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ABSTRACT Concrete pile foundations are the main load-carrying and aseismic structures for many large-
scale building structures. Their structural quality will have a great impact on the safety of building structures.
However, the imaging results still cannot easily meet practical demands in current ultrasonic Computerized
Tomography (CT) imaging tests of concrete structures. In view of the current difficulties, a combinatorial
optimization tomographic imaging method is proposed. First, a quadric broadening objective function
with a clear physical meaning is established according to the characteristics of ultrasonic propagation in
concrete. Then, a new CT imaging method of concrete pile foundation is formed by combining fast adaptive
optimization search ability of Genetic Algorithm (GA) with the global search control ability of Simulated
Annealing Algorithm (SAA). The numerical simulation experiments have shown that the usage of the correct
priori information and the excellent characteristic of the Simulated Annealing Genetic Algorithm (SAGA)
in searching for the global minimum value of the function have produced accurate and effective results
with stable numerical values. Finally, the imaging method is verified by experiment, where results show
that SAGA requires fewer iterations, has faster computation speed and gives more accurate imaging results
compared with the single GA.

INDEX TERMS Concrete pile foundation, ultrasonic CT, inversion imaging algorithm, combinatorial
optimization algorithm, SAGA.

I. INTRODUCTION
As one of the most important building materials at present,
concrete is not only cheap and easy to produce but also has
strong compression resistance, long life and high hardness.
Therefore, the use of concrete is increasing rapidly in civil
engineering. Given its importance in the load capacity and
seismic resilience of buildings, the structural quality of con-
crete pile foundations have a tremendous impact on the safety
of building structures [1], [2]. However, whether in-service
or newly completed, there are often concrete pile foundation
defects such as voids, inclusions and uneven strength in the
structure because of design or construction flaws, which pose
a difficult challenge for modern testing technologies [3]–[5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Huimin Lu.

Of the five traditional non-destructive testing (NDT)
methods, radiographic testing uses high-frequency and
high-energy particles to penetrate the concrete and deter-
mine internal conditions. However, these high-energy parti-
cles attenuate strongly in concrete, so radiographic testing is
not suitable for this purpose. Magnetic particle testing, eddy
current testing and penetration testing are also not suitable
because of their testing characteristics. Therefore, ultrasonic
testing has become the most common method for NDT of
concrete [6]–[8].

At present, according to the purpose of detection, the com-
mon testing methods for pile mainly include: static load
method, core drilling method, reflected wave method and
acoustic wave transmission method. The purpose of the
static load method is to solve the vertical compressive bear-
ing capacity of the pile, and analyze and calculate the late
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TABLE 1. Comparison of existing pile test methods.

settlement of the building according to the settlement of the
pile top in the vertical compression and static load test of
the single pile. The core drilling method is a micro-breakage
detection method. It can detect the quality and strength of the
concrete pile through detecting the core. The reflected wave
method is to load low-energy signals at the top of the pile. The
signal excitation mode is divided into steady-state excitation
and transient excitation. The speed-admittance curves are
used to evaluate the integrity of the pile [9], [10]. All of the
above methods evaluate the pile by local sampling and signal
characteristics, which have certain limitations.

However, the acoustic wave transmission method is a
method for judging the type of the pile defect and position
by detecting the changes of the acoustic parameters. The
method has been widely used in the detection of concrete
piles foundations.

Traditional acoustic wave transmission methods for
concrete pile foundations use the half-amplitude and the
inclined survey methods. They also combine probabilistic
and empirical methods to extract meaningful information.
However, these testing methods can only give qualita-
tive or semi-quantitative testing conclusions, depending on
the experience of testing personnel and being unable to
provide accurate defect quantification [11]–[13]. In recent
years, the combination of tomography and ultrasonic detec-
tion has achieved good detection results and been widely
used [14], [15]. Usually, the sound velocity of each unit can be
obtained one by one through forward calculation of acoustic
propagation path and inversion imaging. And then reliable
profile images can be provided after image superposition and
smoothing [16]–[19]. The characteristics of these methods
are shown in Table 1.

