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ABSTRACT This paper presents a decoupled trajectory planning framework based on the integration
of lattice searching and convex optimization for autonomous driving in structured environments. For a
3D trajectory planning problem with timestamps information, due to the presence of multiple kinds of
constraints, the feasible domain is non-convex, so it is easy to fall into local optimum for trajectory planning.
And the solution space of this problem is so enormous that it is difficult to identify an optimal solution
in polynomial time. To address this non-convex problem, and to improve the convergence speed of an
optimization process, the approach based on lattice searching is adopted in consideration of the ability
to discretize driving environments and reduce the solution space. And the resulting path generated by
lattice searching typically lies in the neighborhood of the global optimum. But this solution is neither
spatiotemporally smooth nor globally optimal, so it is generally called the rough solution. For this reason,
a subsequent nonlinear optimization process is introduced to refine the rough trajectory (combined by
path and speed). The proposed framework is implemented and evaluated through simulations in various
challenging scenarios in this paper. The simulation results verify that the trajectory planner can generate
high-quality trajectories, and the execution time is also acceptable.

INDEX TERMS Trajectory planning, path planning, speed profile planning, lattice searching, Dijkstra’s
algorithm, nonlinear optimization.

I. INTRODUCTION
Research on autonomous vehicles has made considerable
progress during the past few decades. As the core module of
the autonomous driving system, the planning module takes
into account all information sensed by sensors, including
driving environments information and vehicle state, and then
generates a safe, spatiotemporally smooth, and feasible tra-
jectory to feed into the control module. Althoughmany excel-
lent trajectory planning algorithms are proposed, it is still
difficult to generate a good trajectory in real-time in dynamic
uncertain environments. And these methods are not generic
in all scenarios.

The associate editor coordinating the review of this manuscript and
approving it for publication was Okyay Kaynak.

A trajectory planning problem is a typical 3D constrained
planning problem by considering timestamps information
and spatial information. In structured environments, the 3D
feasible set is non-convex due to the constraints of traffic
rules, time consumption, nonholonomic and collision avoid-
ance. Hence, the following difficulties need to be dealt with
simultaneously: (1) how to reduce the computational com-
plexity of the planning algorithm to execute fast enough
to meet real-time requirement for planning and replanning,
which means we need to quickly generate a feasible solution
in an enormous solution space, (2) how to address spatiotem-
poral obstacles in 3D state space, which means the planning
problem is a highly non-convex problem, so it is extremely
difficult to ensure that the solution converges to a single,
global optimum, and (3) how to generate a spatiotemporally
smooth trajectory, which means the curvature profile, speed
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profile, acceleration profile, and jerk profile of a trajectory
are all continuous and smooth.

A. RELATED WORK
According to whether the configuration space is continuous
or not, trajectory planning techniques for autonomous driving
can be divided into two categories: sampling-based methods
and optimization-based methods. According to whether the
state space is decoupled or not, there are also two different
categories in trajectory planning techniques: direct planning
methods and decoupled planning methods. This paper will
review typical trajectory planning techniques in terms of
whether the state space is decoupled or not.

Direct methods attempt to find one optimal trajectory in
the Cartesian coordinate system or the frenet coordinate
system [1]. These planning methods perform searching or
optimization in spatiotemporal state space, which means they
can directly deal with dynamic obstacles. Ziegler et al. [2]
carefully design an objective function and constraints to
transform a nonconvex problem into a convex one. And they
introduce sequential quadratic programming (SQP) algo-
rithm to solve the nonlinear optimization problem. SQP is
often seen as a state-of-the-art technology to solve the nonlin-
ear programming problem [3], [4]. But the convergence speed
in SQP without a good initial value is not fast enough for
the real-time requirement for a medium scale optimization
problem.

A fast planning algorithm called the convex feasible
set (CFS) algorithm is proposed to solve optimization-based
motion planning problems with convex objective functions
and nonconvex constraints [5], [6]. The main idea of the
CFS algorithm is to transform the original problem into a
sequence of convex subproblems and iteratively solve sub-
problems until convergence, which makes the computation
faster than SQP and interior point method (IP). In [7], [8],
the constrained iterative LQR (CILQR) is proposed to effi-
ciently solve the optimal control problem with nonlinear
system dynamics and general form of constraints. And the
computation efficiency of CILQR is shown to be much
higher than the standard SQP solver. But, it is easy to fall
into a stationary point for these technologies without being
given a good initial solution. A trajectory is a one-to-one
mapping between the time domain and the space domain,
so these optimization-based techniques above usually sample
at equal time intervals. And positions of a vehicle in the
space domain are free variables. According to constraint
functions and performance index, an appropriate algorithm is
picked to optimize the decision variables. However, in a clus-
tered environment, the feasible region both in spatial domain
and temporal domain is usually highly non-convex. And the
convexification of the feasible region is not easy for them.
In addition, the generalization ability of these algorithms is
also a problem. For example, when the decision-making layer
issues an instruction, it is not easy to adjust the speed profile
or path flexibly for these algorithms.

Howard et al. [9], [10] develop an efficient and general
model predictive trajectory generation technology via the
shooting method and Newton’s method. Usually, a set of
terminal states are sampled in the state space, then Howard’s
technique is used to connect the initial state with the sampling
states while respecting nonholonomic constraints. At last,
the carefully designed cost function is used to select the best
trajectory with the lowest cost. Similarly, another widely used
method is the lattice searching approach. In [11], [12], a con-
formal spatiotemporal lattice with time and speed dimensions
is proposed to generate a feasible trajectory in a dynamic
scenario. And dynamic programming is adopted to search
for an optimal trajectory in a lattice. The highlight of lattice
searching is that the sampling resolution of a lattice must be
balanced between the time consumption and completeness.
The execution time increases as the resolution increases. And
if the resolution is reduced, a feasible solution can’t even be
found.

Different from direct methods, decoupled methods reduce
the dimensions of the state space and perform planning in two
2D state space separately. In Werling et al’s method [1], they
generate lateral and longitudinal trajectories using quantic
polynomials versus time, which ensures continuous speed
profile and acceleration profile. However, this method may
lead to frequent swerving of a vehicle and cannot guarantee
the optimality of the generated solution.

Impressively, another popular decoupled method is the
path-speed decoupling method which plans path and speed
profile, respectively. Path planning typically takes static
obstacles into consideration, and then a speed profile is
generated based on the generated path. Two representative
methods are A* search [13] and random sampling-based
method that mainly refers to the rapidly-exploring random
tree (RRT) [14], [15]. These two classes of methods usu-
ally search in a grid map or sample in the configuration
space to generate a continuous path. For graph search-based
methods, the resulting paths are not smooth, which means
the subsequent smoothing process should be employed to
make the path meet kinodynamic constraints. For random
sampling-based methods, the resulting paths tend to be jerky
and redundant, which means the subsequent smoothing pro-
cessing is also introduced.

Still path-speed decoupling, in [16], [17], polynomial spi-
rals are used to solve the two-point boundary value problem
in order to generate a path that satisfies nonholonomic con-
straints, and then the trapezoidal velocity profile is employed
for the longitudinal velocity profile generation. This reactive
trajectory planning method can meet the real-time require-
ment, but it cannot guarantee the trajectory is globally opti-
mal. At the same time, the speed profile is not flexible enough
to adapt to complicated scenarios. This method sampling in
state space only specifies a finite set of motion primitives,
which reduces the motion potential of vehicles. To overcome
these shortcomings, Xu et al. [18] propose a two-step plan-
ning framework. Firstly, they sample separately in posture
space (x, y, θ , κ) [24] and speed space, then search for a rough
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TABLE 1. Comparison of trajectory planning methods.

path and a rough speed profile, finally enter the optimization
step to optimize the trajectory. However, motion primitives in
their work are spirals which are not good choices compared
to polynomials in terms of computational complexity, and the
subsequent optimization does not guarantee the trajectories
satisfy nonholonomic constraints and sideslip constraints.

In Lim et al.’s method [4], they sample some vertices in
frenet coordinates and the Space-Time coordinates, respect-
tively, and then use dynamic programming to search a rough
path, and use the Hybrid A* algorithm [23] to search the
rough speed profile. Finally, SQP is introduced to optimize
the rough trajectory generated by the decoupled method
in [4]. In [19], a combination of dynamic programming and
spline-based quadratic programming is proposed to construct
a scalable and easy-to-tune framework to handle traffic rules,
obstacle decisions and smoothness simultaneously. This plan-
ner searches path and speed profile respectively, and then
optimizes path and speed profile, respectively. The above
methods can make the solution jump out of a stationary point.
Simultaneously, the optimization process in these methods
makes the solution close to the globally optimal solution,
and also makes the trajectory smoother than the untreated
trajectory. However, the imperfection in their work is that
they ignore the curvature constraints during the optimization
process, which makes their algorithms not trustworthy algo-
rithms for the trajectory tracking module.

For the sake of clarity, we compare some of the con-
siderable features of direct methods and decoupled meth-
ods, including optimality, mobility, completeness, spatial
smoothness, temporal smoothness, real-time performance,
driving environment, flexibility, curvature constraints and
state space, which can be seen in Table 1. Optimality rep-
resents the ability of an algorithm to find an optimal solution
in a non-convex space. Among these methods, the solution
generated by only the optimization-based technologies is
easy to fall into a stationary point, so the optimality is locally

optimal. As for the sampling-based technologies, their solu-
tions are generally located in the neighborhood of the global
optimum, so the optimality is suboptimal. The mobility of an
algorithm is determined by whether the motion potential of a
vehicle is restricted or not. Some algorithms [9]–[12] specify
the values of the kinematics and dynamics parameters of a
vehicle (i.e., special wheel angles, speed, and acceleration),
which may reduce the motion performance of a vehicle,
so the mobility is also one of the algorithms’ considerations.
In [9]–[12], [16], [17], motion primitives are generated
according to certain predefined rules, so the mobility is low.
Completeness ([37], [45]) indicates the ability of an algo-
rithm to find a feasible solution in the solution space. Spatial
smoothness is determined by whether the heading profile and
curvature profile of a trajectory are continuous and smooth
or not. Temporal smoothness indicates the characteristics of
the speed profile, acceleration profile, and jerk profile of
a trajectory. Driving environments of an autonomous vehi-
cle are basically divided into free environments (FE) and
structured environments (SE). Different algorithms are devel-
oped depending on the specified environment. Flexibility
indicates the ability of an algorithm to adapt to different
driving scenarios (i.e., following, parking and lane changes).
Considering the computational complexity, some algorithms
(i.e., [4], [18], [19], [35]) ignore the curvature constraints
to improve the convergence speed of a trajectory. The state
space term indicates whether the planning space is discrete or
not. In general, some algorithms [9]–[12] perform planning in
discrete state space, and some algorithms (i.e., [2], [5]–[8])
perform planning in continuous state space. But decoupled
algorithms (i.e., [4], [18], [19], [35]) usually prefer to perform
planning in both discrete and continuous state space accord-
ing to our observations.

