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ABSTRACT Car accidents cause a large number of deaths and disabilities every day, a certain proportion
of which result from untimely treatment and secondary accidents. To some extent, automatic car accident
detection can shorten response time of rescue agencies and vehicles around accidents to improve rescue
efficiency and traffic safety level. In this paper, we proposed an automatic car accident detection method
based on Cooperative Vehicle Infrastructure Systems (CVIS) and machine vision. First of all, a novel image
dataset CAD-CVIS is established to improve accuracy of accident detection based on intelligent roadside
devices in CVIS. Especially, CAD-CVIS is consisted of various kinds of accident types, weather conditions
and accident location, which can improve self-adaptability of accident detection methods among different
traffic situations. Secondly, we develop a deep neural network model YOLO-CA based on CAD-CVIS and
deep learning algorithms to detect accident. In the model, we utilize Multi-Scale Feature Fusion (MSFF)
and loss function with dynamic weights to enhance performance of detecting small objects. Finally, our
experiment study evaluates performance of YOLO-CA for detecting car accidents, and the results show that
our proposed method can detect car accident in 0.0461 seconds (21.6FPS) with 90.02% average precision
(AP). In additionally, we compare YOLO-CA with other object detection models, and the results demonstrate

the comprehensive performance improvement on the accuracy and real-time over other models.

INDEX TERMS Car accident detection, CVIS, machine vision, deep learning.

I. INTRODUCTION
According to the World Health Organization, there are about
1.35 million deaths and 20-50 million injuries as a result of
the car accident globally every year [1]. Especially, a certain
proportion of deaths and injuries are due to untimely treat-
ment and secondary accidents [2], which results from that
rescue agency and vehicles around accident cannot obtain
quick response about the accident [3], [4]. Therefore, it is vital
important to develop an efficient accident detection method,
which can significantly reduce both the number of deaths and
injuries as well as the impact and severity of accidents [5].
Under this background, many fundamental projects and stud-
ies to develop efficient detection method have been launched
for developing and testing [6]-[10].

The traditional methods utilize vehicle motion parameters
captured by vehicular GPS devices to detect car accident,
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such as acceleration and velocity. However, these methods
based on single type of features cannot meet the perfor-
mance need of accident detection in the aspect of accuracy
and real-time. With the development of computer and com-
munication technologies, Cooperative Vehicle Infrastructure
System and Internet of Vehicles have been developed rapidly
in recent years [11]-[13]. Moreover, the image recognition
based on video captured by intelligent roadside devices in
CVIS has become one of research hotspots in the field of
intelligent transportation system [14], [15]. For traffic situa-
tion awareness, image recognition technology has advantages
of high efficiency, flexible installation and low maintenance
costs. Therefore, the image recognition has been applied to
detection pedestrian, vehicle, traffic sign and so on success-
fully [16]-[20]. In generally, there are many distinctive image
and video features in traffic accidents, such as vehicle colli-
sion, rollover and so on. To some extent, these features can
be used to detect or predict car accidents. Accordingly, some
researchers apply the machine vision technology based on
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deep-learning into methods of car accident detection. These
methods extract and process complex image features instead
of single vehicle motion parameter, which improves the accu-
racy of detecting car accidents. However, the datasets of these
methods are mostly captured by car cameras or cell phones of
pedestrian, which is not suitable for roadside devices in CVIS.
In additionally, the reliability and real-time performance of
these methods need to be improved to meet the requirements
of car accident detection.

In this paper, we propose a data-driven car accident detec-
tion method based on CVIS, whose goal is improving effi-
ciency and accuracy of car accident response. With the goal,
we focus on such a general application scenario when there is
an accident on the road, roadside intelligent devices recognize
and locate it efficiently. First, we build a novel dataset, Car
Accident Detection for Cooperative Vehicle Infrastructure
System dataset (CAD-CVIS), which is more suitable for car
accident detection based on roadside intelligent devices in
CVIS. Then, a deep learning model YOLO-CA based on
CAD-CVIS is developed to detect car accident. Especially,
we optimize the network of traditional deep learning models
YOLO [21] to build network of YOLO-CA, which is more
accurate and fast in detecting car accident. In additionally,
considering of wide shooting scope of roadside cameras in
CVIS, multi-scale feature fusion method and loss function
with dynamic weights are utilized to improve performance
of detecting small objects.