At present, acoustic propagation path tracing algorithms
are relatively mature, and high precision forward calculation
results can be obtained [20]–[22]. The key to tomographic
imaging results is the tomographic inversion algorithm,
which is also a hotspot of current research. The classical iter-
ative inversion algorithms, ART and SIRT, are local contin-
uous optimizations. For multi-extremum inversion functions,
only local solutions can be obtained, which often results in
inaccuracies. On this basis, some improved inversion meth-
ods have achieved better results in some aspects, but still
fail to meet the practical requirements in terms of inversion
calculation speed, stability and accuracy for concrete pile
foundation [23], [24]. Modern combinatorial optimization
algorithms have unique advantages. Depending on the appli-
cation, their respective advantages can be obtained by com-
bining two ormore algorithms, whichwill be conducive to not
only finding a global optimal solution and improving imaging
accuracy, but also improving the speed of the algorithm.

In this paper, we combine a Simulated Annealing
Algorithm (SAA) with a Genetic Algorithm (GA). The GA
offers faster and higher-precision combinatorial optimiza-
tion calculation, while the SAA is used to find the optimal
solution in the global scope and avoid premature conver-
gence and local optima. That is, by adding a reasonable
disturbance in the early solution of GA, we avoid local solu-
tions and approach the global optimal solution as soon as
possible [25], [26].

II. PRINCIPLE OF SAGA TOMOGRAPHIC INVERSION
ALGORITHM
Tomographic inversion algorithms originate from medical
CT imaging technology, also known as image reconstruction
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technology. The purpose is to obtain the internal profile
image of the detected object based on the path data obtained
by forward calculation, inversion calculation and velocity
distribution diagrams [27], [28]. However, it is very diffi-
cult to calculate the solution of the large linear equations
formed by forward calculation accurately because of the
large amount of data, incompatibility and ill-condition of
the equations. In order to facilitate the application of com-
binatorial optimization algorithms to solve the equations,
the augmented objective function F(x) of quadratic optimiza-
tion is constructed by using the minimum distance criterion
and the prior constraint criterion of ultrasonic propagation as
follows [29]:

F(x) = (T− AX)′ • D−11 • (T− AX)

+ µ(X− X0)′ • D2 • (X− X0). (1)

where X is the value to be evaluated. X0 is the slowness
vector of the prior model. A is projection matrix and D1
and D2 are diagonal matrices. The diagonal elements of D2
are the products of ultrasonic crossing unit length and its
velocity, while µ is the damping parameter, which deter-
mines the relative weight between the two terms on the right
side of equation (1). The objective function can be used to
improve the validity of the short-distance path information
and increase the weight of pixels with more ultrasonic path
traversal and more information to improve the validity of the
pixel information.

SAA was first proposed by Metropolis in 1953. In 1983,
Kirkpatrick proposed a stochastic optimization algorithm
based on the Monte Carlo iterative solution strategy, and
applied SAA to it [30], [31]. At present, this algorithm has
been applied in fields such as production scheduling, control
engineering, machine learning, neural networks and signal
processing [32], [33].

The probability expression of SAA according to the
Metropolis criterion is as follows:

Pr =

1, ENnew < ENold

exp(
ENold − ENnew

T
), ENnew ≥ ENold .

(2)

where Pr is the cooling probability. T is the temperature
value. EN is the internal energy at temperature T . This cri-
terion accepts a result that is inferior to the current solution
with a certain probability, which makes it possible to jump
out of the local optimal solution. Thus, it allows us to avoid
falling into a local solution in the search process, and leads to
the global optimal solution quickly [34].