To sum up, both direct methods and decoupled meth-
ods often use sampling-based technologies to discretize the
solution space, and use optimization-based technologies to
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generate a continuous and smooth solution. However, direct
methods search in the spatiotemporal lattice or transform a
spatiotemporal planning problem into an optimization prob-
lem to generate a feasible trajectory, so static and dynamic
obstacles can be considered at the same time. But, if a good
initial solution is not given, or the objective function and
constraints are not addressed subtly, it is easy to fall into
local optimum, and the convergence speed of the algorithm
may not be satisfactory. Moreover, the resolution of the spa-
tiotemporal lattice cannot be too high due to the planning
in 3D space, and the trajectory generated by lattice is not
spatiotemporally smooth enough. For decoupled methods,
they usually transform amedium scale searching or optimiza-
tion problem into two small scale searching or optimization
problems, which greatly reduces the computational complex-
ity of the trajectory planner. Inevitably, static and dynamic
obstacles are considered separately in the path planning step
and the speed planning step, whichmay result in a suboptimal
trajectory. Simultaneously, there are too many parameters to
tune in decoupled methods, which makes the adjustment of
parameters become a problem.

And our conclusion is that there is currently no univer-
sal algorithm that can adapt to multiple scenarios while
meeting all the constraints and requirements in Table 1 in
structured environments. Short-sighted, locally optimal,
incomplete, and inflexible imperfections are distributed sep-
arately in current algorithms as shown in Table 1. So devel-
oping a generic, real-time, flexible, and comprehensive algo-
rithm is an important research topic for trajectory planning.

B. CONTRIBUTIONS
Based on related work, and in order to solve the trajectory
planning problem in real-time for autonomous driving in
structured environments, we propose a novel decoupled tra-
jectory planning framework which decouples a 3D planning
problem into two 2D planning problems. Firstly, we perform
path searching and path post-optimization. Then according to
the optimized path, we perform speed searching and subse-
quent speed optimization. Prominently, a feasible solution in
discrete configuration space can be quickly searched by the
lattice searching step and be fed to the nonlinear optimiza-
tion step. With lattice searching, nonlinear optimization can
quickly converge to an optimal and continuous solution with
just several iterations. The main contributions of this paper
are summarized as follows:
• A novel decoupled trajectory planning framework we
developed combines the advantages of optimization-
based methods and sampling-based methods. For
optimization-based methods ([2], [5]–[8]), they can
guarantee sufficient smoothness, while sampling-based
methods ([16], [17], [25], [26]) focus on real-time and
flexiblity. The highlight of the framework achieves a
good balance between constraints (i.e., curvature con-
straints, collision avoidance constraints and traffic rule
constraints) compliance and requirements (i.e., optimal-
ity, smoothness, real-time performance, and flexibility)

satisfaction through the combination of methods. Com-
pared with the methods in [2], [5]–[8], the decoupled
method in this paper can jump out of a stationary point,
reduce the number of iterations, and enhance the flex-
ibility. And the decoupled method also improves the
smoothness and completeness in comparison with the
methods in [16], [17] and [25], [26]. Hence, this tra-
jectory planner can quickly generate a spatiotemporally
smooth and kinematically-feasible trajectory.

• We introduce a local, continuous method to refine
the rough path generated by lattice searching. Refer-
ence [19] transforms a path optimization problem into a
quadratic programming (QP) problem. And the Simplex
algorithm is used for path optimization in [18]. In [4],
SQP is introduced to optimize the rough trajectory.
These methods also smooth the path or trajectory while
avoiding collisions. However, there are no curvature
constraints added to the path or trajectory optimization,
which may make the generated path or trajectory not
satisfy the nonholonomic constraints. Hence, in this
paper, we consider the path optimization problem as
a nonlinear programming (NLP) problem and add the
curvature constraints for the path optimization step in the
frenet coordinate system. The highlight is that different
from the work in [2], [6]–[8] and [31], the rough path
is fed to the NLP problem as a hot start in this paper,
which ensures fast convergence and prevents a local
optimism. And another novelty is that optimization can
be performed over lateral offset in this NLP problem and
curvature can be calculated by differences of the frenet
waypoints.

• We formulate the speed optimization problem into a
standard QP problem which optimizes the longitudi-
nal station for all waypoints along the predefined time
domain in urban environments. Unlike the spline QP
speed optimizer in [19] and the non-derivative Simplex
algorithm speed optimizer in [18], we optimize the deci-
sion variable s = [s1, s2, ..., sn]T that can be mapped to
the fixed timestamps, which can ensure that the speed
profile meets the kinematic constraints, dynamic con-
straints, and temporal smoothness requirements. The
work in [31] directly models the speed optimization
problem as an NLP problem and does not provide good
initial value for optimization. Compared with the work
in [31], our work provides a rough speed profile as
the initial value for QP, so the number of iterations
of the algorithm is much less than that in [31]. And
because of the existence of the speed lattice searching,
our algorithm can guarantee global temporal optimal-
ity. In addition, compared with the trapezoidal linear
velocity profile in [9], [10] and the smooth trapezoidal
velocity profile in [16], [17], the speed planner we devel-
oped does not specify the values of speed and accelera-
tion. Impressively, we optimizes the speed according to
the objective function and constraint functions, which
makes the speed planner can adapt to different driving
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FIGURE 1. The decoupled trajectory planning framework.

scenarios, and flexibility and realtime performance are
guaranteed.

This paper is organized as follows. The algorithm
frame-work is introduced in Section II. The implementa-
tion details of the framework are presented in Section III,
which includes the following subsections: rough path search-
ing step, NLP path optimization step, rough speed profile
searching step and QP speed optimization step. Section IV
explains the settings of simulations, presents four cases of
different scenarios and analyzes the performance of the pro-
posed algorithm framework in detail. Section V summarizes
the contributions and discusses future work.

II. TRAJECTORY PLANNING FRAMEWORK
The decoupled trajectory planning framework is shown
in Fig. 1. The core parts of this framework are path lattice
searching, path optimization, speed profile lattice searching
and speed profile optimization. In preprocessing, we convert
the host vehicle information (i.e., pose, speed, acceleration,
and jerk) and the driving environment information (i.e., obsta-
cles information) into frenet coordinates fromCartesian coor-
dinates. And the centerline of a lane approximately parame-
terized by arc-length is used as a reference line for planning.
In the path searching step, we sample in the frenet coordinate
system along a lane. And the sampled poses form vertices of
a weighted directed acyclic graph (DAG), then the path edges
(motion primitives) are generated using the method described
in [20]. Kinematic constraints, nonholonomic constraints,
obstacle avoidance constraints, smoothness performance, and
traffic rules constraints constitute the edge weights of the
DAG. Finally, Dijkstra’s algorithm is picked to find the
shortest path to generate a kinematically-feasible, relatively
smooth, collision-free path in the non-convex spatial space.
In order to optimize the path to meet the spatial smoothness

and comfort requirements, we model the path optimization
problem into an NLP problem with the quadratic objective
function and nonlinear constraint functions. The objective
function is a linear combination of smoothness and lateral
offset from the reference line. And the constraints include
boundary value constraints, nonholonomic constraints (cur-
vature constraints) and obstacle avoidance constraints.

During speed profile searching, the trajectory of the ego
vehicle and predicted trajectories of obstacles are projected
in the Station-Time domain, which forms a non-convex 2D
space. After the preprocessing, the speed profile lattice is
constructed in the s-t domain. After that, based on the weights
which are composed of temporal smoothness and obstacles
collision risk, the rough piecewise speed profiles are found
using Dijkstra’s algorithm. However, the speed profiles are
composed of piecewise continuous lines, so it is not tem-
porally smooth. In order to improve the smoothness of the
speed profile, we model the speed optimization problem into
a standard QP problem, which is much faster than an NLP
problem with nonlinear constraints.

III. METHODOLOGY
A. PATH SEARCHING
The frenet coordinate system [1], [4], [20] is a popular tech-
nology in the field of autonomous driving because it has an
excellent ability to well characterize the curve roads, which
brings great convenience to the local planning. In the frenet
coordinate system, we use line segments, arcs, polynomial
curves, and Euler spirals to connect a series of waypoints.
Finally, a smooth reference line is built along a lane based on
these curves. The above processing refers to the work of [21]
and the OpenDRIVE1 map format. Reference [22] presents
a simple and efficient technique to generate approximately
arc-length parameterized spline curves that closely match
the reference line of a lane. According to our experience,
the length of each approximately arc-length parameterized
spline curve needs to be selected reasonably. If these seg-
ments are too dense, this performance will consume a lot
of space to store the coefficients of arc-length parameter-
ized spline curves and the query time will be increased in
the subsequent lookup of the coefficients table. And if the
cubic spline segments are too sparse, this characteristic will
increase the matching error with the reference line of a lane.

Sampling in the frenet coordinate system is a resolution
complete [9] path planning technique by efficient discretiza-
tion of the spatial domain. Hence, we can quickly find a
feasible solution using graph-search-based methods. Next,
considering the continuity and smoothness of the path, we use
a class of curves to connect the two sampling states.

1) MOTION PRIMITIVES
Polynomial spirals [12], [16]–[18], [24] are popular curves
for path planning, which possess as many degrees of freedom
as necessary to meet any number of constraints. However,

1http://www.opendrive.org/
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we have to use numerical methods to solve the non-trivial
constraints and the well-known Fresnel integrals as depicted
in [24]. Usually, we can utilize a lookup table which is an
efficient means of storing initial guesses for the parameters
to make the numerical calculations converge quickly to a
relatively accurate solution, but spirals are not as good as
polynomials in terms of the computational efficiency. The
cubic polynomials take only four parameters to represent a
spatially smooth path. Hence, the cubic polynomial curves
have a simple form and good performance in solving this
two-point boundary value problem. Naturally, the motion
primitives are generated by connecting sampled endpoints
using the cubic polynomials as depicted in [20], [25], [26].
As shown in (1), the function describing the relationship
between the arc length s along a lane and the lateral offset
ρ is designed to smoothly connect two states in the frenet
coordinate system.

ρ(s) = a0 + a1s+ a2s2 + a3s3, s ∈ [s0, sf ] (1)

The boundary conditions are described as (2) [26], [27].
We can easily convert these differential constraints into a
matrix expression, and the coefficients of the cubic polyno-
mial can be determined as (3).

ρ(s0) = ρ0
ρ(sf ) = ρf
ρ′(s0) = tan θs0
ρ′(sf ) = tan θsf (2)

1 s0 s20 s30
1 sf s2f s3f
0 1 2s0 3s20
0 1 2sf 3s2f



a0
a1
a2
a3

 =


ρ0
ρf

tan θs0
tan θsf

 (3)

In (2) and (3), the start point state is [s0, ρ0, θs0 ]
T , and the

endpoint state is [sf , ρf , θsf ]
T . In this paper, θ represents the

heading of a vehicle in the Cartesian coordinate system, θs
represents the heading in the frenet coordinate system, and θr
represents the heading of the projection point of the rear axle
midpoint of a vehicle in the reference line. The geometrical
relationship between them can be expressed in (4).

θ = θs + θr (4)

The samplingmechanism including the interval distance ds
between rows of endpoints and the total station horizon smax
along a lane is similar to the method in [28]. The character-
istics of the sampling points are usually related to the road
structure, the host vehicle’s speed and the decisions of behav-
ior planning. In reality, we need to adjust parameters to make
them adapt to different scenarios, and this processing can
increase the expressiveness and completeness of the solution
space of our planner. For example, higher speed might need
a longer sampling interval than lower speed, and a straight
lane requires a longer sampling interval than a curved lane.
As shown in Fig. 2 and Fig. 3, we construct a path lattice by
sampling in the frenet coordinate system.