The rest of this paper is organized as follows:
Section 2 gives an overviews of related work. We present the
details of our proposed method in Section 3. The performance
evaluation is discussed in Section 4. Finally, Section 5 con-
clude this paper.

Il. RELATED WORK

The car accident detection and notification method is a
challenging issue and has attracted a lot of attention from
researchers. They have proposed and applied various car
accident detection methods. In generally, car accident detec-
tion methods are mainly divided into the following two
kinds: vehicle running condition-based and accident video
features-based.

A. METHOD BASED ON VEHICLE RUNNING CONDITION

When an accident occurs, the motion state of the vehicle
will change dramatically. Therefore, many researchers pro-
posed the accident detection method by monitoring motion
parameters, such as acceleration, velocity and so on.
Reference [22] used On Board Diagnosis (OBD) system to
monitor speed and engine status to detect a crash, and uti-
lized smart-phone to report the accident by Wi-Fi or cellular
network. Reference [23] developed an accident detection and
reporting system using GPS, GPRS, and GSM. The speed of
vehicle obtained from High Sensitive GPS receiver is consid-
ered as the index for detecting accidents, and the GSM/GPRS
modem is utilized to send the location of the accident. Ref-
erence [24] presented a prototype system called e-NOTIFY,
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which monitors the change of acceleration to detect accident
and utilize V2X communication technologies to report it.
To a certain extent, these methods can detect and report car
accidents in short time, and improve the efficiency of car acci-
dents warning. However, the vehicle running condition before
car accidents is complex and unpredictable, and the accuracy
of accident detection only based on speed and acceleration
may be low. In addition, they rely too heavily on vehicu-
lar monitoring and communication equipment, which may
be unreliable or damaged in some extreme circumstances,
such as heavy canopy, underground tunnel, and serious car
accidents.

B. METHOD BASED VIDEO FEATURES

With the development of machine vision and artificial neural
network technology, more and more applications based on
video processing have been applied in transportation and
vehicle fields. Under this background, some researchers uti-
lized video features of the car accident to detect it. Refer-
ence [25] presented a Dynamic-Spatial-Attention Recurrent
Neural Network (RNN) for anticipating accidents in dashcam
videos, which can predict accidents about 2 seconds before
they occur with 80% recall and 56.14% precision. Refer-
ence [26] proposed a car accident detection system based on
first-person videos, which detected anomalies by predicting
the future locations of car participants and then monitoring
the prediction accuracy and consistency metrics. These meth-
ods also have some limitations because of low penetration
of vehicular intelligent devices and shielding effects between
vehicles.

There are also some other methods which use roadside
devices instead of vehicular equipments to obtain and process
video. Reference [27] proposed a novel accident detection
system at intersection, which composed background images
from image sequence and detected accidents by using Hid-
den Markov Model. Reference [28] outlined a novel method
for modeling of interaction among multiple moving objects,
and used the Motion Interaction Field to detect and localize
car accidents. Reference [29] proposed a novel approach
for automatic road accident detection, which was based
on detecting damaged vehicles from footage received from
surveillance cameras installed in roads. In this method, His-
togram of gradients (HOG) and Gray level co-occurrence
matrix features were used to train support vector machines.
Reference [30] presented a novel dataset for car accidents
analysis based on traffic Closed-Circuit Television (CCTV)
footage, and combined Faster Regions-Convolutional Neural
Network (R-CNN) and Context Mining to detect and predict
car accidents. The method in [30] achieved 1.68 seconds in
terms of Time-To-Accident measure with an Average Preci-
sion of 47.25%. Reference [8] proposed a novel framework
for automatic car accident detection, which learned feature
representation from the spatio-temporal volumes of raw pixel
intensity instead of traditional hand-crafted features. The
experiments of method in [8] demonstrated it can detect on
average 77.5% accidents correctly with 22.5% false alarms.
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FIGURE 1. The application scenario of the automatic car accident
detection method based on CVIS.

