
SPECIAL SECTION ON INTEGRATIVE COMPUTER VISION AND MULTIMEDIA ANALYTICS

Received August 21, 2019, accepted September 5, 2019, date of publication September 11, 2019,
date of current version September 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2940217

An Extended Multilayer Perceptron Model
Using Reduced Geometric Algebra
YANPING LI 1 AND WENMING CAO 2
1College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
2College of Information Engineering, Shenzhen University, Shenzhen 518060, China

Corresponding author: Wenming Cao (wmcao@szu.edu.cn)

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant U1701265 and Grant 61771322.

ABSTRACT An extended model of multilayer perceptron (MLP) based on reduced geometric alge-
bra (RGA), namely RGA-MLP, is proposed for multi-dimensional signal processing. The RGA-MLP
model treats multi-dimensional signals as multivectors in RGA space and all neuronal parameters such as
inputs, connection weights, activation function and outputs, and also operators are encoded by RGA. The
RGA-based back propagation (BP) algorithm is also provided. Thanks to the commutative property of RGA,
multi-dimensional signals can be processed in a holistic manner which avoids losing relationship of multiple
dimensions. The experiments demonstrate that the RGA-MLPmodel outperforms the traditional real-valued
MLP model and quaternion based MLP model (QMLP) with faster convergence rate, higher classification
accuracy and Lower computational complexity.

INDEX TERMS Reduced geometric algebra (RGA), multilayer perceptron (MLP), multivectors,
multi-dimensional signals.

I. INTRODUCTION
Multilayer perceptron, known as multi-layer feed-forward
neural network, is the most well-known artificial neural
network (ANN) model. On account of its good nonlinear
mapping ability, it has been widely applied in variety of appli-
cations like pattern recognition, image processing, fusion
approximation, optimization computation, and so on [1]–[4].
MLP models achieve mappings from input space to out-
put space, and implement its training utilizing mainly back
propagation (BP) algorithm to accommodate the connection
weights of the network, and are commonly applied in super-
vised learning tasks [5], [6]. Considerable researches have
emerged towards both the optimization and extended applica-
tions of MLP models. Rossi et al. [7] proposed an extension
of the multilayer perceptron (MLP) that works on functional
inputs, and then they subsequently proposed to rely on a
representation of input and weight functions by projection on
a truncated base [8]. Zhang et al. [9] extended MLP to a new
MLP-like neural network and has demonstrated to require
fewer neural nodes and adjustable parameters in the same
situation. Gas [10] gave an extension of a self-organizingmap
called self-organizing multilayer perceptron to achieve quan-
tization of spaces of functions. Grippo et al. [11] considered
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the learning problem of multilayer perceptrons formulated as
the problem of minimizing a smooth error function.

Multi-dimensional signal processing is an important issue
for artificial neural networks. there does not exist efficient
models for multi-dimensional signal processing.For tradi-
tional real-valued MLP models [12], [13], a single neuron
can take only one real value as its input, thus several neurons
are used for handling multi-dimensional signals in a network,
which is sometimes unnatural in practical applications to
engineering problem, such as image processing. As for color
image, it is processed in an independent manner, in which
the color image has been represented just as three gray-scale
images to apply the real-valued MLP model for three times,
and, the correlation of the three color channels has been lost
inevitably.

Then, the complex-valued neural networks have been
extensively investigated [14], [15], which have been well
established in signal and image processing. Yang et al. [16]
analyzed the sensitivity of a split-complex valued multilayer
perceptron (split-CMLP) due to the errors of the inputs
and the connection weights between neurons, and showed
that the sensitivity is affected by the number of the lay-
ers and the number of the neurons adopted in each layer.
Due to a growing number of studies concerning the use of
quaternions in neural networks, multilayer perceptronmodels
have been extended to quaternion domain [17]–[19]. The use

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 129815

https://orcid.org/0000-0002-0074-7695
https://orcid.org/0000-0002-8174-6167


Y. Li, W. Cao: Extended MLP Model Using RGA

of quaternion in MLP models yielded to a wide range of
applications, such as color image compression [20], signal
classification [21], etc. quaternion-valued MLP models have
shown the efficiency in dealing with color images. However,
the quaternion-based models are known to suffer from high
computational complexity and large data redundancy due to
non-commutative multiplication.