FIGURE 2. Path lattice in the frenet coordinate system. Blue vertices
represent the sampled poses. The red motion primitives are cubic splines
connecting vertices, and the dotted green line is the reference line of a
lane.

FIGURE 3. Path lattice in Cartesian coordinates. The green vehicle shows
the current vehicle pose. Green vertices represent the sampled offset
poses of the reference line along a lane, and ds represents the
longitudinal interval between the sampled vertices.

2) COST FUNCTIONS
A feasible path needs to be found in the path lattice.
According to Ziegler et al’s work [11], they observe the
difficulty of employing heuristic search algorithms, because
it’s hard to estimate the cost terms of smoothness and
collision risk. Hence, they propose an exhaustive rather
than heuristic search algorithm to find the optimal path.
In this paper, we also regard the state lattice as a DAG
and employ Dijkstra’s algorithm to search the optimal path
based on the cumulative costs of motion primitives in the
lattice.

When we construct a path lattice using motion primitives,
the weights of motion primitives are also calculated. The
total weights of each edge are a linear combination of the
smoothness term, the lateral offset from the reference line
term, and the obstacles collision risk term, as shown in (5).

cpath = csmooth + cref + cobs (5)
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Curvature can characterize the smoothness of a curve,
so the smoothness cost term function is designed as the
integral of the square of curvature along with the longitudinal
station, which is described as (6).

csmooth = wsmooth

sf∫
s0

κ(s)2ds (6)

It is difficult to get an explicit expression of the curva-
ture function about the arc-length parameter, and in order to
facilitate the calculation of the computer, we use numerical
methods to calculate the integral of curvature’s square. For
a segment of a curve, we sample N points evenly on it,
and an approximate calculation of the integral csmooth can be
expressed as the finite sum, which is shown in (7).

csmooth =
wsmooth
N

N∑
n=0

κ2i (7)

The curvature function of a curve is defined as:

κ=
x ′y′′ − y′x ′′

3
√
x ′2 + y′2

(8)

The curvature can be approximated using the finite differ-
ences of the sample waypoints as shown in (9).

κi ≈
x ′iy
′′
i − y

′
ix
′′
i

3
√
x ′2i + y

′2
i

(9)

where,

x ′i ≈
xi+1 − xi

t

x ′′i ≈
xi+2 − 2xi+1 + xi

t2

y′i ≈
yi+1 − yi

t

y′′i ≈
yi+2 − 2yi+1 + yi

t2
(10)

Because the coordinates of the cubic polynomials are rep-
resented using frenet coordinates (s− ρ), so we need to con-
vert the coordinates into the Cartesian coordinates (x − y) to
calculate the curvature using (9). The coordinates conversion
function is given by [18] as shown in (11).

x(s, ρ) = xr (s)+ ρ cos(θr (s)+ π/2)

y(s, ρ) = yr (s)+ ρ sin(θr (s)+ π/2)

θ(s, ρ) = θr (s)

κ(s, ρ) = (κr (s)−1 + ρ)−1 (11)

where θr (s) represents the heading angle of the reference
line, xr (s) and yr (s) represent the Cartesian coordinates of
the reference line, and κr (s) represents the curvature of the
reference line. In this paper, we define the lateral offset ρ to
be positive on the left side of the reference line and negative
on the right side.

Usually, the trajectory of the vehicle should follow the
reference line of a lane, which means this maneuver can well
comply with the traffic rules, and it is also a relatively safe
driving strategy. The lateral offset ρ from the reference line
is then added to the total edge weights as a penalty. cref can
also be expressed as the finite sum as shown in (12).

cref =
wref
N

N∑
n=0

(ρi − ρref )2 (12)

where ρref represents the lateral offset of the reference line in
s− ρ. In this paper, the offset ρref of the reference line in the
rightmost lane is 0.0 m.

One method to calculate the collision risk with obstacles is
to calculate the distance to all obstacles [18]. However, this
strategy will increase the computational complexity because
the distance from all points on the path to all obstacles
needs to be calculated one by one. The computation expense
is O(NM ), where N is the number of the path sampling
points, M is the number of obstacles. Another strategy is
to assign the value of collision risk to be False or True,
which depends on whether there is a collision maneuver for
a path [29]. However, for path candidates with no collision,
it is obvious that the path closer to obstacles has higher
collision risk, which is ignored by this strategy of the binary
collision risk index. Therefore, this paper introduces the con-
volution collision risk indicator, which is successfully used
in [25], [26].

The value of a collision check is given by [26]. They
penalize a path that passes solid lane lines by assigning the
value of the collision check to be 0.5, and they assign 0.2
to a path which passes dashed lane lines. If a path does not
pass any obstacle and road boundary, the value is defined as
0.0. Instead, if a path hits an obstacle or road boundary the
value is defined as 1.0. The function of collision check can
be described as (13).

r[i] =


1.0 if (passing obstacles)
0.5 if (passing solid lane lines)
0.2 if (passing dashed lane lines)
0.0 if (no collision)

(13)

In order to reasonably express the security cost term,
the risk index of a path is calculated by discrete Gaus-
sian convolution [25] combined with collision checks as
follows.

cobs[i] = wobs

nρ∑
k=1

r[k]g[i− k] (14)

where,

g[i] =
1

√
2πσ

exp(−
i2

2σ 2 ) (15)

where i is the index of each candidate path, nρ is the number
of endpoints sampled laterally, and σ is the standard deviation
of the Gaussian kernel g[i]. The value of σ indicates the
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influence scope of collision risk because a collision path
poses a collision risk to the nearby paths. Usually, the larger
the value is, the higher the collision risk of an adjacent path
will be.

In order to perform the collision check in the path planning
step, the speed profile of the previous planning cycle is used
to assess potential collisions with dynamic obstacles. Since
the planning frequency is high enough, it is reasonable to use
the speed profile of the previous planning cycle to perform the
collision check of the trajectory in this cycle. Another strategy
for performing the collision check with dynamic obstacles is
the path-speed iteration method [18]. This method iteratively
optimizes the path and speed until the convergence condition
is met. However, in the search step and the optimization step
of the trajectory, the computational complexity is already
high enough due to the existence of the collision check,
and the mutual conversion of the coordinates between the
Cartesian coordinates and the frenet coordinates. Therefore,
for real-time considerations, the path-speed iteration method
is not selected.

The short-term target point cannot be determined explic-
itly in on-road driving, and because of the existence of the
smoothness cost term, the offset from the reference line cost
term, and the collision risk cost term, it is difficult to design
the heuristic function for lattice searching. Hence, we use an
exhaustive rather than heuristic search, as described in [12].
In this paper, Dijkstra’s algorithm is adopted to find the
shortest path to generate a kinematically-feasible, relatively
smooth, collision-free path in the nonconvex spatial space.
Unlike the traditional Dijkstra’s algorithm, we do not specify
a target pose in advance, but design a TARGET list to store
the sampled target poses set. When poses (endpoints) in the
list are all expanded, the pose with the least cost is selected
as our short-term target pose. The feasible path generated
by the lattice searching looks smooth, but we find that the
curvature profile has step changes and is jerky after calculat-
ing the curvature of the path. Considering the above factors,
the smoothness performance is very poor, which brings great
difficulties to the trajectory tracking module. In addition,
according to the sampling mechanism, the heading of each
endpoint of a path segment is always consistent with the
reference line. This sampling mechanism limits the motion
potential of the vehicle. And when multiple such motion
primitives are connected, the heading of the path generated
by lattice searching possibly changes frequently. Therefore,
the generated path does not meet the smoothness, optimality
and mobility requirements and also violates human driving
habits.

B. PATH OPTIMIZATION
1) OBJECTIVE FUNCTION
The lattice searching can generate a continuous path, but the
curvature profile of the path may be not continuous, as shown
in Fig. 5 (a), (b). Therefore, an optimization process of the
rough path is introduced, which makes the final path not
only meet internal and external constraints but also smooth

enough for an autonomous vehicle to track. The optimal path
is defined as the one that minimizes the cost function which
can be expressed as the finite sum as follows

j(ρ1, ρ2, · · · , ρNs ) =
Ns−3∑
i=1

L(ρi, ρ̇i, ρ̈i,
...
ρi)e (16)

with

L = w1(ρ′i )
2
+ w2(ρ′′i )

2
+ w3(ρ′′′i )

2
+ w4(ρi − ρr (si))2

where ρr (si) is the function of the rough path generated by
the path lattice searching. ρ′i , ρ

′′
i and ρ′′′i are related to the

frenet heading angle, the first derivative and second derivative
of the frenet heading angle in the frenet coordinate system.
The objective function has a good balance between spatial
smoothness and followability to the rough path.

To numerically calculate the objective function, the path is
approximated by Ns waypoints which are sampled at equidis-
tant longitudinal station distance as follows:

si = s0 + ie, i = 0, 1, · · · ,Ns (17)

where e is the sampling step size. The station derivatives of
ρ are approximated by differences of the sampling waypoints
as follows:

ρ′i ≈
ρi+1 − ρi

e

ρ′′i ≈
ρi+2 − 2ρi+1 + ρi

e2

ρ′′′i ≈
ρi+3 − 3ρi+2 + 3ρi+1 − ρi

e3
(18)

2) CONSTRAINT FUNCTIONS
The optimal path must minimize the objective function (16),
but at the same time, the optimization needs to obey a set
of internal and external constraints. Internal constraints are
introduced by vehicle kinematics and dynamics limitations.
In path optimization, internal constraints include curvature
constraints which are brought by Ackerman steering geom-
etry. Curvature constraints can be expressed as (19), and their
approximate numerical calculations are shown as (9).

|κi| ≤ κlim (19)

External constraints are imposed by the driving corri-
dor [3], obstacles, and boundary conditions. Unlike the work
in [3], [30], we won’t transform obstacles into the convex
polygons, which means we don’t need to convert non-convex
obstacles into the convex constraints. Because the path lattice
searching will find a feasible solution close to the optimal
solution in a non-convex feasible domain, we only need to
use this solution as the initial value to iterate several times to
converge to an optimal solution.

In order to perform the collision check, we have to consider
the shape of the ego vehicle, so we introduce the vehicle
discs as shown in Fig. 4. We decompose the ego vehicle into
three discs with a radius of rveh along the longitudinal axis
of the vehicle. The center of one of the discs coincides with

VOLUME 7, 2019 130537



Y. Meng et al.: Decoupled Trajectory Planning Framework

FIGURE 4. The vehicle discs containing the host vehicle body.

the midpoint of the rear axle of the vehicle, and the distance
between the centers of the discs is d . The red points represent
centers of the discs. Orange curves represent the frenet frames
in the lane. The blue points represent the projection points of
the red points in the frenet coordinate system.