Compared with the methods based on vehicle running
condition, these methods improve the detection accuracy and
some of them even can predict accidents about 2 seconds
before they occur. To some extent, these methods are sig-
nificant in decreasing the accident rate and improving traffic
safety. However, the detection accuracy of these methods is
low and the error rate is high, and the wrong accident infor-
mation will have a great impact on the normal traffic flow.
Concerning the core issue mentioned above, in order to avoid
the drawbacks of vehicular cameras, our proposed method
utilizes the roadside intelligent edge devices to obtain traffic
video and process image. Moreover, for sake of improving the
accuracy of accident detection method based on intelligent
roadside devices, we establish the CAD-CVIS dataset based
on video sharing websites, which is consisted of various kinds
of accident types, weather conditions and accident locations.
Moreover, we develop the model YOLO-CA to improve the
reliability and real-time performance among different traffic
conditions by combining deep learning algorithms and MSFF
method.

lll. METHODS

A. METHOD OVERVIEW

The Fig. 1 shows the application principle of our proposed car
accident detection method based CVIS. Firstly, the car acci-
dent detection application program with YOLO-CA model is
deployed on the edge server, which is developed based on
CAD-CVIS and deep learning algorithms. Then edge server
receives and processes the real-time image captured by road-
side cameras. Finally, the roadside communication unit will
broadcast the accident emergency messages to the relevant
vehicles and rescue agencies by DSRC and 5G networks.
In the rest of this section, we will present the details of
CAD-CVIS and YOLO-CA model.

B. CAD-CVIS

1) DATA COLLECTION AND ANNOTATION

There are two major challenges in collecting car accidents
data:(1) Access: access to roadside traffic cameras data is
often limited. In addition, the accident data from transporta-
tion administration is often not available for public uses
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FIGURE 2. Data collection and annotation for the CAD-CVIS dataset.
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FIGURE 3. Number of accident frames in CAD-CVIS categorized by
different indexes. (a) Accident Type (b) Weather condition (c) Accident
time (d) Accident location.

because of many legal reasons. (2) Abnormality: car accidents
are rare in the road compared with normal traffic conditions.
In this work, we try to draw support from video sharing web-
sites to search the videos and images including car accidents,
such as news report and documentary. In order to improve the
applicability of our proposed method to roadside edge device,
we only pick out the videos and images captured from a traffic
CCTYV footage.

Through the above steps, we obtain 633 car accidents
scenes, 3255 accident key frames and 225206 normal frames.
Moreover, the car accident scene only occupies a small part
of each accident frame. We utilize Labellmg [31] to annotate
the location of the accident in each frame in detail to enhance
the accuracy of locating accident. The high accuracy enables
emergency message be sent to the vehicles that are in the same
direction as accident more efficiently and decrease the impact
to the vehicles that are in the opposite direction. The whole
steps of data collection and annotation are shown in Fig. 2.
The CAD-CVIS dataset is made available for research use
through https://github.com/zzzzzzc/Car-accident-detection.

2) STATISTICS OF THE CAD-CVIS

Statistics of the CAD-CVIS dataset can be found in Fig. 3.1t
can be found that the CAD-CVIS dataset includes various
types of car accidents, which can improve the adaptability of
our method to different conditions. According to the number
of vehicles in the accident, the CAD-CVIS dataset includes
323 Single Vehicle Accident frames, 2449 Double Vehi-
cle Accidents frames and 483 Multiple Vehicle Accidents
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TABLE 1. Comparison between CAD-CVIS and related datasets.

Dataset name Scenes  Frames or Duration A R M
UCSD Ped2 77 1636 frames X v X
CUHK Avenue 47 3820 frames X X v
DAD 620 2.4 hours v X v
CADP 1416 5.2 hours x v Y
CAD-CVIS 632 3255+225206 frames v v @V

frames. Moreover, the CAD-CVIS dataset covers a variety
of weather conditions, such as 2769 accident frames under
sunny condition, 268 frames under foggy condition, 52 acci-
dent frames under rainy condition and 166 accident frames
under snowy condition. Besides, there are 2588 frames of
accidents in the daytime and 667 accident frames at night.
In addition, the CAD-CVIS dataset contains 2281 frames
of accidents occurring at the intersection, 596 frames in the
urban road, 189 frames in the expressway and 189 frames in
the highway.