Geometric algebra (GA) provides a powerful comput-
ing framework in signal and image processing and it gives
a formidable way for multi-dimensional signals [22]–[30].
Buchholz and Sommer [31] proposed the clifford neurons
and clifford multilayer perceptrons in GA space for different
geometric entities processing. To address the problem of high
computational complexity owing to non-commutative multi-
plication, Shen et al. [32] presented a novel theory of reduced
geometric algebra (RGA) with commutative multiplication
rules and a novel vector-valued sparse representation model
for color image using RGA.

Inspired by the recent progress of GA based models in
various fields of multi-dimensional signal processing, and
the advantages of RGA theory, we present an extended mul-
tilayer perceptron model using reduced geometric algebra,
which treats multi-dimensional signals as multivectors in
RGA space, and simplifies the computation of the networks.
All elements of proposed RGA-MLPmodel including inputs,
outputs, activation function and operators are extended to the
RGA domain with commutative multiplication rules. We also
present a RGA-version of back propagation (BP) algorithm
to train the network. Thus, the proposed RGA-MLP model
is capable of achieving the state-of-art performance with
lower computational complexity formulti-dimensional signal
processing.

The rest of the paper is organized as follows. Section II
reviews the related work, including the basics of multilayer
perceptron (MLP) and geometric algebra (GA). Section III
describes the basics of RGA. The structure of RGA-MLP
model and the RGA-version of back propagation algorithm
is introduced in Section IV. In Section V, the classification
experiments are implemented to validate the superiority of
the model. Section VI concludes the paper.

II. RELATED WORK
A. BASICS OF GEOMETRIC ALGEBRA
Geometric Algebra (GA) is introduced by
William K. Clifford, also known as Clifford Algebra, which
gives geometric insight and effective representation for multi-
dimensional signals. Particularly, GA is regarded as a pow-
erful framework for different geometric entities, offering a
potential tool to solve many tasks connected to information
science [33]–[35]. Technically speaking, GA subsume, for
example, the real numbers, the complex numbers and the
quaternions.

Suppose Gn is a 2n-dimensional vector space with an
orthogonal basis,{

1,
{
ei
}
,
{
eiej

}
, · · · ,

{
e1e2 · · · en

}}
(1)

An arbitrary element of the geometric algebra is given as

x = x0 +
n∑
i=1

xiei (2)

where x0, x1 · · · xn ∈ R.
In general, the geometric product is non-commutative with

two basis vectors ei and ej, it is denoted
e2i = 1, i = 1, . . . , p
e2i = −1, i = p+ 1, . . . , p+ q
eiej = −ejei, i 6= j

(3)

where Gn can be denoted as Gp,q, and n = p+ q.
The geometric product of geometric algebra is represented

as follows.

xy = x · y+ x ∧ y (4)

where x, y represent two vectors, x ·y and x∧y represent inner
product and outer product, respectively.

And properties of the geometric product are given as
follows 

x · y =
1
2
(xy+ yx)

x ∧ y =
1
2
(xy− yx)

(5)

It is clear to see that the mathematical relationship of
geometric product between the two vectors can be converted
calculate two parts, one is a scalar part x · y, the other is a
bivector part x ∧ y, which is neither fully anti-symmetric, nor
fully symmetric. Multivectors are viewed as the the basic ele-
ments in GA space, extending vectors to higher dimensions.