In this paper, the coordinates [si, ρi]T of the center point
of the rear axis are given by the localization module, so the
center coordinates of the remaining two discs can be obtained
using approximate numerical calculations as follows:

s2i = si + d cos(θ (si)− θr (si))

ρ2i = ρi + d sin(θ (si)− θr (si))

s3i = s2i + d cos(θ(si)− θr (s2i))

ρ3i = ρ2i + d sin(θ (si)− θr (s2i)) (20)

Collision avoidance constraints can be written as:

(si − sj)2 + (ρi − ρj)2 > (rveh + robs)2

(s2i − sj)2 + (ρ2i − ρj)2 > (rveh + robs)2

(s3i − sj)2 + (ρ3i − ρj)2 > (rveh + robs)2 (21)

where the frenet coordinate of the jth obstacle is [sj, ρj]T . robs
represents the expansion radius of an obstacle. For dynamic
obstacle avoidance constraints, the longitudinal trajectory
of the host vehicle is projected into the S-T domain based
on the speed profile of the previous cycle. Then, according
to the mapping relationship of S-T, the time stamp ti corre-
sponding to station si is obtained, and finally the obstacle
coordinate [sj, ρj]T corresponding to the time stamp ti is
obtained according to the predicted trajectories. Therefore,
the collision avoidance constraints of dynamic obstacles are
also shown in (21). These constraints create 3noNs inequa-
tions, where no is the number of obstacles. At the same
time, the vehicle cannot pass the boundaries of the driving

corridor while driving, so the following inequality constraints
are formed:

ρmin ≤ ρi ≤ ρmax (22)

where ρmax and ρmin are the left and right boundaries, respec-
tively, so the number of the driving corridor inequalities here
is 2Ns.
The optimization process also needs to meet the start point

state constraints to match the initial heading and curvature.
The initial state of the host vehicle given by the perception
module is x0 = [x0, y0, s0, ρ0, θ0, κ0]T . So the equality con-
straints formed by the initial state are:

θs0 = θ0 − θr (s0)

tan θs0 =
ρ1 − ρ0

s1 − s0

κ0 =
(x1−x0)(y2−2y1+y0)−(y1 − y0)(x2 − 2x1+x0)

3
√
(x1 − x0)2 + (y1 − y0)2

(23)

According to (23), the decision variables ρ1 and ρ2 can be
expressed as:

ρ1 = e tan(θ0 − θr (s0))+ ρ0

ρ2 =
A− B+ C

D
(24)

where,

A = κ0
3
√
(x1 − x0)2 + (y1 − y0)2

B = (x1 − x0)(yr (s2)− 2y1 + y0)

C = (y1 − y0)(xr (s2)− 2x1 + x0)

D = (x1 − x0) sin(θr (s2)+
π

2
)− (y1 − y0) cos(θr (s2)+

π

2
)

(25)

where x1, y1, x2, y2 can be calculated according to (11).
Finally, a problem to optimize the rough path is trans-

formed into a constrained nonlinear optimization problem
that minimizes the performance index (16) and satisfies the
nonlinear constraints and nonlinear boundary conditions. For
the convenience of notation, we organize all the constraints
into the following form:

min j(ρρρ) =
Ns−3∑
i=1

L(ρi, ρ̇i, ρ̈i,
...
ρi)e

s.t. Aeq · ρρρ = Beq

C(ρρρ) ≤ 0

LB ≤ ρρρ ≤ UB (26)

where Aeq · ρρρ = Beq is the equality constraints formed
by boundary conditions, C(ρρρ) ≤ 0 is inequality constraints
consisting of (19) and (21), and LB ≤ ρρρ ≤ UB is the
driving corridor constraints of the decision variables. ρρρ =
[ρ0, · · · , ρNs ]

T is the vector of the decision variables.
In (26), the objective function is a quadratic form which

is twice differentiable. And the constraint functions are
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FIGURE 5. Path optimization. (a) Path optimization on structured roads.
The blue curve represents the rough path generated by the lattice
searching. The orange curve represents the refined path generated by
path optimizer. The green dotted line represents the reference line of the
right lane. And these three red boxes represent obstacles. (b) Curvature
profile of path optimization. The blue curve represents the curvature
profile of the rough path, and the orange curve represents the curvature
profile of the refined path.

composed of nonlinear equations and nonlinear inequalities.
In order to solve this problem quickly, a constrained nonlinear
optimization solver is picked as shown in Section IV. Fig. 5 (a)
shows the rough path (the blue curve) and the optimized path
(the orange curve) on a straight road with three obstacles.
It can be seen from this figure that both paths seem to be
continuous and smooth. Fig. 5 (b) shows the curvature profile
(the blue curve) of the rough path contains three step changes,
and the curvature profile (the orange curve) of the refined path
is spatially smooth.

C. SPEED PROFILE SEARCHING
In recent years, the Station-Time (s-t) graph used by speed
profile planning is a popular method [4], [31], [32]. In gen-
eral, obstacles information is mapped to the s-t graph, which
may make the s-t graph become a non-convex domain.
In order to generate a temporally smooth speed profile
in this non-convex domain, sampling-based methods [33],
optimization-based methods [31],[34], and combination-
based methods [4], [18], [35] are used widely. And in order to
ensure that the generated speed profile is optimal and to pre-
vent the speed profile from falling into a local minimum state,
combination-based methods are preferred. It is convenient to
explicitly express the mathematical relationship between the
longitudinal station and the time in the s-t graph. The planning
result also explicitly reflects the relative position between the
ego vehicle and moving obstacles in the s-t graph. We can
clearly see whether the ego vehicle’s behavior is overtaking,
following or stopping or not. Speed planning in this paper is
divided into two layers like path planning. Firstly, we sample
in the s-t graph and search for a rough speed profile, then
the QP algorithm is introduced to optimize the rough speed
profile.

FIGURE 6. Speed profile lattice in the Station-Time domain.

1) SPEED PROFILE PRIMITIVES
We sample some vertices at equal intervals in the s-t graph,
then connect these sampled vertices using straight lines to
construct a speed profile lattice as shown in Fig. 6. The
efficiency of the algorithm is closely related to the resolu-
tion of the speed lattice. A lower resolution may result in a
larger acceleration or deceleration of a generated speed pro-
file, which affects the temporal smoothness of the trajectory.
A higher resolution will produce a smoother speed profile,
but it is a challenge in terms of computational efficiency.
Fig. 6 shows the time interval 1t = 1.0s and the station
interval 1s = 4.0m. Of course, we can adjust the resolution
of the lattice to adapt to different scenarios. On the time axis,
time series can be expressed as:

ti = t0 + i1t, i = 0, 1, ..., n (27)

According to the sampling interval1t , the time derivatives
of s are approximated by the finite differences as follows:

s′i = vi ≈
si − si−1
1t

s′′i = ai ≈
si − 2si−1 + si−2

1t2

s′′′i = ji ≈
si − 3si−1 + 3si−2 − si−3

1t3
(28)

2) COST FUNCTIONS
Like the path planning step, we also need to assign
weights to each edge. Considering the feasibility, smooth-
ness, safety, and optimality of the generated trajectory,
the cost function we designed is also a linear combination
of the offset from the reference speed vref , acceleration and
jerk penalties, and collision risk with obstacles, as shown
in (29).

cspeed = cref + cacc + cjerk + cobs (29)

cref represents the cost term of the offset from the reference
speed, which shows that we do not expect the planning speed
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FIGURE 7. The rough speed profile in the Station-Time domain. The blue
points are sampled vertices, and two parallelograms are the predicted
trajectories of obstacles.

to drift too far from the reference speed. This term can be
defined as follows:

cref = wref (s′i − vref )
2 (30)

where the reference speed vref depends on the speed of the
vehicle ahead, traffic rules, and road structure.
cacc and cjerk represent the penalty terms of acceleration

and jerk, respectively, which is shown as (31). These two
terms can make the trajectory smoother by dampening rapid
changes in the speed and acceleration profile.

cacc = wacc(s′′i )
2

cjerk = wjerk (s′′′i )
2 (31)

The cost term cobs describes the collision risk with obsta-
cles. In dynamic scenarios, risk assessment can be performed
using some risk indicators, such as the Time-To-Collision
(TTC) [36], Distance-To-Collision (DTC) [37] or Time-To-
React (TTR) [38]. This paper uses a combination of the
physics-based motion models and the curved lane models to
predict the short-term trajectory of a vehicle. Although this
prediction does not take the uncertainty of the vehicle and
the error of the motion model into account, the predicted
trajectory remains valid in the short term. And the com-
putational complexity of this prediction method also makes
it suitable for online execution. And based on the bicycle
model and the road structure, the single trajectory simulated
forward is projected into the s-t graph. At last, based on
the projection trajectory, we use the index DTC as our risk
indicator. At a certain timestamp, we calculate the distance
of the ego vehicle to obstacles and select the minimum dis-
tance as the value of the DTC . The cobs is represented as
follows:

cobs =
wobs

DTC + δ
(32)

where δ = 0.01.
In the speed profile searching step, we can generate a rough

speed profile using Dijkstra’s algorithm as shown in Fig. 7.
In this figure, the ego vehicle starts moving from rest as
shown by the red curve. Two parallelograms are the predicted
trajectories of obstacles.

D. SPEED PROFILE OPTIMIZATION
1) OBJECTIVE FUNCTION
The generated rough speed profile is formed by the con-
nection of many straight segments, so the kinematic con-
straints, dynamic constraints, and temporal smoothness are
not satisfied. Obviously, a trajectory with step changes in
the speed profile and acceleration profile is not feasible for
a vehicle, so we also introduce an optimization method to
improve the performance of the rough speed profile like path
optimization. In the s-t graph, a speed profile is a one-to-
one mapping between the timestamp and the station along a
lane. Generally there are two optimization strategies in the
s-t graph as described in [31]: one strategy is to optimize
the decision variables s= [s1, s2, ..., sn]T based on the fixed
timestamps as discussed in [35], [39], and the other strategy
is to optimize the decision variables t= [t1, t2, ..., tn]T based
on the fixed longitudinal stations as discussed in [31], [40].
For the convenience of the computation, this paper refines the
rough speed profile via station optimization. And the speed
optimization problem is transformed into a QP problem,
so the speed optimization problem can also be solved by a
local, continuous method.

The optimal speed is defined as the one that minimizes the
finite sum as follows

j =
Nt∑
i=1

(wvel(vi − vri)2 + wacca2i + wjerk jerk
2
i )ε (33)

with

L = wvel(s′i − vr (ti))
2
+ wacc(s′′i )

2
+ wjerk (s′′′i )

2

We discretize the temporal space into the following form:

ti = t0 + iε, i = 0, 1, ...,Nt (34)

where ε is the step of time, and Nt indicates that the total
temporal horizon T is divided into Nt discrete timestamps.

The corresponding decision variables that need to be opti-
mized are expressed as s= [s1, s2, ..., sn]T . The time deriva-
tives of s are approximated by finite differences of the discrete
waypoints.

s′i = vi ≈
si+1 − si

ε

s′′i = ai ≈
si+2 − 2si+1 + si

ε2

s′′′i = jerki ≈
si+3 − 3si+2 + 3si+1 − si

ε3
(35)

Obviously, the objective function is a quadratic convex
function. The first term is the penalty cost about the offset
from the rough speed profile vr (t). This cost indicates that
the speed of the ego vehicle should follow the rough speed
profile as much as possible, which ensures that the speed
optimization can converge to the global optimum. vri is the
rough speed obtained from the rough speed profile. The
vector s obtained from the rough speed profile is used as
the initial value to feed QP. The remaining two terms in (33)
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are the penalties for acceleration and jerk, which makes the
generated speed profile smoother. And for the computational
convenience, we convert the objective functional (33) into a
standard quadratic form (SQF) expressed by matrix manip-
ulations. The details of the transformations can be found in
Appendix A.