Comparison between CAD-CVIS and related datasets can
be found in Table. 1. The A in Table. 1 responses that there
is annotation of car accident in the dataset. R responses that
the videos and frames captured from the roadside CCTV
footage. M responses that there are multiple road condi-
tions in dataset. Compared with CUHK Avenue [32], UCSD
Ped2 [33] and DAD [25], CAD-CVIS contains more car
accident scenes, which can improve the adaptability of model
based on CAD-CVIS. Moreover, the frames of CAD-CVIS
are all captured from roadside CCTV footage, which is more
suitable for the accident detection methods based on intelli-
gent roadside devices in CVIS.

C. OUR PROPOSED DEEP NEURAL NETWORK MODEL

In the task of car accident detection, we must not only judge
whether there is a car accident in the image, but also accu-
rately locate the car accident. That’s because the accurate
location guarantees that the RSU can broadcast the emer-
gency message to the vehicles affected by the accident. The
classification and location algorithms can be divided into
two kinds:(1) Two stage model, such as R-CNN [34], Fast
R-CNN [35], Faster R-CNN [36] and Faster R-CNN with
FPN [37]. These algorithms utilize selective research and
Region Proposal Network (RPN) to select about 2000 pro-
posal regions in the image, and then detection objects by the
features of these regions extracted by CNN. These region-
based models locate objects accurately, but extracting pro-
posals take a great deal of time. (2) One stage model, such
as YOLO [21](You Only Look Once) and SSD (Single Shot
MultiBox Detector) [38]. These algorithms implement loca-
tion and classification by one CNN, which can provide end to
end detection service. Because of eliminating the process of
selecting the proposal regions, these algorithms are very fast
and still has guaranteeing accuracy. Considering that accident
detection requires high real-time performance, we design the
deep neural network based on one-stage model YOLO [21].

1) NETWORK DESIGN
YOLO utilizes its particular CNN to complete classification
and location of multiple objects in an image at one time. In the
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TABLE 2. Composition of YOLO-CA network.

Layer name Number
Input 1
Convolution 65
Batch Normalization 65
Leaky ReLU 65
Zero Padding 5
Add 23
Upsampling 1
Concatenate 1
Total 228

training process of YOLO, each image is divided into §' x S
grids. If the center of an object falls into a grid cell, that
grid cell is responsible for detecting that object [39]. This
design can improve the detection speed dramatically and the
detection accuracy with reference to global features. How-
ever, it also will cause serious detection error when there are
more than one objects in one grids. Roadside cameras have
a wide scope of shooting, the accident area may be small in
the image. Inspired of the multi-scale feature fusion (MSFF)
network, in order to improve the performance of model to
detect small objects, we utilize 24 layers to achieve image
upsampling and obtain two different dimensional output ten-
sors. This new car accident detection model is called as
YOLO-CA, and the network structure diagram of YOLO-CA
is shown as Fig. 4.

As shown in Fig. 4, YOLO-CA is composed of 228 neural
network layers, and the number of each kind of layer is
shown in Table. 2. These layers constitute many kinds of
basic components of YOLO-CA network, such as DBL and
ResN. The DBL is the minimum components of YOLO-CA
network, which is composed of Convolution layer, Batch
Normalization layer and Leaky ReLLU layer. ResN consists of
Zero Padding layer, DBL and N Resblock_units [40], which
is designed to avoid neural network degradation caused by
increased depth. Ups in Fig. 4 is upsampling layer, which is
utilized to improve the performance of YOLO-CA to detect
small objects. Concat is concatenate layer, which is used to
concatenate the layer in Darknet-53 and upsampling layer.

2) DETECTION PRINCIPLE

Fig. 5 shows the detection principle of YOLO-CA, which
includes extracting feature map and predicting bounding box.
As shown in Fig. 5, YOLO-CA divides the input image into
13 x 13 grid and 26 x 26 grid. The first grid is responsible for
detecting the large objects, whereas the second grid makes up
for the inaccuracy of small target detection in the first grid.
The feature extraction networks corresponding to these two
grids are different, but the detection models of the objects
is similar. For ease of presentation, we regard the first grid
as example to explain the training steps of YOLO-CA. The
center of car accident region falls into the grid cell (7, 5),
so this cell is responsible for detecting this car accident in the
whole training process. Then the cell (7, 5) will predict three
bounding boxes, and each boxes includes six parameters:
x,y,w, h, CS, p. The (x, y) is the center point of the bounding
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FIGURE 5. The detection principle of YOLO-CA.

box, and the (w, h) is the ratio of width and height of the
bounding box to the whole image. The CS is confidence score
of bounding box, which represents how confident the model
is that the bounding box contains an object and how accurate
it thinks the box is that it predicts. Lastly, each bounding box
will predict class probability of car accident p.