GA is an adaptive algorithm proposed by Professor
Holland in 1975. It simulates the evolutionary law of the
biological world and is a randomized search method. The
algorithm has the characteristics of automatically adjusting
the search direction without definite rules and is widely used
in the fields of artificial intelligence, combinatorial optimiza-
tion, machine learning and adaptive control [35], [36]. The
GA is realized through the three cycles of selection, crossover
and mutation, as shown in Fig. 1. The condition for cycle

termination is to obtain the required population or the speci-
fied number of iterations. In Fig. 1, the cycle diagram starts
with a population. After the survival of the fittest, the optimal
part forms a new population and the population generates
subpopulations through crossover. In the process of evolution,
some individuals in the population also show mutation char-
acteristics, and then turn into a next generation population,
which becomes the beginning of a new cycle. Therefore,
GA makes the global search process more efficient [37].

FIGURE 1. Diagram of cycle computation for genetic algorithms.

However, when GA is applied to solving large equations,
problems such as local optima or premature convergence
still arise, and the solving process needs to be further opti-
mized. Therefore, we combine the characteristics of SAA and
GA, and introduce SAA into GA to form a combinatorial
optimization algorithm based on a Simulated Annealing
Genetic Algorithm (SAGA), which can avoid the above prob-
lems effectively. The relative individual fitness pi is calcu-
lated through equations (3) and (4):

pi =
efi/T

M∑
i=1

efi/T
. (3)

T = T0 • (0.99g−1). (4)

where M is the population size, which is determined accord-
ing to the requirements. fi is the fitness of the ith individual,
which generally takes the objective function value. T0 is the
initial temperature and g is the genetic algebra. The two
variables are determined according to the calculation require-
ments. T is the temperature, which can be carried out through
equation (4). The crossover probabilityPc andmutation prob-
ability Pm can be calculated automatically according to equa-
tions (5) and (6) according to the differences of individual
fitness. That is, the increase or decrease of the crossover and
mutation rates is determined according to the consistency of
individual fitness results. In addition, the algorithm can also
improve the search accuracy.

Pc =


k1(fmax − f )
fmax − favg

, f ≥ favg

k2, f < favg.
(5)

Pm =


k3(fmax − f ′)
fmax − favg

, f ′ ≥ favg

k4, f ′ < favg.
(6)

In the equations (5) and (6), fmax refers to the maximum
fitness of the population. favg is the population average fit-
ness. f refers to the larger fitness of the crossed individuals
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FIGURE 2. Structural diagram of CT imaging system.

of the father generation. f ‘ is the fitness of the individual to
be mutated while k1, k2, k3 and k4 are constants. Fig.2 is the
structural diagram of CT imaging system. The main steps of
SAGA algorithm are as follows [38], [39]:
Step 1: Give the initial temperature of SAA T0 and per-

form cooling according to equation (4). At the same
time, the initial population is generated to determine
the number of random individuals M and the total
genetic algebra g.

Step 2: Calculate the selected fitness fi of each individual
according to equation (3).

Step 3: Determine whether the termination conditions are
satisfied: (1) whether the total genetic algebra g
is reached; (2) whether T has been reduced to 0.
If either or both of these conditions have been met,
Step 7 is executed; if neither condition is met, Step 4
is executed.

Step 4: Roulette selection is adopted to select individuals
according to their selection fitness fi. The crossover
probability Pc and mutation probability Pm are cal-
culated according to equations (5) and (6). The
crossover and mutation operations are completed to
generate new individuals.

Step 5: We decide whether to accept the new individual
obtained in Step 4 depending on the probability
of the Metropolis criterion in equation (2). If so,
the corresponding father individual is replaced by

the accepted new individual, thus generating a new
population.

Step 6: Calculate the temperature T of the next cycle accord-
ing to equation (4), and return to Step 2 for execution.

Step7: Output the optimal solution that meets the
requirements.