Defining any multivector H ∈ (Gn)M×N in GA space,

H = E0 (H)+
∑

16i6n

Hi (H) ei +
∑

16i6j6n

Eij (H) eij + · · ·

+E1···n (H) e1···n,H (H) ∈ RM×N (6)

B. MULTILAYER PERCEPTRON MODEL
Multilayer Perceptron (MLP) is an efficient feed-forward
neural network, constituting one of the most common and
popular classes of neural networks for image processing and
pattern recognition [36]–[38]. It consists of several subse-
quent layers which is of perceptron-type, including an input
layer that simply obtains the external inputs, a set of hidden
layers and one output layer. This model of neural network
is known as a supervised network, which requires a desired
output for learning. It is worth noting that MLP is applied to
create a model that correctly maps the input to the output with
historical data, therefore when the desired output is unknown,
the model can be able to produce the output successfully.
MLP is trained using back-propagation learning algorithm,
which serves to minimize the squared error between the net-
work outputs and the desired ones. Then, this is used to adjust
weights error, back-propagating minimum squared error to
the neural network.
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Let xl be the input signals to MLP, the output value from
the j th hidden neuron is described as

ylj = f

(
n∑
i=1

xliwij

)
(7)

where f represents the activation function and is the con-
nection weight from the i th input neuron to the j th hidden
neuron.

Then, the final output value from the output neuron is
computed as

yout = f

 k∑
j=1

yljwj

 (8)

where k represents the number of hidden neurons and wj
represents the connection weight from the j th hidden neuron
to the output neuron.

The real-valued MLP is adaptable for scalar data pro-
cessing especially. The complex-valued MLP can treat two-
dimensional signal elements as a single entity. And the
QMLP can handle three-channel signals in a whole manner,
which preservers the interrelationship information. However,
QMLP has a series of computational burden and large data
redundancy, because of non-commutativity of the quaternion
multiplication. The QMLP has been recently explored to nat-
urally represent high-dimensional information, such as color
and three-dimensional geometric signals, by a quaternionic
neuron, rather than complex-valued or real-valued neurons.

III. REDUCED GEOMETRIC ALGEBRA (RGA)
A. THE BASICS OF RGA
Let Ln is n-dimensional reduced geometric algebra (RGA)
space, it denoted

Ln =
{
Ln0 ,Ln1

}
(9)

where Ln0 and Ln1 are regards as two parallel RGA sub-
space which consist of RGA space Ln, n0 = n1 = n

2 .
In detail, Ln0 is consisted with an orthogonal basis {γ1, γ2,
· · · , γn0−1}, Ln1 is consisted with an orthogonal basis{
γ1+n0 , γ2+n0 , · · · , γn1+n0−1

}
.

The basis elements γi, γj in Ln0 and Ln1 are both obeying
the following rules:

γiγj = γjγi, i 6= j (10)

Moreover, we define:

γ 2
i =

{
−1, i 6= 0
1, i = 0

(11)

Specially, there are α = e2n−1 in Ln, which satisfy the
following rules:{

γiα = αγi = γi+n0 , γi ∈ Ln0
α2 = 1

(12)

Take n = 4, for instance, α = e2, e1α = αe1 = e3.
Obviously, the multiplication of γi is commutative according

to (10) and (11). Specifically, RGA is denoted as Ln and can
be seen as the space that is generated by the collection of{{
γ1, γ2, · · · , γn0

}
,
{
γ1+n0 , γ2+n0 , · · · , γn1+n0−1

}
,{

γij = γiγj, 1 6 i 6= j 6 n
} }

.

