACIAL CLUSTERING
TRACK ASSOCIATION

This section describes the proposed method for solving TTTA
and TF problems for distributed tracking systems.

A. TRACK ASSOCIATION

As discussed in Section 1, it is not easy to determine duplicate
and non-duplicate tracks in applications with high number
of sensors and targets, and accordingly use of the clustering
methods are required. In this section, we proposed a new
method based on the density-based fuzzy clustering for solv-
ing the TTTA problem.

Generally, the purpose of the TTTA is to determine dupli-
cate and non-duplicate tracks. The proposed method solves
the TTTA problem in two stages of tracks clustering and
determining the membership degree of duplicate tracks.
The method requires only the Eps (maximum radius of
the neighborhood) parameter for track clustering. Proposed
method starts with a random selection of a track from the
received tracks set (D,) and considers it as the first mem-
ber of the first cluster in the process of tracks clustering.
Then, all Eps_neighborhood (tracks with the maximum
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Eps distance) are recovered from the selected tracking and
considered as cluster members. This process continues until
the Eps_neighborhood of all cluster member tracks are
recovered. The determined tracks are known as the members
of the first cluster and in fact are duplicate tracks which
are estimated by different sensors and are reported to FC.
The above process continues for the remaining of the non-
processed (non-clustered) tracks. At the end of the clustering
process, the number of formed clusters will be equal to the
number of targets in the surveillance environment, and the
members of each cluster will be duplicate tracks of targets.

In the second part of the proposed TTTA method, the mem-
bership degree of duplicate tracks of a cluster is calculated
separately for each cluster to solve the TF problem. Suppose
that U, = {xi(k|k), pi(k|k)|tracks of target t are reprot by
sensors} is the member tracks set of cluster ¢ (duplicate tracks
reported from the target 7). Thus, the membership degree of
each member track of this set is determined by the principle
of maximum entropy as follows [35], [36]:

o—%oprd (R0,i(k 1K), C1 1)
i=1,..n ©6)

i
u, = - ,
Loy | e d G jK1K).Cri)
]:
where C; ; represents the center of the cluster ¢ and is con-
sidered as follows for simplicity:

Crx =fCi (k= 1]k —=1)) (N

where d (fc,,,-(k|k), C,,k) indicates the Euclidean distance
between the track X;;(k|k) and the center of the cluster r.
n' denotes the number of duplicate tracks from the target,
which is equal to the number of sensors when the target is
located in the surveillance area of all sensors. Finally, o, is
the Lagrange coefficient known as the discriminating factor
and its optimal value is calculated as follows [35], [37]:
Ine

Qopt = —
min

, & =0.000001 (8)

Further, x; (k — 1 | k — 1) estimates the calculated track of
the track combination (TF) from the target ¢ in the previous
step (k-1). The above procedure is repeated for all clusters
independently.

B. TRACK FUSION

Further, x; (k — 1|k — 1) estimates the calculated track of
the track combination from the target 7 in the previous
step (k-1). The above procedure is repeated for all clusters
independently.

After solving the TTTA problem and determining the
duplicate tracks, it is possible to combine them and estimate a
unique set of tracks in FC. Given the determined importance
degree (weight) of duplicate tracks, their weighted combina-
tion is proposed for FC.

S k1K) = 2 G (k1)) ©)
Pk 1By = D7 [pr (k1) + (o 1K) = 2k 16)
X (& (1K) = & (k 10) ] (10)
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where x; (k | k) is used in step (k + 1) to estimate the center of
the cluster ¢. The above relationship must be repeated for all
targets (r = 1, ..., T). Algorithm 1 illustrates the proposed
algorithm for the TTTA and TF problems.

C. COMPUTETION COMPLXITY

As shown in Algorithm 1, the proposed method consists of
three main phases, 1) local tracks clustering, 2) determining
the membership degree of duplicate tracks and 3) tracks
combination. Assume tracking system contains n sensors and
in worst case scenario sensors have complete overlap. This
means that each sensor can sense all targets. Let assume that
T targets are exist in environment, the Dy set in worst case
includes m = (n x T) local tracks, which are reported to
FC. The clustering phase has a time order proportional to
O(T x m) for clustering m tracks. Each iteration of while loop
in Algorithm 1 yields a cluster for each target. The number of
repetitions of while loop is equal with number of targets and
in each iteration of loop, determining the Eps_neighborhood
of the cluster members has O(m).