After the training of a batch of images, the loss of model
will be calculated, which is utilized to adjust the weights of
parameters. In the calculation of loss, let the ground truth of
an object is x*, y*, w*, h*, CS*, p*. S x § is the number of
cells in grid, and B is the number of predicted bounding boxes
of each grid cell. For each grid cell, the Pr(Objects) equals
1 when the cell contains center of object, whereas it equals
0 when there is not center of object in the cell. For each image,
the loss of YOLO-CA is divided into the following four parts:

o Loss of (x, y), which is calculated by (1). Where BCL is

binary cross entropy loss function, and the areaTure is
defined as w* * h*.
SxS B
Loss,y = Z Z Pr (Objects) (2 — areaTure;;)
i=1 j=1
* [BCL (x;7) + BCL (yjj)]

BCL (x;) = x;; log x;j + (1 —x;;) log (1 — x)
BCL (vj) = vjlogy; + (1= ¥j) log (1 = y;) (1)
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e Loss of (w,h), which is calculated by (2). Where
SD is square difference function. Especially, the
(2 — areaTure;j) in (1) and (2) is utilized to increase the
error punishment of small objects. Because that the same
errors of x,y, w, h cause more serious impact on the
detection effect of small object than that of large object.

SxS B

Loss,, = Z Z Pr (Objects) (2 — areaTur e;)
i=1 j=1

w3 [5D (w5) + 5D (1)]
D (wg) = (s —w§)’

D (hg) = (g~ 5) @

o Loss of CS, which is calculated by (3). The loss of CS
can be divided into two parts: the confidence loss of
foreground and confidence loss of background.

SxS B
Losscs = Z Z Pr (Objects) * BCL (CSij)
i=1 j=1
+ (1 — Pr (Objects)) = BCL (CSy)
BCL (CSjj) = CS;log CSj;

(1 —csj)log(1-Csy) @)

where CS* is defined by (4). In additionally, the IOU;,
is defined in Fig. 6, which equals the intersection over
union (IoU) between the predicted bounding box and the
ground truth.

CS* = Pr(Objects) * IOU;, 4)

o Loss of p, which is calculated by (5)
SxS B

Losscs = Z ZPV (Objects) BCL (py)
=1 j=1

BCL (py) = pylogpy + (1= pj) log (1 = py) ()
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FIGURE 6. The definition of loU.

For each image in training set, the total loss is defined as (6).
Especially, because that the multi-scale feature fusion is used
in YOLO-CA, the loss is the sum of conditions under S = 13
and § = 26. In additionally, the loss of each batch of images
is defined as (7).

Loss_img = Lossyy + Lossyn + Losscs + Loss,  (6)
1 b
Loss = b ,; Loss_imgy 7)

where the b in (7) is the size of batch.

IV. EXPERIMENT

In this section, we evaluate our proposed model YOLO-CA
on the CAD-CVIS dataset. First, we give the training results
of YOLO-CA, which include the change process of sev-
eral performance indexes. Then, we show the results of
some comparative experiments between YOLO-CA and other
detection models. Finally, the visual results are demonstrated
among various types and scales of car accident objects.

A. IMPLEMENTATION DETAILS

We implement our model in TensorFlow [41] under the oper-
ating system Ubuntu 18.04 and perform experiments on a
system with Nvidia Titan Xp GPU. We divide the CAD-CVIS
dataset into three parts: (1) Training set (80%), which is used
to train the parameter weight of network. (2) Validation set
(5%), which is utilized to adjust hyperparameters, such as
learning rate and drop out rate. (3) Test set (15%), which is
used to evaluate the performance of different algorithms for
detecting car accident. In additionally, each part of dataset
contains all types of accident in Fig. 3. The batch size is set to
64, and the models are trained for up to 30000 iterations. The
initial learning rate is set to 0.001, and updating with iteration
parameter of 0.1/10000 iterations. The SGD optimizer with a
momentum of 0.9 is utilized to adjust parameters of network.
Moreover, we use a weight decay of 0.0005 to prevent model
overfitting.