The two special numbers, β1 and β2, are used to construct
the RGA, which contains the following rules:

β1 =
1− α
2

β1 =
1− α
2

β1β2 = 0

β21 = β
3
1 · · · = β

n
1 = β1

β22 = β
3
2 · · · = β

n
2 = β2

(13)

If k ∈ Ln, then, a can be described as

k = k(1)β1 + k(2)β2 (14)

and where
k (1) = k0 + kn0 +

∑n0−1

i=1
[(ki + ki+n0 )γi]

k (2) = k0 − kn0 +
∑n0−1

i=1
[(ki − ki+n0 )γi]

(15)

Therefore, the element k in L4 is also defined as the
following form:

k = k (1)β1 + k (2)β2 (16)

Thus, 
β1 =

1+ α
2

β2 =
1− α
2

(17)

and where{
k(1) = k (0) + k (2)γ2 + γ1

(
k (1) + k (3)

)
k(2) = k (0) − k (2)γ2 + γ1

(
k (1) − k (3)

) (18)

B. THE PROPERTIES OF REDUCED GEOMETRIC ALGEBRA
The operations of addition and subtraction in Ln space are
almost the same as L4 in GA space, here we just deduce the
multiplication operation in Ln domain. ∀v, z ∈ L4, suppose
v = v(1)β1 + v(2)β2 and z = z(1)β1 + z(2)β2, then the
multiplication in L4 are defined as follows:

vz = (v1β1 + v2β2)(z1β1 + z2β2)

= v1z1β21 + v
2z2β22 (19)

The theoretical results about RGA have been obtained,
it is clear that computational complexity is reduced based
on RGA, multiplication in Ln space is divided into two multi-
plication in subspace Ln0 and Ln1 . For instance, in L4 space,
computational complexity is given as table 1, the computa-
tional complexity of RGA is nearly half of GA. However,
in practice, the computational complexity of the proposed
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TABLE 1. Computational complexity in L4 space.

RGA-MLP model can be attributed to the parameter estima-
tion of β1 and β2, which is over half than GA.

We then define the norm of the elements in L4 as

‖k‖ = a+ bγ1 + cγ2 + dγ3

= |a+ b+ c+ d | =
√
a2 + b2 + c2 + d2 (20)

The conjugate of k is defined as

k∗ = a′ + b′γ1 + c′γ2 + d ′γ12 (21)

Then

kk∗ =
(
a+ bγ1 + cγ2 + d ′γ12

) (
a′ + b′γ1 + c′γ2 + d ′γ12

)
=
(
aa′ + bb′ + cc′ + dd ′

)
+
(
ab′ + ab+ cd ′ + c′d

)
γ1

+
(
ac′−bd ′+ac−bd ′

)
γ2+

(
ad ′+bc′+b′c+ad ′

)
γ12

= ‖k‖2 (22)

According to (2), the following equations are obtained

ab′ + ab+ cd ′ + c′d = 0

ac′ − bd ′ + ac− bd ′ = 0

ad ′ + bc′ + b′c+ ad ′ = 0

aa′ + bb′ + cc′ + dd ′ = ‖k‖2

(23)

When solving the equations in (22), the values of the
individual components in (21) are correspondingly yielded,
but not all the elements of L4 are conjugate.
Thus, the inverse of element k in L4 can be defined as

k−1 =
k∗

‖k‖2
(24)

In RGA, multivectors, which are the extension of vectors
to higher dimensions, are the basic units. Each multivector
K ∈ L4 is so described by

K = K 0
+ K 1γ1 + K 2γ2 + K 3γ12 (25)

where K 0,K 1,K 2,K 3
∈ R.

IV. RGA-BASED MULTILAYER PERCEPTRON MODEL
A. RGA NEURON MODEL
In this section, we utilize RGA to obtain an extension neuron
model for multi-dimensional signal processing, in which all
the operators can be extended to RGA domain. The basic
structure of the proposed RGA neuron model is shown in
FIGURE 1.

FIGURE 1. The structure of RGA neuron model.