Determining the membership degree of tracks is accom-
plished within two nested for loops, which outer loop repeats
no_of _clusters times and inner loop repeats n’ times that in
the worst case n’ is equal with the number of sensors (n).
This worst case occurs when all sensors sense all targets.
Furthermore, in worst case, order of calculating the member-
ship degrees of sensed tracks for each target is O(n). As a
result, the order of this stepis O ((n x T) x n) = O(T x n).

Finally, the combination of tracks is independently per-
formed for each target (cluster) in the last loop. This is
accomplished for T targets and in worst case, fusion of local
tracks of n sensors is performed with the order of O (T x n).
Therefore, the order of the proposed method is equal to
O(T x n?).

V. SIMULATIONS
In the present section three scenarios are suggested to evalu-
ate the proposed method compared to FTF [1] and Bayesian
minimum mean square error (MMSE) [38], [39]. In all
scenarios, it is assumed that local tracking on the sensors
are independently performed by FD-JPDAF [34] based on
received measurements, and the estimated status of targets are
sent to the FC for the combination. Additionally, the clutter
model is assumed to be spatially Poisson distributed with
known parameter A = 1 (the number of false measurements
per unit of volume (kmz)) [40].

For accurate evaluation, the root mean square error
(RMSE) criterion was calculated based on 100-runs of Monte
Carlo simulation.

RMSE = \/G — X + G —yme® (1)

where (X, y) and(xyye, Yirue) denote the estimated and true
target positions, respectively.

As mentioned in section III, the proposed method has just
one parameter (Eps) for tracks clustering. Having only one
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Algorithm 1 Fuzzy Density-Based Spatial Clustering Track
Association (FDBSC-TA)
Input: the local tracks state and covariance matrix
X (k1 k), py(klk)}
Output: global tracks state and its corresponding covariance
matrix {X; (k | k) . p: (k| k)}
Dunprocessed = Dy
no_of _clusters = 0
While (Dunprocessed # @) do

Arbitrary selectap € D

unprocessed
Dunprocessed = Dunprocessed -p
no_of _clusters + +
{p}addtOClMSternofoffclusters
Eps_neighborhood _set =
DetermineallEps_neighborhoodinD,fromp
9. For eachqfromEps_neighborhood_set do

PN LD =

10. Dunprocessed = Dunprocessed —q
11. qaddtoclustern,_of ciusters
12. add all Eps_neighborhood

q to Eps_neighborhood_set
13. End For

14. End While
15. Fort = 1to no_of _clusters do
16. Fori=1ton' do

17. membership ; is calculate via (6)
18. End For
19. End For

20. Fort = 1to no_of _clusters do
21. X (k| k) &p; (k | k) calculate based on (9) & (10)
22. End For

parameter is a strong point of proposed method against other
approaches that require setting of many parameters. To fix the
right values of this parameter, an exploration phase of trials
and errors have been performed. Let assume that 3 sensors i,
J» and k have sensed a target’s signals and reported its track
(position at specific point of time t) respectively as P;, Pj,
and Py to FC. Let assume that after fusion, FC calculated
target’s position at time ¢ as P. We found that, when the Eps
value according to relation (12) is set to the maximum dis-
tance between reported target positions by sensed sensors and
position of target reported by FC, FDBSC-TA is conducted to
more accurate results.

Eps = max dist{P, P;} (12)
leli,j k}

A. SCENARIO I

We considered an example with four targets with linear
motion and five sensors [1]. Figure 1 demonstrates this sce-
nario in which the lines indicate the placement of targets
in the surveillance environment of sensors and the sensors
overlapping. The models of motion and measurement of tar-
gets are defined by (2) and (3), so that the state transition
matrices F' and the nonlinear measurement matrices H are
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FIGURE 1. Four targets and five sensors in overlapping coverage
scenario [1].

as follows [37]:

1§ 0 O
0O 1 0 O
F=1o0 0 1 s (13)
0O 0 0 1
i 2 2
T e

The covariance matrices Qa2 is the system noise, which
is assumed to be Q; = (0.02%) km? (Q;; = 0, for i # j),
and all the measurement noise are assumed o, = 5m and
op = 0.1 mrad. The detection probability of all sensors is
assumed to be 0.95. Each sensor locally tracks targets in its
surveillance environment based on FD-JPDAF and reports
them to the FC. In addition, the bias of the sensors were
considered zero in this scenario.