III. NUMERICAL SIMULATION
A. MODEL ESTABLISHMENT
Simulation experiments has been performed using the finite
element software ABAQUS which can analyze a com-
plex system of solid mechanics and structural mechanics.
ABAQUS is also applicable for the modeling and analysis
of the process of ultrasonic wave propagation in solids. 2D
model of concrete structure is established as shown in Fig.3.
The whole testing area is 1000mm×980 mm. Section A in
Fig.3 expresses the low-speed zone and section B is the
high-speed zone. The section outside of A and B is concrete
materials. The ultrasonic velocity v of each section in the
model is calculated in accordance with equation (7). In the
equation (7), ρ indicates material density; E indicates mate-
rial modulus of elasticity; δ indicates material poisson’s ratio.
The velocity of each section can be calculated by using the
material parameters given in Table 2. After the calculation
process, the resultant ultrasonic velocity of concrete area is
3892.7 m/s, high-speed section 4165.3 m/s and low-speed
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FIGURE 3. Simulation concrete model by ABAQUS (Unit: mm).

TABLE 2. Material parameters in the simulation.

section 3869.2 m/s.

v =

√
E
ρ
·

√
(1− δ)

(1+ δ)(1− 2δ)
. (7)

B. SIMULATION DETECTIONG AND RESULTS ANALYSIS
In order to ensure strong penetrating power and small atten-
uation during the propagation process of ultrasound in the
concrete, testing frequency range is from 50 kHz to 500 kHz.
Gaussian signal is selected as excitation signal in the ultra-
sonic numerical simulation for concrete structure, and the
analog ultrasonic source is obtained as shown in the following
equation:

h(t) = sin(2π ft) · e(−((t−tp)·w)
2). (8)

where f is the central frequency; w is a pulse-width coeffi-
cient of Gaussian pulse; tp is the positional parameter of the
entire waveform in the transmitting cycle. Actual simulation
waveform and its spectrum are shown in Fig.4, and central
frequency of the signal is 50 kHz.

In the simulation detection, according to the sound velocity
of 3869.2 m/s in the low speed area, the wavelength of the
ultrasonic wave in the concrete is about 77.4 mm. Therefore,
according to the grid size should be less than 1/10 of the
wavelength, and the simulation mesh size is set to 7mm
[40], [41].

The simulation detectingmethod is illustrated in Fig.5. The
ultrasonic wave is excited from the left side of the concrete
model. There are totally nine excitation positions from top
to bottom labeled as T1-T9. On the right side, there are nine

FIGURE 4. Waveform and spectrum of excitation pulse.

FIGURE 5. The signal exciting and receiving method diagram.

receiving positions as can be seen in the figure (R1-R9). Thus
there are a total of 81 travel time data.

Firstly, the detecting model is divided into 9×9 pixel
units and forward computation is carried out by using the
test data in accordance with the classic curved ray tracing
method resulting in the calculation of all ultrasonic prop-
agating paths. Then GA and the SAGA inversion methods
are applied respectively to calculate the ultrasonic velocity
of each pixel unit. During the GA processing, the ideal con-
trolling parameters are obtained after repetitious experiments,
whereas the primary parameters are computed as follows: the
population size is 60; the crossover probability is 0.92; the
mutation probability is 0.05 and the genetic generation is 500.
The adaptive crossover probability and mutation probability
are applied in the SAGA. Furthermore the objective func-
tion provided in Equation(1) and SAA are introduced in the
SAGA to improve the stability and the convergence. Finally,
the CT results of ultrasonic velocity are obtained as shown
in Fig.6 and Fig.7 respectively.
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FIGURE 6. The ultrasonic CT results processed by GA. (a) Velocity chart; (b) Velocity contour map.

FIGURE 7. The ultrasonic CT results processed by SAGA. (a) Velocity chart; (b) Velocity contour map.