For input f ∈ L4, the output y ∈ L4 can be formulated as
follows

s =
f ω
‖ω‖
− θ

=

(
f (1)γ1 + f (2)γ2 + f (3)γ12

) (
ω(1)γ1 + ω

(2)γ2 + ω
(3)γ12

)√(
ω(1)

)2
+
(
ω(2)

)2
+
(
ω(3)

)2
− θ

=


(
f (1)ω(3)

+ f (2)ω2
+ f (3)ω(1)

)
γ1(

f (1)ω(1)
+ f (2)ω3

+ f (3)ω(2)
)
γ2(

f (1)ω(2)
+ f (2)ω1

+ f (3)ω(3)
)
γ12


√(
ω(1)

)2
+
(
ω(2)

)2
+
(
ω(3)

)2 − θ (26)

and

y = g(s) (27)

where ω = ω(1)γ1+ω
(2)γ2+ω

(3)γ12 ∈ L4 is the connection
weight between neurons in the two layers, θ denotes the bias
of the neuron and is also represented in L4. The function g(·)
denotes a nonlinear activation function for neurons, here we
adopt the sigmoid function and give its RGA version

g(s) = g(s(1))γ1 + g(s(2))γ2 + g(s(3))γ12 (28)

where s = s(1)γ1 + s(2)γ2 + s(3)γ12 ∈ L4, s(1), s(2), s(3) ∈ R
and g(u) = 1

1+e−u , u ∈ R.
For instance, the γ2 part of the sigmoid activation function

output is shown in FIGURE 2 while γ1 and γ2 components of
input are given as the axis.

FIGURE 2. RGA sigmoid function −γ2 part output.

As seen in (14), we can conclude that the input three-
dimensional color image pixel f ∈ L4 is fully fused on differ-
ent components of in L4 through multiplication rules RGA.
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As always, neurons are the atoms of neuron network,multi-
dimensional input and output are interpreted as tuples by
RGA neuron with a manner of a left-side (right-side) weight
association, which is generally inferior to spinor neuron in
terms of two-sided weight association. However, spinor neu-
ron is only meaningful for non-commutative algebras leading
to more complicated computational complexity than that of
the single-side one. It is fortunate that RGA is commutative
to exhibit the same great performance as spinor neuron,
while the network is simplified with lower computational
complexity.

B. THE STRUCTURE OF RGA-MLP MODEL
Traditional MLP models for multi-dimensional signals treat
each dimensional signal as a real number and process it
independently leading to some unsatisfying results. In this
section we present an extension model of traditional multi-
layer perceptron (MLP) from real number to RGA domain for
multi-dimensional signal processing, and the RGAneurons as
defined above constitute the basis of the proposed RGA-MLP
model. FIGURE 3 describes the structure of RGA-MLP
model with one hidden layer.

FIGURE 3. The structure of RGA-MLP model with one hidden layer.

The RGA-MLPmodel consists of three layers, that is input
layer, hidden layer and output layer, and the numbers of
neurons are set to I , H and O, respectively. Specifically,
fi ∈, i = 1, 2, · · · , I and yi ∈ L4, i = 1, 2, · · · , I are the
input and output of the i-th neuron in the input layer respec-
tively. Similarly, fh ∈ L4, yh ∈ L4, h = 1, 2, · · · ,H and
fo ∈ L4, yo ∈ L4, o = 1, 2, · · · ,O are the input and output
of the h-th and o-th neuron in the hidden and output layers
respectively. Moreover, the connection weights between the
i-th and h-th neurons in input and hidden layers, between the
h-th and o-th neurons in hidden and output layers, are denoted
as ωhi ∈ L4 and ωoh ∈ L4. Significantly, the desired output
for the o-th neuron in the output layer is do ∈ L4.

Then, refer to (14) and (15), it can be clearly obtained as

fh = g(
I∑
i=1

yiωhi + θh) (29)

C. LEARNING ALGORITHM
In order to achieve the desired output do ∈ L4,
the connection weights are supposed to be modified by
means of the so-called learning algorithms, here the back-
propagation (BP) algorithm is extended to the RGA domain.