Figure 2 shows the actual path of targets motions.
Table 2 presents the average RMSE of targets position from
the local tracks, and tracks resulted from the combination in
FC for FDBSC-TA, TFT, and MMSE. As observed, RMSE
for target 1 is the same for all cases due to tracking by
only sensor 1. Further, the RMSE of the track FC improved
remarkably for other targets with respect to local tracking
(the error rate has reduced by more than 60%). Comparing
the results obtained from FDBSC-TA and FTF methods indi-
cates the better performance and efficiency of the proposed
method. The combination of tracks based on MMSE criteria
yields better performance in comparison with other methods.
In fact, as mentioned in Section 1, fuzzy-based methods such
as FDBSC-TA and TFT are placed in suboptimal methods
category with respect to MMSE criteria [1].

B. SCENARIO 1I

For a detailed review of efficiency of the proposed method,
a scenario including three targets with constant motion
is considered in a multi-sensor environment with three
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FIGURE 2. Targets trajectories in scenario I.
TABLE 2. Position RMSE of local and FC tracks (m/s) in scenario I.
Target 1 Target 2 Target 3 Target 4
Sensor 2 21.17
= 2 Sensor 1 22.73 Sensor 4 | 23.39
E é Sensor 1 21.74 Sensor 3 21.78
= Sensor2 | 22.94 Sensor 5 | 23.81
Sensor 4 22.64
FTF 21.74 11.82 11.32 14.79
FDBSC-TA 21.74 10.25 9.96 12.54
MMSE 21.74 9.36 9.07 11.02
7200 I T T T
Target trajectory A Sensor1 <] Sensor2  [> Sensor3
7000
600 A
E 6600
_éu 6400 — —
6200 (— = |
6000
5800 I I I ! ! !
6000 6500 7000 7500 8000 8500 9000

X- position(m)

FIGURE 3. Target trajectories and sensors positions in scenario II.

complete-overlapping sensors. The initial state of targets was
(6000m, 60 m/s, 6000m, 20 m/s), (6000m, 60 m/s, 6500m,
0 m/s) and (6000m, 60 m/s, 7000m, —20 m/s). The state tran-
sition matrix F', measurement matrix H, covariance matrixes
Q2> and measurement noise are similar to the scenario I.

VOLUME 7, 2019

We would like to emphasize that all of the simulation param-
eters in these part are identical to parameters in scenario 1.
Figure 3 exhibits the motion of targets and the posi-
tion of sensors. The bias of sensors are equal to (0.4 km,
0.03 rad), (0.5 km, 0.08 rad), and (0.6 km, 0.04 rad) for
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TABLE 3. The sensors biases estimates of the proposed method.

Parameter True value Estimation Parameter True value Estimation
(km) (km) (rad) (rad)

n,, 0.4 0.394 ng, 0.03 0.0295

n,, 0.5 0.49 ng, 0.08 0.0787

n, 0.6 0.593 g, 0.04 0.0396

TABLE 4. Position RMSE of local and FC tracks (m/s) in scenario II.
Target 1 Target 2 Target 3
W Sensor 1 23.79 23.12 23.92
53 Sensor 2 24.63 24.06 24.02
b—‘ —

a Sensor 3 23.72 2297 23.13
FTF 13.14 12.77 12.94
FDBSC-TA 11.97 11.41 11.45
MMSE 8.92 8.27 9.58

sensors 1, 2, and 3, respectively. The probability of detect-
ing all sensors was 0.95. Each sensor locally and indepen-
dently processes the received measurements based on the
FD-JPDAF method without registration and reports its esti-
mates of tracks, then the FDBSC-TA performs the TTTA
and TF tasks. Finally, the bias of sensors in the FC are
corrected after estimating the target’s state (X;(k)) based on
Guo et al. [37] article.

R 1 n ~
r’]‘i = ; Zi:l (Zi,i - hs(xi (k))) (15)

where n® denote the number of tracks report by sensor s.

Table 3 represents the estimation of sensors bias.
The numerical results show the low error of estimation.
Table 4 clarifies the RMSE of targets position for local
tracks, and tracks derived from the combination in FC for
FDBSC-TA, TFT, and MMSE. By comparing the RMSE of
local tracks, it can be observed that the tracks of the sensor 3
have the lowest error rate while the tracks of the sensor 2 have
the highest error rate, which is due to the bias estimation error
of these sensors.