B. RESULTS AND ANALYSIS

1) TRAINING RESULTS OF YOLO-CA

Fig. 7 shows the training results of YOLO-CA, including
the changes of precision, recall, IoU and loss of each batch
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FIGURE 7. The training results of YOLO-CA. (a) Precision (b) Recall (c) loU
(d) Loss.

TABLE 3. Distribution map of prediction results.

Ground truth

Positive ~ Negative
Prediction  Positive TP FP
Result Negative FN TN

in iteration process. In the training process of YOLO-CA,
we regard the prediction result with IoU over 0.5 and right
classification as true result, and other predictions are all false
results. As shown in Table. 3, the prediction results can be
divided into four parts: (1) TP: Truth Positive. (2) FP: False
Positive. (3) FN: False Negative. (4) TN: True Negative. The
precision is defined as precision = %, and recall is
defined as recall = 7.

As shown in Fig. 7a, with the increasing of iterations,
the precision of YOLO-CA is increasing gradually and
converge over 90%. Moreover, recall eventually converges
to more than 95%. In terms of locating performance of
YOLO-CA in training set, IoU finally stabilizes above
0.8. The Fig. 7d shows the decreasing process of loss of
YOLO-CA in (7), and the final convergence of loss is less
than 0.2.

2) COMPARATIVE EXPERIMENTS AND VISUAL RESULTS

The comparative experiments are conducted for comparing
seven detection models: (1) One-stage models: SSD, our
proposed YOLO-CA, traditional YOLO-v3 and YOLO-v3
without MSFF (Multi-Scale Feature Fusion). (2) Two-stage
models: Fast R-CNN, Faster R-CNN and Faster R-CNN with
FPN. In order to comparatively demonstrate the validation
of YOLO-CA as well as confirm its strength in terms of the
comprehensive performance on the accuracy and real-time,
the following indexes are selected for comparison among the
seven models:
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FIGURE 8. The AP and loU results of different models. (a) Precision-Recall
curve (b) Average loU.

o Average Precision (AP) that is defined as the average
value of precision under different recall, which can be
changed by adjusting threshold of classification confi-
dence. AP index evaluate the accuracy performance of
detection models. The average precision can be calcu-
lated by (8).

1
AP:/ precision(r) ®)
0

where r is recall.

o Average Intersect over Union (Average IoU) that is
utilized to evaluate the object locating performance of
detection models. The Average IoU is the average value
of ToUs between every prediction bounding box and
corresponding ground truth.

o Frames Per Second (FPS). Inference time is defined as
the average time cost of detecting a frame among test set.
FPS is the reciprocal of inference time, which is defined
as the average number of frames that can be detected in
one second. This indexes evaluate real-time performance

of detection models.
The Fig. 8a shows the Precision-Recall curve of detection

models among test set. It can be found that Faster R-CNN
with FPN and our proposed YOLO-CA have obvious
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advantages in accuracy performance than the other mod-
els. In additionally, our-proposed YOLO-CA can achieve
90.02% of AP, which is slightly lower than that of Faster
R-CNN with FPN (90.66%) and higher than those of Fast
R-CNN (77.66%), Faster R-CNN (82.02%), SSD (83.40%),
YOLOV3 without MSFF (83.16%) and YOLOV3 (86.20%).
Average IoU is a vital important index to evaluate locating
performance of detection models. Moreover, accurate loca-
tion is critical to car accident detection and notification, and
higher locating performance can improve the safety of the
vehicles around accident. As shown in Fig. 8b, YOLO-CA
can achieve about 0.73 of Average IoU, which is lower than
that of Faster R-CNN with FPN (0.75) and higher than those
of Fast R-CNN (0.58), Faster R-CNN (0.66), SSD (0.69),
YOLOV3 without MSFF (0.65) and YOLOV3 (0.71).

In order to compare and analysis the performance of mod-
els in details, the objects of test set is divided into three parts
according to different scales of objects:(1) Large: the area of
object is larger than one tenth of image size. (2) Medium:
the area of object is over the interval [1/100, 1/10] of image
size. (3) Small: the area of object is less than one-hundredth
of image size.