Fig.6(a) and Fig.7(a) illustrate the ultrasonic velocity
map of each pixel unit corresponding to its position in
the model, processed by GA and the SAGA respectively.
Fig.6(b) and Fig.7(b) express velocity contour map of each
pixel unit processed by both methods. These velocity contour
maps are used to estimate the defected region. The defect
positions can be clearly distinguished in the figures. The
circled area at the top section of the contour map figures is
the low-speed defect area and the area marked out at lower
section is the high-speed defect area. The results of the two
inversion algorithms were analyzed and compared through

Table 3. It can be seen from the table that the inversion
imaging results produced by the SAGA aremore accurate and
steady than the ones calculated by GA. The SAGA results are
also closer to the real ultrasonic velocity.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. PREPARATION OF PILE FOUNDATION SPECIMEN
The specimen design of the experimental concrete pile foun-
dation is shown in Fig. 8(a). The size of the specimen was
1200×300×1000 mm3. In order to facilitate the placement
of sensors to collect scanning data, two sound tubes with
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TABLE 3. Ultrasonic velocity inversion results of the Simulation model.

FIGURE 8. Diagram sketch of the concrete pile foundation specimen.
(a) Design drawing of the specimen; (b) Internal structure of specimen
before pouring; (c) Overall photo of the specimen after pouring.

a diameter of 50 mm were preset at position A. At the
same time, a high-speed defect and a low-speed defect were
preset in the middle part of the specimen. The sizes of the

defects were both 300×200×200mm3. The low-speed defect
in position B was a cavity, while the high-speed defect in
position C was a mortar block. The design strength of the
specimen was C25. Amodel of the specimen was constructed
by using wood, and then cement, medium-sized sand and
aggregate was poured in accordance with the conventional
concrete mixing ratio. The actual internal structure of speci-
men before pouring and overall photo of the specimen after
pouring are shown in Fig. 8(b) and Fig. 8(c). The position of
the sound tubes (A), the low-speed defect (B) and the high-
speed defect (C) have been marked in the figure.

B. EXPERIMENTAL PROCESS
The ultrasonic testing instrument used for the pile foundation
specimen is shown in Fig. 9. The center frequency of the
testing sensor was 50 kHz. The sensor collected the time of
sound travel from different measuring points in the sound
tube through transmission and reception, which provided data
for the imaging system. Before the experiment, the detection
area of the specimen was roughly divided into a grid of size
14×14, and then water was injected into the sound tube. The
transmitter and receiver sensors were placed at the measuring
points of the two sound tubes according to the position dis-
played by the depth markers, respectively. The sector scan-
ning mode was adopted and the scanning diagram is shown
in Fig. 10. The letter T in the figure represents the transmitting
sensor and letter R represents the receiving sensor.

FIGURE 9. Non-metallic ultrasonic testing instrument.

Fig. 11 shows the field test photo. The transmitting and
receiving sensors were both placed at the bottom of the two
sound tubes (i.e. the first test point) according to the grid
preset. After receiving the data from the first test point,
the receiving sensor was moved to the second test point
and we again sampled. Sampling was repeated until the last
test point at the top (the 14th test point), at which point the

VOLUME 7, 2019 132401



G. Wang et al.: Ultrasonic CT Imaging Method With Combinatorial Optimization Algorithm for Concrete Pile Foundation

TABLE 4. Measured data of travel time from each transmitting sensor to each receiving sensor. (unit: ms).

FIGURE 10. Sector scanning process.

transmitting sensor was moved upward to the second test
point. We sampled all the test point data at the receiving end
by the same method until the transmitting sensor reached the
top test point (the 14th test point) and data acquisition was
completed.

During the sampling process, one test point was sampled at
a time. Fig. 12 is the waveform recorded by the receiving sen-
sor at the 8th receiving position after the transmitting sensor
was excited at the 8th transmitting position. The time differ-
ence of recording the first wave is the time of sound travel at
the test point. In the actual test, 14 sectors were tested, with
14 test points for each sector, yielding 196 data points on
the time of sound travel. T1-T14 represent the 14 transmit-
ting positions of the transmitting sensor respectively, while
R1-R14 represent the 14 different receiving positions for

FIGURE 11. Field test photo.