2) CONSTRAINT FUNCTIONS
Constraints also can be separated into two classes in the QP
speed optimization step, internal and external constraints.
Internal constraints come from the kinematics and dynamics
limitations of the vehicle, including the speed limits, acceler-
ation limits alim and jerk limits jerklim, which are essentially
brought about by the physical limits of the vehicle’s pow-
ertrain and the adhesion of tires. External constraints come
from the driving scenarios, including the road speed limits
vlim, collision avoidance, boundary conditions, and so on.
In this paper, acceleration constraints, jerk constraints, and
lane speed limits can be defined as follows:∣∣s′′i ∣∣ ≤ alim∣∣s′′′i ∣∣ ≤ jerklim∣∣s′i∣∣ ≤ vlim (36)

For each decision variable si, there are upper and lower
bounds (s0, smax) which can be expressed as:

s0 ≤ si ≤ smax (37)

And the collision avoidance constraints can be described
as: ∣∣sj,i − si∣∣ > rveh + rdyn∣∣sj,i − s2i∣∣ > rveh + rdyn∣∣sj,i − s3i∣∣ > rveh + rdyn (38)

where sj,i represents the coordinate of the jth obstacle at ti
in station domain. rdyn represents the expansion radius of the
dynamic obstacles. s2i and s3i represent the coordinates of the
remaining vehicle discs in the station domain. Due to the exis-
tence of s2i, s3i, the obstacle avoidance constraints become
highly nonlinear constraints. To linearize these inequalities,
we scale up the inequalities, which is shown in (39).

s2i = si + d cos(θ (si)− θr (si)) ≤ si + d

s3i = s2i + d cos(θ(si)− θr (s2i)) ≤ si + 2d (39)

The amplification of s2i, s3i is of physical significance
because this transformation increases the safe distance of the
ego vehicle to obstacles in this QP step.

And the boundary value conditions form the equality con-
straints. The start point and the end point in the speed opti-
mization step are x0 = [s0, t0, v0, a0, jerk0]T and xf =
[sf , tf , vf , af , jerkf ]T , respectively. And both speed and
acceleration are expected to be 0.0 at the endpoint of the
trajectory, which means that the ego vehicle will move at

a constant speed after the optimization. Hence, the terminal
conditions can be written as (40).

vn ≈
sn+1 − sn

ε

an ≈
sn+2 − 2sn+1 + sn

ε2
= 0

jerkn ≈
sn+3 − 3sn+2 + 3sn+1 − sn

ε3
= 0 (40)

At the endpoint of the trajectory, both ε and an−1 are
extremely small, so we can write the following equality con-
straints according to the boundary value conditions.

s0 = s0
s1 = εv0 + s0
s2 = a0ε2 + s0 + 2εv0
s3 = jerk0ε3 + 3εv0 + 3a0ε2 + s0

sn+1 = 2sn − sn−1
sn+2 = 3sn − 2sn−1
sn+3 = 4sn − 3sn−1 (41)

At last, all the above constraints (36), (37), (38) and (41)
are linear, so the feasible domain is a convex space in Rn+3.
To facilitate numerical calculations, all constraints are also
converted into the forms of matrix manipulations. The details
of the transformations can be found in Appendix B. Finally,
we successfully transform the speed profile optimization
problem into an optimization problemwith a quadratic objec-
tive function and linear constraints. This optimization prob-
lem is a typical medium-scale QP problem. We transform the
objective function and the constraint functions into a standard
form (SF), which is described as (42). A detailed explanation
of the coefficients in (42) can be found in Appendix A and B.

min j(s) =
1
2
sTHs+ qs+ p

s.t. Gs ≤ h

As = b (42)

In Fig. 8 (a), the blue curve represents the rough s-t profile
generated by the speed lattice searching, and the orange curve
represents the refined s-t profile generated by QP. We can see
that the shapes of the two curves are similar. In Fig.8 (b), (c),
(d), the profiles of speed, acceleration, and jerk generated by
QP are temporally smoother than those generated by lattice
searching.

IV. CASE STUDIES
To evaluate the algorithm performance we proposed, we built
a 1, 163m simulated road with multiple challenging sce-
narios. Our simulation environment consists of static and
dynamic obstacles and simulated two-lane roads. Some com-
mon driving scenarios are added to the simulated structured
environment, including lane changing, following, obstacles
avoidance, overtaking, and stopping. We show four cases to
test the performance of the framework in this paper. In our
simulation environment, the host vehicle is represented by
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FIGURE 8. Speed profile optimization. (a) The blue curve represents the
rough Station-Time profile, and the orange curve represents the
post-optimized Station-Time profile. (b) The blue curve represents the
rough speed profile, and the orange curve represents the post-optimized
speed profile. (c) The blue curve represents the rough acceleration
profile, and the orange curve represents the post-optimized acceleration
profile. (d) The blue curve represents the rough jerk profile, and the
orange curve represents the post-optimized jerk profile.

a blue box and the surrounding vehicles are represented by
boxes of other colors. The temporal information is repre-
sented by the depth of color, where deeper color represents
a later time step.

In our simulator, the perception module can be removed
because all the environmental information and vehicle state
information can be directly acquired from the simulator. The
behavior planning (decision-making) layer uses a finite state
machine [41], [42] model to make decisions based on the
predefined behaviors and scenarios. Due to the clear logic
and low computational complexity, this rule-based decision-
maker is fully capable of handling simple scenarios. For
decision makers based on the partially observable Markov
decision process (POMDP) [43], the computational complex-
ity is too high to make it unsuitable for real-time operation.
In order to validate the planning algorithm in this paper, using
the state machine model as the core of the decision-making
layer is a nice choice. And the behavior prediction layer
combines the physical model of vehicles with the curved
road model to predict the behaviors and trajectories of sur-
rounding vehicles. Due to the existence of the nonholonomic

FIGURE 9. Static obstacles avoidance. (a) The blue lattice is constructed
in the right lane. The magenta curve represents the rough path. The blue
box and the red boxes represent the ego vehicle and obstacles
respectively. (b) Path optimization. The magenta curve represents the
rough path. The orange curve represents the refined path. The green
dotted curves represent the reference line for each lane separately.
(c) Curvature profile of path optimization.

constraints and dynamic constraints, we use the model pre-
dictive control (MPC) [44] controller to track the trajecto-
ries the decoupled planner generated and plot the historical
trajectories of the host vehicle and all surrounding vehicles.
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In addition, compared to the pure pursuit controller [45]
and the rear wheel based feedback controller [45], the MPC
controller can maintain proper tracking accuracy and has
good control over the host vehicle at high speed. Therefore,
the trajectory planner only needs to generate an executable
trajectory combining the path and the temporal information
to feed into the controller.

The planner is implemented in Python3.6 scripts and runs
on a laptop with 2.6GHz Intel Core i7-6500U and 8GB
RAM in Ubuntu 16.04.6 LTS. The path optimizer utilizes the
open-source nonlinear optimization tool CasADi [46]. The
solver of the interior point method is the open source opti-
mization library IPOPT [47]. And the speed profile optimizer
and the MPC controller utilizes the open-source optimization
library CVXOPT2 and CVXPY,3 respectively.

A. CASE1: STATIC OBSTACLES AVOIDANCE
Static obstacles avoidance is one of the most basic func-
tions for the trajectory planner. The host vehicle expects a
spatiotemporally smooth trajectory that can bypass obstacles
without collisions with obstacles and road boundaries. In this
case, the ego vehicle starts moving from rest, and there are
three static obstacles along the right lane. Fig. 9 (a) shows
the rough path generated in the path lattice is able to avoid
obstacles and looks smooth enough. The magenta curve rep-
resents the rough path, and blue curves represent the motion
primitives that construct the path lattice. Fig. 9 (b) shows
the rough path and the refined path, respectively. In this
graph, the magenta curve represents the rough path, and the
orange curve represents the refined path. Fig. 9 (c) shows the
magenta curvature profile of the rough path is not smooth
due to the existence of oscillations and step changes. And the
orange curve represents the curvature profile of the refined
path. The results show that the curvature of the path is well
improved by the path optimizer. The curvature profile of the
refined path removed the shocks and improved the smooth-
ness of the path. Fig. 10 shows the speed, acceleration and
jerk profiles of the ego vehicle, which are temporally smooth
and Fig. 11 records the trajectory of the ego vehicle generated
by theMPC controller. The static obstacle avoidance test veri-
fies that our framework can output a spatiotemporally smooth
and feasible trajectory for the trajectory tracking module to
execute.

B. CASE2: AUTOMATIC LANE CHANGING
Lane changing is also one of the most common behaviors in
structured environments. According to our predictive model,
obstacles continue to move forward along the lane with the
current detection speed. We set up slow-moving vehicles
ahead to test the planner’s lane changing performance, where
the speed of obstacle vehicles is 3.0m/s. Fig. 12 (a) shows the
rough path in the scenario of lane changing. In Fig. 12 (b),
the magenta curve represents the rough path and the orange

2http://cvxopt.org/
3https://www.cvxpy.org/

FIGURE 10. Speed profile, acceleration profile and jerk profile generated
by the speed profile optimizer in the scenario of static obstacle
avoidance.

FIGURE 11. The host vehicle trajectory in the scenario of static obstacle
avoidance.

curve represents the refined path. Fig. 12 (c) shows the
curvature profiles of the rough path and the refined path.
And the maximum curvature of the refined path is 0.04m−1.
Fig. 13 shows that the ego vehicle’s speed should be accel-
erated from 8m/s at t = 12.4s to 11.3m/s at t = 15.2s
during the lane changing. We set the maximum acceleration
and deceleration values to be 2.5m/s2 and−2.5m/s2, respec-
tively. Andwe set themaximum jerk value to be 5m/s3. In this
graph, we can see that the speed profile, the acceleration
profile and the jerk profile are smooth. And the speed, accel-
eration, and jerk did not exceed the thresholds. Fig. 14 records
the results of trajectory tracking. The blue trajectory belongs
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FIGURE 12. The lane change scenario. (a) The blue lattice is constructed
in the left lane. The magenta curve represents the rough path. The blue
box and the remaining boxes represent the ego vehicle and dynamic
obstacles respectively. (b) Path optimization. The magenta curve
represents the rough path. The orange curve represents the refined path.
The green dotted curves represent the reference line for each lane
respectively. (c) Curvature profile of path optimization.

to the host vehicle, and the other trajectories belong to the
surrounding obstacles.

C. CASE3: STOPPING
In the stopping scenario, we set a static obstacle in the left
lane as shown by the orange box, and the decision making
layer does not give the instruction to perform lane changing,
so the ego vehicle should stop when it encounters this static
obstacle as displayed in Fig. 15. Fig. 15 (a) shows the total
distance horizon sampled forward of the path lattice is 80m.
For this path lattice with 4 sets of longitudinal sampling way-
points with an interval of 20 m and 9 sets of lateral sampling
waypoints with an interval of 0.5 m, Dijkstra’s algorithm can

FIGURE 13. Speed profile, acceleration profile and jerk profile generated
by the speed profile optimizer in the scenario of lane changing.