The Table. 4 shows the AP and IoU results of the seven
models among different scales of object. We can intuitively
see that the scales of objects significantly affect the accuracy
and locating performance of detection models. It can be
found that our proposed YOLO-CA has obvious advantages
in AP and Average IoU than Fast R-CNN, Faster R-CNN
and YOLOv3 without MSFF, especially among small scale of
objects. There is not MSFF process in the above three models,
which results in that they detection the objects only rely on the
top-level features. However, although there is rich semantic
information in top-level features, the location information
of objects is rough, which does not benefit to locate the
bounding box of objects correctly. On the contrary, there is
little semantic information in low-level features with high
resolution, but the location information of objects is accurate.
For small scales of objects, they make up a small proportion of
the whole frame, and their location information is easily lost
through multiple convolution processes. YOLO-CA utilizes
MSFF to combine top-level features and low-level features,
and then makes a prediction in each fused feature layer. This
process reserves the rich semantic information and accurate
location information simultaneously, so YOLO-CA has better
performance in AP and Average IoU than Fast R-CNN, Faster
R-CNN and YOLOv3 without MSFF. For SSD, it uses pyra-
midal feature hierarchy to obtain multi-scale feature maps.
But to avoid using low-level features SSD foregoes reusing
already computed layers and instead builds the pyramid start-
ing from high up in the network and then by adding several
new layers. So SSD misses the opportunity to reuse the
higher-resolution maps of feature hierarchy, which are vital
important for detecting small objects [37]. Moreover, the per-
formance of backbone of YOLO-CA (Darknet53) is better
than that of SSD (VGG-16) because of using residual net-
works to avoid degradation problem of deep neural network.
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TABLE 4. AP and loU results of different models among different scales of object.

AP(%) Average IoU

Method Large Medium  Small | Large Medium Small

Fast R-CNN 82.11 80.3 4920 | 0.68 0.63 0.46
Faster R-CNN 89.66 86.79 56.79 | 0.71 0.69 0.51
Faster R-CNN with FPN | 93.07 92.15 78.63 | 0.74 0.72 0.68
SSD 91.37 89.65 60.59 | 0.73 0.71 0.58

YOLOV3 without MSFF | 90.18 90.40 58.89 | 0.72 0.68 0.50
YOLOv3 90.45 91.17 67.78 | 0.74 0.73 0.60
YOLO-CA 93.87 91.51 76.51 | 0.76 0.74 0.64

Fast Faster  Faster SSD  YOLOV3 YOLOV3 YOLO-CA
RCNN  RCNN  R-CNN without
with FPN MSFF

FIGURE 9. The FPS of different models.

Therefore, YOLO-CA can achieve better results of AP
and Average IoU than SSD. Compared with YOLOv3,
YOLO-CA utilizes loss function with dynamic weights to
balance the influence of location loss among different scales
of objects. This process increases the error punishment of
small objects, because that the same errors of x, y, w, h cause
more serious impact on the detection effect of the small
object than that of the large object. Consequently, YOLO-
CA has obvious advantages in AP and Average IoU of
small objects than YOLOv3. The MSFF processes of Faster
R-CNN with FPN and YOLO-CA are similar, feature pyra-
mid networks is used to extract feature maps of different
scales and fuse these maps to obtain features with high-
semantic and high-resolution. Faster R-CNN utilizes RPN
to select about 20000 proposal regions, whereas there are
only 13 % 13 % 3 4+ 26 % 26 * 3 = 2535 candidate bound-
ing boxes in YOLO-CA. This difference results in Faster
R-CNN has slight advantages in accuracy performance than
YOLO-CA, but also causes serious disadvantages in real-time
performance.

Fig. 9 shows the FPS results of different models among
test set. It can be found that the FPS of one-stage models
is obviously higher than that of two-stage models. This low
performance of the two-stage models results from a great deal
of time cost of selecting proposal regions.

Fast R-CNN utilizes time-consuming selective research
algorithm to select proposal regions based on color and tex-
ture features, which results in that Fast R-CNN only achieves
0.4 of FPS. Faster R-CNN uses the RPN that share convolu-
tional layers with state-of-the-art object detection networks
instead of selective research to generate proposals.
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Benefiting from RPN, Faster R-CNN achieve about 3.5 of
FPS among test set (Faster R-CNN:3.5, Faster R-CNN with
FPN:3.6).