In addition, comparing the results of local tracking and
tracks derived from the combinations represent the improve-
ment of results in tracks derived from the estimation by
approximately 46%, 54%, and 65% for FTF, FDBSC-TA and
MMSE, respectively. Moreover, the results of the FDBSC-TA
and FTF methods represent an improvement of RMSE error
in the proposed method by approximately 10%. As in the
previous scenario, the error rate of FDBSC-TA and FTF
methods are worse than that of MMSE, which is related to the
sub-optimality of these methods according to the explanation
of the previous section.
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C. SCENARIO Il

Two maneuvering crossing targets are considered in last sce-
nario. The acceleration uses the additive term in the maneu-
vering model, which is given by:

% (k+1)=Fj (k) x; (k) +C; (k) w; (k) +Gj (k) v; (k) (16)

By adding the acceleration term to the state equation,
the MIE method [41] is used for local tracks estimation. The
state transition matric F is similar to the previous example,
where G and measurement matrix H are given by [36]:

T
G:<5/21 0 0) (17

0 0 §/2 1

1 0 0 0
H=<o 0 1 o) (18)

The matrix C in (16) is the same as G. The remaining
parameters were set at the same values as in the previous
scenario. The initial state vector and acceleration vector
parameters for the entire simulation are given in Table 5.
Figure 4 shows the actual path of targets motion and the
position of sensors.

In this scenario, the average probability of correct associa-
tion was employed as association performance criterion [7].

1 M K  Nij
Po=— BTG/ 19
MK Zi:l Zj:l Npublic(i) (19

where Np,pjic denote the total number of common targets, N, Z
denotes the number of tracks with the correct association at
the it Monte-Carlo run, M is the number of Monte-Carlo
runs, and K is the overall tracking time. Figures 5 and 6
show the comparison of the average probability of cor-
rect association for different angle biases and range biases,
respectively.
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TABLE 5. Simulation parameters in maneuvering crossing targets.

Acceleration(m/s?)

w2

é' Initial Initial -
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£ 5 N g 2 -

= @ & & 4 2

w
Target 1 (100,1000) (80,-100) 0,00 (5-10) (3,19) (5-15) | (0,-20)
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FIGURE 5. Average probability of correct association via different angle biases.

In Figure 5, the range biases of sensors (1, and n;,) are
set 0.5 km and the angle biases of sensors varies from 0 rad
to 1.7 rad. Against, in Figure 6, the angle biases of sensors
(ns, and ny,) are assumed fixed and set to 0.4 rad, and the
range biases of sensors varies from O km to 2 km. It is
observed from Figures 5 and 6 that increasing the biases of

VOLUME 7, 2019

sensors leads to the decrease of the average probability of cor-
rect association. The proposed method has higher flexibility
than the FTF, compared to increase of sensors biases.

In the second part of evaluating this scenario, the RMSE
of targets position for local tracks and tracks derived from
the combination in FC for FDBSC-TA, TFT, and MMSE are
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TABLE 6. Position RMSE of local and FC tracks (m/s) in scenario Ill.

Target 1 Target 2
Local
Tracks Sensor 1 284.61 263.13
Sensor 2 267.29 253.65
FTF 136.47 132.96
FDBSC-TA 133.08 121.53
MMSE 92.34 87.48

illustrated in Table 6. Biases of sensors 1 and 2, respectively
are considered (0.4 km, 0.03 rad) and (0.5 km, 0.08 rad) for
simulation results of Table 6. By comparing results, it can be
observed that the tracks of the sensor 2 have the lower error
rate than the tracks of the sensor 1. Moreover, the results of
the FDBSC-TA and FTF methods represent an improvement
of RMSE error in the proposed method by approximately 3%
and 8% for target 1 and target 2, respectively. Also, like the
previous scenarios, the combination tracks of the MMSE have
the lowest error rate.

VI. CONCLUSION

In this paper, a density-based clustering method for solving
TTTA problem in distributed multi-sensor tracking systems
is developed. In multi sensor tracking system, we faced with
the problem of multiple tracks for a target that may be
reported by different sensors. The proposed method employs
the maximum entropy approach for determining the degree
of fuzzy membership of duplicate tracks and subsequently
combining a target related tracks. One advantage of pro-
posed method is that it does not need to know the number
of targets as priori. This reduces computational load and
permits its use in real-time applications. Computational cost
of proposed method in worst case scenario is (T x n?). This
enables us to use proposed method in real time applications.

135980

Furthermore, this approach was able to be integrated with
other TF methods such as Dempster-Shafer or fuzzy-based
approach after performing the TTTA process. The results of
the simulations show the high performance of the proposed
method for solving the TTTA and TF problems in dealing
with different conditions such as sensors bias, the number
of different targets, in complete or incomplete overlapping
scenarios. As future works, it is planned to extend current
proposed technique by tree-based structures such as R-tree,
R*-tree or UB-tree.
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