FIGURE 14. Trajectories of the host vehicle and surrounding vehicles in
the scenario of lane changing.

search the path lattice to generate a rough path using 0.08s.
The magenta curve represents the rough path. Fig. 15 (b)
shows the orange refined path and the magenta rough path,
and the two paths are almost overlapping. Fig. 15 (c) shows
the magenta curvature profile of the rough path trembles
violently. The curvature profile is smooth enough when the
rough path is optimized. The host vehicle detects a static
obstacle ahead when t = 24.2s, s = 200m as shown
in Fig. 16. The result of the speed optimization step shows
that the speed of the ego vehicle is 15.1m/s at t = 24.2s, then
the speed is reduced to 0.0 m/s at t = 32.0s. The maximum
deceleration is −2.5m/s2 and the maximum derivative of the
deceleration is −5m/s3. Fig. 17 shows the trajectories of the
host vehicle and surrounding vehicles. The blue trajectory
shows that the host vehicle is slowing down. The results show
that the trajectory planner can output a smooth and feasible
trajectory while satisfying the kinodynamic constraints and
traffic rule constraints.
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FIGURE 15. The stopping scenario. (a) The blue lattice is constructed in
the current lane. The magenta curve represents the rough path. The blue
box and the remaining boxes represent the ego vehicle, static and
dynamic obstacles respectively. (b) Path optimization. The magenta curve
represents the rough path. The orange curve represents the refined path.
The green dotted curves represent the reference line for each lane
respectively. (c) Curvature profile of path optimization.

D. CASE4: OVERTAKING
One of the most challenging scenarios for trajectory planning
is to overtake the dynamic vehicles ahead. Due to the high
speed of the ego vehicle and surrounding vehicles, the tra-
jectory given by the planner requires reasonable and timely
acceleration and steering. When s = 400.0m, t = 39.2s,
the decision-making layer issues an overtaking instruction.
Fig. 18 (a) displays that the rough path can avoid obstacles.
Fig. 18 (b) shows the magenta rough path and the orange
refined path on the road. Fig. 18 (c) shows that the curva-
ture profile of the rough path has three step changes, which
indicates that the curvature of the rough path generated in the

FIGURE 16. Speed profile, acceleration profile and jerk profile generated
by the speed profile optimizer in the scenario of stopping.

FIGURE 17. The ego vehicle trajectory of stopping.

path lattice is discontinuous and not smooth. According to
our experience, step changes usually occur at the junctions of
the motion primitives. During the overtaking process, there
are two slowly moving vehicles in the current lane, and there
is a moving vehicle ahead in the left lane. Fig. 19 shows that
the planning speed profile should be increased from 6.0 m/s
at t = 39.2s to 15.1 m/s at t = 44.3s. After passing the right
vehicles, the ego vehicle changes to the right lane and starts to
slow down slowly. Because the reference speed we set in this
paper is 40.0 km/h, the speed of the host vehicle returns to
the reference speed at t = 50.0s. Fig. 19 shows that the speed
profile, the acceleration profile and the jerk profile generated
by the speed optimizer are very smooth. Fig. 20 records
trajectories of the host vehicle and surrounding vehicles in
the overtaking scenario. The blue trajectory indicates the
movement of the host vehicle. As can be seen from Fig. 20,
the interval between the blue boxes which belongs to the host
vehicle’s trajectory is getting larger after switching to the left
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FIGURE 18. The overtaking scenario. (a) The blue lattice is constructed in
two lanes. The magenta curve represents the rough path. The blue box
and the remaining boxes represent the ego vehicle and dynamic
obstacles respectively. (b) Path optimization. The magenta curve
represents the rough path. The orange curve represents the refined path.
The green dotted curves represent the reference line for each lane
respectively. (c) Curvature profile of path optimization.

lane, which indicates that the vehicle is accelerating. And
after changing to the right lane, the interval of the boxes is
getting smaller and smaller, which indicates that the vehicle
is slowing down. Fig. 20 shows that our planning results are
similar to the real on-road overtaking process.

E. PERFORMANCE ANALYSIS
We tested the running time of the path searcher and the speed
profile searcher. For a path lattice with 5 sets of longitudinal
sampling waypoints with an interval of 20m and 9 sets of lat-
eral sampling waypoints with an interval of 0.5m, the average
search time is 0.12s. For a speed profile lattice with 8 sets

FIGURE 19. Speed profile, acceleration profile and jerk profile generated
by the speed profile optimizer in the scenario of overtaking.

FIGURE 20. The host vehicle trajectory of overtaking.

TABLE 2. Runtime of different solvers in the path optimization step.

of temporal sampling nodes with an interval of 1.0 s and
5 sets of station sampling nodes with an interval of 4.0 m,
the average search time is 0.04s. For a path optimization
problem with three surrounding obstacles with a path length
of 100m, we convert it into a nonlinear optimization prob-
lem with 100 decision variables and about 2200 nonlinear
constraint functions. To solve this medium-scale optimiza-
tion problem in this test, we tested the SQP method, inte-
rior point (IP) method, SQP-legacy method, and active-set
method separately. The comparison results are shown
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TABLE 3. Performance comparison of the mainstream trajectory planning methods.

in Table 2. The interior point method is picked considering
runtime performance.

In order to verify the efficiency of the trajectory planning
framework, we tested the runtime performance of the pro-
posed algorithm and other state-of-the-art algorithms in the
static obstacles avoidance scenario. In comparison, we place
four static vehicle obstacles in the structured environments,
and we set the planning distance horizon forward to be 100m.
The comparison results are shown in Table 3. Our contribu-
tions are explained through simulations and comparisons as
follows:
• Through verifications of the previous four cases, and
comparisons in Table 1 and Table 3, we can show that
our algorithm performs well in the characteristics listed
in Table 1 and Table 3. Compared with the decoupled
method in [1], our algorithm is complete and can develop
the full potential of the host vehicle. For the method
in [16], [17], the running time is a huge attraction.
However, the short planning horizon, not smooth enough
trajectory, and the limited motion potential of vehicles
in discrete state space, these three drawbacks can cause
tracking difficulties and bring about potential dangers
for autonomous vehicles in high-speed driving. In prac-
tice, the planning distance of this method is not 100m,
but 20m (maybe 10m or 30m, it depends on the current
speed of the host vehicle and the road environments),
so this nearsightedness limits the application of the algo-
rithm in high-speed dynamic scenes. For Hybrid A*
and the subsequent path smoothing via conjugate gra-
dient [23], this method can generate a smooth path in
the crowded environment, but it lacks the speed planning
step. At the same time, it is not suitable for a vehicle
to drive on structured roads because the temporary goal
waypoint changes frequent and is difficult to determine
while driving online. On the contrary, Hybrid A* is more
suitable for path planning in free space. Impressively,
our algorithm does take advantages of sampling-based
methods and optimization-based methods, and tries to
reduce the side effects of their defects. And our novel
and all-sided algorithm is well balanced in terms of
various constraints compliance and requirements satis-
faction.

• In comparison with the direct method in [2], our algo-
rithm can jump out of local optimum and has better
flexibility to adapt to different scenarios by adjusting
parameters. And fewer iterations make our algorithm

converge to the optimal solution faster. And the running
time is also less than the method in [2], which can be
seen in Table 3. In Fig. 9, Fig. 12, Fig. 15, and Fig. 18,
the optimized paths are able to avoid obstacles and their
curvature profiles are spatially smooth enough. And sim-
ulations in Section IV and comparisons in Table 1 and
Table 3 confirm that the path optimization over lateral
offset is efficient and real-time.

• For the speed profile optimization problem with two
surrounding obstacles in Station-Time domain with a
time horizon T = 8.0s, we convert it into a standard
quadratic programming problem with 80 decision vari-
ables and nearly 1000 linear constraint functions. The
average number of iterations is 6 and the running time is
0.0352 s. The QP speed optimization step has excellent
performance in real-time and flexibility.

V. CONCLUSION AND FUTURE WORK
In this paper, a novel decoupled trajectory planning frame-
work is proposed and implemented in Python scripts to solve
the non-convex spatiotemporal planning problem. The path
searcher and the speed profile searcher can guarantee that we
can search for a solution close to the globally optimal solution
in the non-convex 3D state space. And the subsequent non-
linear path and speed profile optimization processes ensure
that our solution is continuous, spatiotemporally smooth and
optimal. And the decoupling of the spatial and temporal
information also makes our solution converge to the global
optimum more efficiently.

The solution the lattice searching generated is in the neigh-
borhood of the globally optimal solution, so the rough path
and the rough speed profile are used as the initial solutions
of path optimization and speed optimization, respectively.
This treatment reduces the number of iterations, improves
the speed of convergence, and generates a globally optimal,
continuous solution. Cases studies show that the framework
is effective in several structured environments. For the curved
roads driving, static obstacles and dynamic obstacles avoid-
ance, lane changing, and overtaking, the trajectory planner
performs well in these scenarios. So this framework is suit-
able for autonomous vehicles traveling online on dynamic
structured roads and is able to respond accurately to the
commands of the decision maker through parameter tuning.

For future work, more cases need to be done to verify
the framework’s performance. And the runtime is tempting
if we convert these scripts into C++. We will transplant the
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framework into the trajectory planning module in Autoware4

for on-road experiments.

APPENDIX
TRANSFORMATIONS FROM SPEED PROFILE
OPTIMIZATION TO STANDARD QUADRATIC
PROGRAMMING
A. STANDARDIZATION OF THE OBJECTIVE FUNCTION FOR
QUADRATIC PROGRAMMING
The speed cost item can be converted into the following form:

Nt∑
i=1

(vi−vri)2=
1
ε2

sTNt+1HvelsNt+1+
Nt∑
i=1

v2ri−
2
ε
qTvelsNt+1

(43)

where,

sNt+1 = [s1, s2, s3, ..., sNt+1]
T

Hvel =



1 −1 0 · · · 0

−1 2
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 2 −1
0 · · · 0 −1 1


qvel = [−vr1, vr1−vr2, · · · , vr(Nt−1)−vrNt , vrNt ]

T (44)

The acceleration cost item can be converted into the fol-
lowing form:

Nt∑
i=1

a2i =
1
ε4

sTNt+2HaccsNt+2 (45)

where,

sNt+2 = [s1, s2, ..., sNt , sNt+1, sNt+2]
T

Hacc =



1 −2 1 0 · · · · · · 0

−2 5 −4
. . .

. . .
. . .

...

1 −4 6
. . .

. . .
. . .

...

0
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . . 6 −4 1

...
. . .

. . .
. . . −4 5 −2

0 · · · · · · 0 1 −2 1


(46)

The jerk cost item can be converted into the following
form:

Nt∑
i=1

jerk2i =
1
ε6

sTNt+3HjerksNt+3 (47)

where,

sNt+3 = [s1, s2, ..., sNt , sNt+1, sNt+2, sNt+3]
T

4https://www.autoware.org/

Hjerk =



1 −3 3 −1 0 ··· ··· ··· 0

−3 10 −12 6
. . .

. . .
. . .

. . .
...

3 −12 19 −15
. . .

. . .
. . .

. . .
...

−1 6 −15 20
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

...
. . .

. . .
. . .

. . . 20 −15 6 −1
...
. . .

. . .
. . .

. . . −15 19 −12 3
...
. . .

. . .
. . .