Although Faster R-CNN obtains significantly improve-
ment of real-time performance compared with Fast R-CNN,
there is still a big gap with one-stage models. That is because
one-stage models abandon the process of selecting proposal
regions and utilize one CNN to implement location and clas-
sification of objects. As shown in Fig. 9, SSD can achieve
15.6 of FPS among test set. The other three models based on
YOLO utilize the backbone Darknet-53 instead of VGG-16 in
SSD, and computation of the former network is significantly
less than the latter because of using the residual networks.
Therefore, the real-time performance of SSD is lower than
YOLO-based models in our experiments. In additionally,
our proposed YOLO-CA simplifies the MSFF networks of
YOLOV3. So YOLO-CA can achieve 21.7 of FPS, which is
higher than that of YOLOV3 (about 19.1). Because of lacking
MSEFF process in YOLOv3 without MSFF, it has better real-
time performance (about 23.6 of FPS) than YOLO-CA, but
this lacking results in serious performance penalties of AP.

Fig. 10 show some visual results of the seven models
among different scales of objects. It can be found that there
is a false positive in the large objects detection results of Fast
R-CNN, but the other six models all have high accuracy and
locating performance in large objects in Fig. 10. However,
the locating performance of Fast R-CNN, Faster R-CNN,
SSD, and YOLOv3 without MSFF decrease significantly in
medium object frame (1), and the prediction bounding box
cannot fitting out the contour of car accident. Moreover, Fast
R-CNN, SSD, and YOLO-without MSFF cannot detect the
car accident in small object frame (1). In additionally, except
for Faster R-CNN with FPN and YOLO-CA, other models
have serious location error in small object frame (3).

3) COMPARISON OF COMPREHENSIVE PERFORMANCE
AND PRACTICALITY

As analyzed above, it can be found that our proposed
YOLO-CA has performance advantages of detecting car acci-
dent than Fast R-CNN, Faster R-CNN, SSD, and YOLOV3 in
terms of accuracy, locating and real-time performance. For
YOLOV3 without MSFF, the FPS of it (23.6) is higher than
that of YOLO-CA (21.7), and this difference is acceptable
in the practical application of detecting car accident. How-
ever, the AP of YOLO-CA is significantly higher than that
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FIGURE 10. Some visual results of the seven models among different scales of objects.

of YOLOv3 without MSFF, especially for small scales of
object (76.51% vs 58.89%). Compared with Faster R-CNN
with FPN, YOLO-CA can approach the AP of it (90.66%
vs 90.03%) with an obvious speed advantage. Faster R-CNN
cost about 277ms on average to detect one frame, whereas
YOLO-CA only need 46 ms, which illustrates the speed of
YOLO-CA is about 6 x faster than Faster R-CNN with FPN.
Car accident detection in CVIS requires high real-time per-
formance because of the high dynamics of vehicles. To sum-
marize, our proposed YOLO-CA have higher practicality and
comprehensive performance on accuracy and real-time.

4) COMPARISON WITH OTHER CAR ACCIDENT

DETECTION METHODS

Although other car accident detection methods utilize a small
private collection of datasets and do not make them public
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so comparing them may not be fair at this stage. But still,
we list the performance achieved by these methods on their
individual datasets. ARRS [3] achieve about 63% AP with
6% false alarms. The method of [27] achieve 89.50% AP.
DSA-RNN [25] achieve about 80% recall and 56.14% AP.
The method in [30] achieve about 47.25% AP. The method
of [8] achieve 77.5% AP and 22.5% false alarms. Moreover,
the number of accident scenes of the datasets utilized in these
methods is limited, which will result in poor adaptability for
new scenarios.

V. CONCLUSION

In this paper, we have proposed an automatic car accident
detection method based on CVIS. First of all, we present
the application principles of our proposed method in the
CVIS. Secondly, we build a novel image dataset CAD-CVIS,
which is more suitable for car accident detection method
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based on intelligent roadside devices in CVIS. Then we
develop the car accident detection model YOLO-CA based
on CAD-CVIS and deep learning algorithms. In the model,
we combine the multi-scale feature fusion and loss function
with dynamic weights to improve real-time and accuracy
of YOLO-CA. Finally, we show the simulation experiments
results of our method, which demonstrates our proposed
methods can detect car accident in 0.0461 seconds with
90.02% AP. Moreover, the comparative experiments results
show that YOLO-CA has comprehensive performance advan-
tages of detecting car accident than other detection models,
in terms of accuracy and real-time.
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