FIGURE 12. Measurement waveform collected by receiving sensor.

each transmitting position, respectively. The waveforms of
all test points were recorded according to the process shown
in Fig.10, and the time of sound travel in each test point is
listed in Table 4. Therefore, the data in the table show the
time of sound travel when the ultrasound propagates from the
transmitting position to the corresponding receiving position.
For example, for T3 and R5, the data in the corresponding
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FIGURE 13. Mean-square deviation curves of the two algorithms.
(a) Single GA; (b)SAGA.

grid show that the time of ultrasonic wave travel is 0.2768 ms
from the T3 position to the R5 position.

C. PROCESSING AND ANALYSIS OF EXPERIMENTAL DATA
The GA and SAGA algorithms are used for the tomographic
inversion processing of the experimental test data, and the
imaging results were analyzed and compared.

The imaging convergence curves of the two algorithms for
the imaging process are shown in Fig. 13. It can be seen
from the figures that the mean square deviation of travel time
of the two inversion algorithms decreases gradually with the
increase of iteration times, and the travel time fitting degree
of the two algorithms are both very high. The fitting deviation
with the GA is 0.625% and 0.596% with SAGA. In terms of
computing speed, there is a certain number of populations in
each generation of GA, which results in a large number of cal-
culations for each generation, and more iterations and slower
computing speed. In SAGA, because of the addition of the
simulated annealing process, this process has an accelerating
effect on the whole search process. This makes the algorithm
easier to converge than GA, so the number of iterations is
smaller and the calculation speed is higher.

The imaging results after GA and SAGA processing of
the detected data are shown in Fig. 14. The area surrounded
by the dashed line boxes are defect areas. The location and
area of the defects is correctly reflected in both figures, but
the high-speed defect area in the lower half of the figure is

FIGURE 14. Processing inversion imaging result with the two algorithms.
(a) SingleGA; (b) SAGA.

obviously larger than the actual defect area in Fig. 14(a), and
there is a pseudo-defect area in the left of the figure center.
The imaging result with SAGA in Fig. 14(b) is better, and
the defect area is more consistent with the actual defect size.
In the two figures, the position of the high-speed defect (C) is
slightly deviated. It may be that when the high-speed mortar
block is placed, some deviations occur in the mortar block
due to the pouring, and the imaging result also deviates.

In addition, the calculated data of the two inversion algo-
rithms are compared in Table 5. The measured average sound
velocity of the specimen was 3515.8 m/s, and the background
sound velocity of the GA inversion was 3748.2 m/s, with a
relative error of 6.61%. The background sound velocity of
SAGA inversion was 3587.8m /s, and the relative error was
only 2.05%. From the relative difference of sound velocities
between the low-velocity defect area and the high-velocity
defect area and the background, the imaging results of SAGA
inversion are more pronounced and the defect properties are
easier to identify.
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TABLE 5. Comparison of calculation data for the two inversion algorithms.

V. CONCLUSION
In this paper, a tomographic inversion image reconstruction
technique based on SAGA is proposed based on practical
requirements of quality testing for concrete pile foundation
structures. By establishing the augmented objective function
of quadratic optimization and combining the fast adaptive
optimization search ability of GA with the control ability
of SAA to global search, the global optimal solution is cal-
culated quickly, and the reconstructed image of the detec-
tion area is obtained accurately through inversion. Numerical
simulations have shown that the inversion imaging results
calculated by the SAGAaremore accurate and steady than the
ones calculated by single GA under the same test conditions.
The inversion results for an experimental test data of pile
foundation specimen further show that compared with the
single GA calculation process and imaging results, SAGA not
only has fewer iterations and faster calculation speed, but also
reflects the abnormal areas more accurately and clearly, thus
facilitating the identification of the defects’ properties. The
results of this research have great application value in practi-
cal testing applications and structural safety assessment.
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