. . . 6 −12 10 −3
0 ··· ··· ··· 0 −1 3 −3 1


(48)

To be consistent with the dimensions of the matrix in (48),
we increase the dimensions of the matrices in (44) and (46).
Finally, the objective function can be organized into a stan-
dard form using the matrix manipulations as follows:

argmin
s1,s2,··· ,sNt+3

j(s) =
1
2
sTHs+ qT s+ p (49)

where,

H = 2
wvel
ε

[
Hvel 0 0
0 0 0
0 0 0

]
+ 2

wacc
ε3

[
Hacc 0
0 0

]
+ 2

wjerk
ε5

Hjerk

q = −2wvel
[
qTvel 0 0

]T
p = wvelε

Nt∑
i=1

v2ri

s = [s1, s2, · · · , sNt+3]
T (50)

B. STANDARDIZATION OF CONSTRAINT FUNCTIONS FOR
QUADRATIC PROGRAMMING
Acceleration constraints can be expressed as:

GaccsNt+3 ≤ hacc
−GaccsNt+3 ≤ hacc (51)

where,

Gacc =


1 −2 1 0 · · · 0 0

0 1 −2 1
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0 0
0 · · · 0 1 −2 1 0


hacc = [ε2alim, · · · , ε2alim]T (52)

Jerk constraints can be expressed as:

GjerksNt+3 ≤ hjerk
−GjerksNt+3 ≤ hjerk (53)

where,

Gjerk =


−1 3 −3 1

−1 3 −3 1
. . .

. . .
. . .

. . .

−1 3 −3 1
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hjerk =
[
ε3jerklim · · · ε3jerklim

]T (54)

Lane speed limits can be expressed as:

GvelsNt+3 ≤ hvel (55)

where,

Gvel =


−1 1 0 · · · · · · · · · 0

0 −1 1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 −1 1 0 0


hvel = [εvlim, · · · , εvlim]T (56)

For each decision variable si, there are upper and lower
bounds, which can be expressed as:

GmaxsNt+3 ≤ hmax

−G0sNt+3 ≤ h0 (57)

where,

Gmax = G0 =
[
I 0 0 0

]
hmax = [smax, · · · , smax]T

h0 = [s0, · · · , s0]T (58)

For the obstacle avoidance constraints (38) and (39),
we can simplify them into this expression as follows:

sj,i − s3i > rveh + rdyn
si − sj,i > rveh + rdyn (59)

And (59) can be express as:

INt+3sNt+3 < oj
−INt+3sNt+3 < dj (60)

where,

oj =

 sj,1 − rveh − rdyn − 2d
...

sj,Nt+3 − rveh − rdyn − 2d


dj =

 −sj,1 − rveh − rdyn
...

−sj,Nt+3 − rveh − rdyn

 (61)

where j represents the jth obstacle. The number of obstacles
is no, so (61) can be stacked into the following expression.

Gobss < hobs (62)

where,

Gobs = [I,−I, · · · , I,−I]T

hobs = [o1,d1, · · · , oj,dj, · · · , ono ,dno ]
T (63)

Boundary value conditions (41) can be expressed as:

As = b (64)

where,

A =


1 0 · · · 0

1 0 · · · 0
1 0 · · · 0

0 · · · 0 1 −2 1 0 0
0 · · · 0 2 −3 0 1 0
0 · · · 0 3 −4 0 0 1



b =


εv0 + s0

a0ε2 + s0 + 2εv0
jerk0ε3 + 3εv0 + 3a0ε2 + s0

0
0
0

 (65)

All constraint matrices can be stacked into a matrix in the
form of columns as follows:

G =
[
Gacc,−Gacc,Gjerk ,−Gjerk ,Gvel,Gmax,G0,Gobs

]T
h =

[
hacc,hacc,hjerk ,hjerk ,hvel,hmax,h0,hobs

]T (66)

(42) is the standard form of QP, which is based on the
above transformations. After the objective function and the
constraint functions are matrixed, the QP problem can be
solved quickly by CVXOPT.

REFERENCES
[1] M. Werling, S. Kammel, J. Ziegler, and L. Gröll, ‘‘Optimal trajectories for

time-critical street scenarios using discretized terminal manifolds,’’ Int. J.
Robot. Res., vol. 31, no. 3, pp. 346–359, 2012.

[2] J. Ziegler, P. Bender, T. Dang, and C. Stiller, ‘‘Trajectory planning
for Bertha—A local, continuous method,’’ in Proc. IEEE Intell.
Vehicles Symp., Dearborn, MI, USA, Jun. 2014, pp. 450–457.
doi: 10.1109/IVS.2014.6856581.

[3] J. Ziegler et al., ‘‘Making bertha drive—An autonomous journey on a
historic route,’’ IEEE Intell. Transp. Syst. Mag., vol. 6, no. 2, pp. 8–20,
Apr. 2014. doi: 10.1109/MITS.2014.2306552.

[4] W. Lim, S. Lee, M. Sunwoo, and K. Jo, ‘‘Hierarchical trajectory planning
of an autonomous car based on the integration of a sampling and an
optimization method,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 2,
pp. 613–626, Feb. 2018. doi: 10.1109/TITS.2017.2756099.

[5] C. Liu, C.-Y. Lin, and M. Tomizuka, ‘‘The convex feasible set algorithm
for real time optimization in motion planning,’’ SIAM J. Control Optim.,
vol. 56, no. 4, pp. 2712–2733, 2018. doi: 10.1137/16M1091460.

[6] C. Liu, C.-Y. Lin, Y. Wang, and M. Tomizuka, ‘‘Convex feasible
set algorithm for constrained trajectory smoothing,’’ in Proc. Amer.
Control Conf. (ACC), Seattle, WA, USA, May 2017, pp. 4177–4182.
doi: 10.23919/ACC.2017.7963597.

[7] J. Chen, W. Zhan, and M. Tomizuka, ‘‘Constrained iterative LQR for
on-road autonomous driving motion planning,’’ in Proc. IEEE 20th Int.
Conf. Intell. Transp. Syst. (ITSC), Yokohama, Japan, Oct. 2017, pp. 1–7.
doi: 10.1109/ITSC.2017.8317745.

[8] J. Chen, W. Zhan, and M. Tomizuka, ‘‘Autonomous driving motion plan-
ningwith constrained iterative LQR,’’ IEEE Trans. Intell. Veh., vol. 4, no. 2,
pp. 244–254, Jun. 2019. doi: 10.1109/TIV.2019.2904385.

[9] T. M. Howard, C. J. Green, A. Kelly, and D. Ferguson, ‘‘State space sam-
pling of feasible motions for high-performance mobile robot navigation in
complex environments,’’ J. Field Robot., vol. 25, nos. 6–7, pp. 325–345,
2008. doi: 10.1002/rob.20244.

[10] T. M. Howard and A. Kelly, ‘‘Optimal rough terrain trajectory generation
for wheeled mobile robots,’’ Int. J. Robot. Res. vol. 26, no. 2, pp. 141–166,
Feb. 2007. doi: 10.1177/0278364906075328.

[11] J. Ziegler and C. Stiller, ‘‘Spatiotemporal state lattices for fast trajectory
planning in dynamic on-road driving scenarios,’’ in Proc. IEEE/RSJ Int.
Conf. Intell. Robots Syst., St. Louis, MO, USA, Oct. 2009, pp. 1879–1884.
doi: 10.1109/IROS.2009.5354448.

VOLUME 7, 2019 130549

http://dx.doi.org/10.1109/IVS.2014.6856581
http://dx.doi.org/10.1109/MITS.2014.2306552
http://dx.doi.org/10.1109/TITS.2017.2756099
http://dx.doi.org/10.1137/16M1091460
http://dx.doi.org/10.23919/ACC.2017.7963597
http://dx.doi.org/10.1109/ITSC.2017.8317745
http://dx.doi.org/10.1109/TIV.2019.2904385
http://dx.doi.org/10.1002/rob.20244
http://dx.doi.org/10.1177/0278364906075328
http://dx.doi.org/10.1109/IROS.2009.5354448


Y. Meng et al.: Decoupled Trajectory Planning Framework

[12] M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, ‘‘Motion plan-
ning for autonomous driving with a conformal spatiotemporal lattice,’’
in Proc. IEEE Int. Conf. Robot. Autom., Shanghai, China, May 2011,
pp. 4889–4895. doi: 10.1109/ICRA.2011.5980223.

[13] D. González, J. Pérez, V. Milanés, and F. Nashashibi, ‘‘A review
of motion planning techniques for automated vehicles,’’ IEEE Trans.
Intell. Transp. Syst., vol. 17, no. 4, pp. 1135–1145, Apr. 2016.
doi: 10.1109/TITS.2015.2498841.

[14] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How,
‘‘Real-time motion planning with applications to autonomous
urban driving,’’ IEEE Trans. Control Syst. Technol., vol. 17, no. 5,
pp. 1105–1118, Sep. 2009. doi: 10.1109/TCST.2008.2012116.

[15] L. Ma, J. Xue, K. Kawabata, J. Zhu, C. Ma, and N. Zheng, ‘‘Efficient
sampling-based motion planning for on-road autonomous driving,’’ IEEE
Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 1961–1976, Aug. 2015.
doi: 10.1109/TITS.2015.2389215.

[16] X. Li, Z. Sun, D. Cao, Z. He, and Q. Zhu, ‘‘Real-time trajec-
tory planning for autonomous urban driving: Framework, algorithms,
and verifications,’’ IEEE/ASME Trans. Mechatronics, vol. 21, no. 2,
pp. 740–753, Apr. 2016. doi: 10.1109/TMECH.2015.2493980.

[17] X. Li, Z. Sun, D. Cao, D. Liu, andH. He, ‘‘Development of a new integrated
local trajectory planning and tracking control framework for autonomous
ground vehicles,’’ Mech. Syst. Signal Process. vol. 87, pp. 118–137,
Mar. 2017. doi: 10.1016/j.ymssp.2015.10.021.

[18] W. Xu, J.Wei, J. M. Dolan, H. Zhao, and H. Zha, ‘‘A real-timemotion plan-
ner with trajectory optimization for autonomous vehicles,’’ in Proc. IEEE
Int. Conf. Robot. Autom., Saint Paul,MN,USA,May 2012, pp. 2061–2067.
doi: 10.1109/ICRA.2012.6225063.

[19] H. Fan, F. Zhu, C. Liu, L. Zhang, L. Zhuang, D. Li,W. Zhu, J. Hu, H. Li, and
Q. Kong, ‘‘Baidu Apollo EM motion planner,’’ 2018, arXiv:1807.08048.
[Online]. Available: https://arxiv.org/abs/1807.08048

[20] J. Kim, K. Jo, W. Lim, M. Lee, and M. Sunwoo, ‘‘Curvilinear-coordinate-
based object and situation assessment for highly automated vehicles,’’
IEEE Trans. Intell. Transp. Syst., vol. 16, no. 3, pp. 1559–1575, Jun. 2015.
doi: 10.1109/TITS.2014.2369737.

[21] D. Betaille and R. Toledo-Moreo, ‘‘Creating enhanced maps for lane-
level vehicle navigation,’’ IEEE Trans. Intell. Transp. Syst., vol. 11, no. 4,
pp. 786–798, Dec. 2010. doi: 10.1109/TITS.2010.2050689.

[22] H. Wang, J. Kearney, and K. Atkinson, ‘‘Arc-length parameterized spline
curves for real-time simulation,’’ in Proc. 5th Int. Conf. Curves Surfaces.
vol. 387396, Jun. 2002, pp. 388–396.

[23] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, ‘‘Path plan-
ning for autonomous vehicles in unknown semi-structured environ-
ments,’’ Int. J. Robot. Res., vol. 29, no. 5, Apr. 2010, pp. 485–501.
doi: 10.1177/0278364909359210.

[24] A. Kelly and Bryan Nagy, ‘‘Reactive nonholonomic trajectory generation
via parametric optimal control,’’ Int. J. Robot. Res., vol. 22, nos. 7–8,
pp. 583–601, 2003. doi: 10.1177/02783649030227008.

[25] K. Chu, M. Lee, and M. Sunwoo, ‘‘Local path planning for off-road
autonomous driving with avoidance of static obstacles,’’ IEEE Trans.
Intell. Transp. Syst., vol. 13, no. 4, pp. 1599–1616, Dec. 2012.
doi: 10.1109/TITS.2012.2198214.

[26] X. Hu, L. Chen, B. Tang, D. Cao, and H. He, ‘‘Dynamic path planning for
autonomous driving on various roads with avoidance of static and moving
obstacles,’’ Mech. Syst. Signal Process. vol. 100, pp. 482–500, Feb. 2018.
doi: 10.1016/j.ymssp.2017.07.019.

[27] B. Siciliano, Robotics: Modelling, Planning and Control. Rome,
Italy: Springer, 2010. [Online]. Available: http://www.bookmetrix.
com/detail/book/8c0c3f78-8187-448b-9dd7-e08f48f51a58#citations

[28] T. Gu, J. Snider, J. M. Dolan, and J.-W. Lee, ‘‘Focused Trajectory
Planning for autonomous on-road driving,’’ in Proc. IEEE Intell. Vehi-
cles Symp., Gold Coast, QLD, Australia, Jun. 2013, pp. 547–552.
doi: 10.1109/IVS.2013.6629524.

[29] S. Lefèvre, D. Vasquez, and C. Laugier, ‘‘A survey on motion prediction
and risk assessment for intelligent vehicles,’’ ROBOMECH J. vol. 1, no. 1,
2014, p. 1. doi: 10.1186/s40648-014-0001-z.

[30] Ö. S. Tas, N. O. Salscheider, F. Poggenhans, S. Wirges, C. Bandera,
M. R. Zofka, T. Strauss, J. M. Zöllner, and C. Stiller, ‘‘Making bertha
cooperate–team AnnieWAY’s entry to the 2016 grand cooperative driving
challenge,’’ IEEE Trans. Intell. Transp. Syst., vol. 19, no. 4, pp. 1262–1276,
Apr. 2018. doi: 10.1109/TITS.2017.2749974.

[31] C. Liu, W. Zhan, and M. Tomizuka, ‘‘Speed profile planning in
dynamic environments via temporal optimization,’’ in Proc. IEEE Intell.
Vehicles Symp., Los Angeles, CA, USA, Jun. 2017, pp. 154–159.
doi: 10.1109/IVS.2017.7995713.

[32] Y. Zhang, H. Chen, S. L. Waslander, T. Yang, S. Zhang, G. Xiong, and
K. Liu, ‘‘Speed planning for autonomous driving via convex optimiza-
tion,’’ in Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC), Maui, HI, USA,
Nov. 2018, pp. 1089–1094. doi: 10.1109/ITSC.2018.8569414.

[33] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, ‘‘Optimal trajectory
generation for dynamic street scenarios in a Frenét frame,’’ in Proc. IEEE
Int. Conf. Robot. Autom., Anchorage, AK, USA, May 2010, pp. 987–993.
doi: 10.1109/ROBOT.2010.5509799.

[34] Y. Wei, C. Avci, J. Liu, B. Belezamo, N. Aydin, P. T. Li, and X. Zhou,
‘‘Dynamic programming-based multi-vehicle longitudinal trajectory opti-
mization with simplified car following models,’’ Transp. Res. B, Methodol.
vol. 106, Dec. 2017, pp. 102–129. doi: 10.1016/j.trb.2017.10.012.

[35] W. Zhan, J. Chen, C.-Y. Chan, C. Liu, and M. Tomizuka, ‘‘Spatially-
partitioned environmental representation and planning architecture for on-
road autonomous driving,’’ inProc. IEEE Intell. Vehicles Symp., Los Ange-
les, CA, USA, Jun. 2017, pp. 632–639. doi: 10.1109/IVS.2017.7995789.

[36] J. Kim and D. Kum, ‘‘Collision risk assessment algorithm via lane-
based probabilistic motion prediction of surrounding vehicles,’’ IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 9, pp. 2965–2976, Sep. 2018.
doi: 10.1109/TITS.2017.2768318.

[37] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, ‘‘Real-time motion
planning methods for autonomous on-road driving: State-of-the-art and
future research directions,’’ Transp. Res. C, Emerg. Technol. vol. 60,
Nov. 2015, pp. 416–442. doi: 10.1016/j.trc.2015.09.011.

[38] J. Hillenbrand, A. M. Spieker, and K. Kroschel, ‘‘A multilevel colli-
sion mitigation approach—Its situation assessment, decision making, and
performance tradeoffs,’’ IEEE Trans. Intell. Transp. Syst., vol. 7, no. 4,
pp. 528–540, Dec. 2006. doi: 10.1109/TITS.2006.883115.

[39] T. Gu, J. Atwood, C. Dong, J. M. Dolan, and J.-W. Lee, ‘‘Tunable and
stable real-time trajectory planning for urban autonomous driving,’’ in
Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Hamburg, Germany,
Sep./Oct. 2015, pp. 250–256. doi: 10.1109/IROS.2015.7353382.

[40] C. Liu, C. Lin, S. Shiraishi, and M. Tomizuka, ‘‘Distributed conflict
resolution for connected autonomous vehicles,’’ IEEE Trans. Intell. Veh.,
vol. 3, no. 1, pp. 18–29, Mar. 2018. doi: 10.1109/TIV.2017.2788209.

[41] C. Urmson et al., ‘‘Autonomous driving in urban environments: Boss
and the urban challenge,’’ J. Field Robot. vol. 25, no. 8, pp. 425–466,
Aug. 2008. doi: 10.1002/rob.20255.

[42] M. Montemerlo et al., ‘‘Junior: The stanford entry in the urban chal-
lenge,’’ J. Field Robot., vol. 25, no. 9, pp. 569–597, Sep. 2008.
doi: 10.1002/rob.20258.

[43] C. Hubmann, M. Becker, D. Althoff, D. Lenz, and C. Stiller, ‘‘Decision
making for autonomous driving considering interaction and uncertain
prediction of surrounding vehicles,’’ in Proc. IEEE Intell. Vehicles Symp.,
Jun. 2017, pp. 1671–1678. doi: 10.1109/IVS.2017.7995949.

[44] J. Ji, A. Khajepour, W.W. Melek, and Y. Huang, ‘‘Path planning and track-
ing for vehicle collision avoidance based on model predictive control with
multiconstraints,’’ IEEE Trans. Ultrason. Eng., vol. 66, no. 2, pp. 952–964,
Feb. 2017. doi: 10.1109/TVT.2016.2555853.

[45] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, ‘‘A survey
of motion planning and control techniques for self-driving urban vehi-
cles,’’ IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, Mar. 2016.
doi: 10.1109/TIV.2016.2578706.

[46] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
‘‘CasADi: A software framework for nonlinear optimization and optimal
control,’’ Math. Program. Comput. vol. 11, no. 1, Mar. 2019, pp. 1–36.
doi: 10.5281/zenodo.1257968.

[47] A. Wächter and Lorenz T. Biegler, ‘‘On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear pro-
gramming,’’ Math. Program. vol. 106, no. 1, Mar. 2006, pp. 25–57.
doi: 10.1007/s10107-004-0559-y.

YU MENG received the M.S. and Ph.D. degrees
in computer science and technology from Jilin
University, Changchun, China, in 2007. He is
currently an Associate Professor with the School
of Mechanical Engineering, University of Sci-
ence and Technology Beijing, Beijing, China. His
research interests include computer vision and
intelligent vehicle.

130550 VOLUME 7, 2019

http://dx.doi.org/10.1109/ICRA.2011.5980223
http://dx.doi.org/10.1109/TITS.2015.2498841
http://dx.doi.org/10.1109/TCST.2008.2012116
http://dx.doi.org/10.1109/TITS.2015.2389215
http://dx.doi.org/10.1109/TMECH.2015.2493980
http://dx.doi.org/10.1016/j.ymssp.2015.10.021
http://dx.doi.org/10.1109/ICRA.2012.6225063
http://dx.doi.org/10.1109/TITS.2014.2369737
http://dx.doi.org/10.1109/TITS.2010.2050689
http://dx.doi.org/10.1177/0278364909359210
http://dx.doi.org/10.1177/02783649030227008
http://dx.doi.org/10.1109/TITS.2012.2198214
http://dx.doi.org/10.1016/j.ymssp.2017.07.019
http://dx.doi.org/10.1109/IVS.2013.6629524
http://dx.doi.org/10.1186/s40648-014-0001-z
http://dx.doi.org/10.1109/TITS.2017.2749974
http://dx.doi.org/10.1109/IVS.2017.7995713
http://dx.doi.org/10.1109/ITSC.2018.8569414
http://dx.doi.org/10.1109/ROBOT.2010.5509799
http://dx.doi.org/10.1016/j.trb.2017.10.012
http://dx.doi.org/10.1109/IVS.2017.7995789
http://dx.doi.org/10.1109/TITS.2017.2768318
http://dx.doi.org/10.1016/j.trc.2015.09.011
http://dx.doi.org/10.1109/TITS.2006.883115
http://dx.doi.org/10.1109/IROS.2015.7353382
http://dx.doi.org/10.1109/TIV.2017.2788209
http://dx.doi.org/10.1002/rob.20255
http://dx.doi.org/10.1002/rob.20258
http://dx.doi.org/10.1109/IVS.2017.7995949
http://dx.doi.org/10.1109/TVT.2016.2555853
http://dx.doi.org/10.1109/TIV.2016.2578706
http://dx.doi.org/10.5281/zenodo.1257968
http://dx.doi.org/10.1007/s10107-004-0559-y


Y. Meng et al.: Decoupled Trajectory Planning Framework

YANGMING WU received the B.Eng. degree in
vehicle engineering from the University of Science
and Technology Beijing, Beijing, China, in 2017,
where he is currently pursuing the master’s degree
in mechanical engineering. His research interests
include motion planning and decision-making.

QING GU received the Ph.D. degree in intelligent
traffic engineering from Beijing Jiaotong Univer-
sity, Beijing, China, in 2014. She is currently an
Assistant Professor with the School of Mechani-
cal Engineering, University of Science and Tech-
nology Beijing, Beijing. Her research interests
include systems’ modeling, control, and optimiza-
tion with application in the intelligent transporta-
tion systems.

LI LIU received the Ph.D. degree in mechani-
cal engineering from the University of Science
and Technology Beijing, Beijing, China, in 2012,
where he is currently a Professor with the School
of Mechanical Engineering. His research interests
include autonomous driving andmine intelligence.

VOLUME 7, 2019 130551