The RGA-MLP model with one hidden layer as provided,
we define the error E between the desired output and the
target training data as

E =E(y1, · · · , yo, · · · , yO) =
1
2

O∑
o=1

(yo − do)2

=
1
2

O∑
o=1

(
(
y(1)γ1 + y(2)γ2 + y(3)γ12

)
o

−

(
d (1)γ1 + d (2)γ2 + d (3)γ12

)
o
)2

=
1
2

O∑
o=1

((
y(1)o − d

(1)
o

)2
+

(
y(2)o − d

(2)
o

)2
+

(
y(3)o − d

3
o

)2)
(30)

where yo ∈ L4 and do ∈ L4 are the output and the desired
output of the o-th neuron in the output layer respectively.
In the drawback learning, the derivative of error function

E with respect to any connection weights between two layers
can be calculated as follows

OEωji = OE(ω(1)γ1+ω(2)γ2+ω(3)γ12)ji

=
∂E

∂(ω(1))ji
γ1 +

∂E
∂(ω(2))ji

γ2 +
∂E

∂(ω(3))ji
γ12 (31)

Similarly, for the bias

OEθj = OE(θ (1)γ1+θ (2)γ2+θ (3)γ12)j

=
∂E

∂(θ (1))j
γ1 +

∂E
∂(θ (2))j

γ2 +
∂E

∂(θ (3))j
γ12 (32)

Then, the update of back-propagation for the RGA-MLP is
defined as

1θj = −ηOEθj = −η9j (33)

1ωji = −ηOEωji = −η9jy∗i (34)

where ∗ is set as the conjugation and η is a constant denoting
the learning coefficient. In the case of the update of the o-th
neuron in the output layer, 9 is given by

9o =
(
g′(s) ((y)o − (d)o)

)(1)
γ1 +

(
g′(s) ((y)o − (d)o)

)(2)
γ2

+
(
g′(s) ((y)o − (d)o)

)(3)
γ12 (35)

while 9 of the h-th neuron in the hidden layer is given by

9h =

(
g′(s)

((∑
o

(ω)ho

)∗
(9)o

))(1)

γ1

+

(
g′(s)

((∑
o

(ω)ho

)∗
(9)o

))(2)

γ2

+

(
g′(s)

((∑
o

(ω)ho

)∗
(9)o

))(3)

γ12 (36)

where

g′(s) = g′(s(1))γ1 + g′(s(2))γ2 + g′(s(3))γ12

=
∂g(s(1))
∂s(1)

γ1 +
∂g(s(2))
∂s(2)

γ2 +
∂g(s(3))
∂s(3)

γ12 (37)
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FIGURE 4. Four classes of plane curves.

V. EXPERIMENTS AND ANALYSIS
In this section, the classification performance of the proposed
RGA-MLP model is evaluated on two datasets, compared
with the traditional MLP model in the real and quaternion
domain, quantitatively and visually.

A. DATA SETS
1) 3D GEOMETRICAL SHAPES DATA SETS
The 3D geometrical shapes dataset is formed, in which 16000
samples are obtained in 4 class. Patterns of the same style
belong to the same class. Each class contains different pat-
terns which are generated by various geometric transforma-
tions, such as the rotation of the first pattern with different
angles and translation with different vectors around the ori-
gin. FIGURE 4 shows the example 3D geometrical shapes
with 4 classes including 4 patterns for each of class, used to
verify the performances of the RGA-MLP model.

2) COLOR IMAGE DATA SETS
The CIFAR-10 dataset consists of ten classes of objects with
6000 color images in each class. For each class, 5000 images

are used for training and the rest 1000 images are kept for
testing. And the size of all color image in this dataset is
32 ∗ 32, which means 1024 pixels for each color image. Each
of pixel represents a color value (24 bits), describing the three
components for color images including red, green and blue
(denoted by 8 bits). More details of the CIFAR-10 dataset can
be found at http://www.cs.toronto.edu/ kriz/cifar.html.

B. EXPERIMENTAL SETUP
The architectures of real-valued MLP, QMLP and the pro-
posed RGA-MLP models are mainly similar and composed
of an input layer, a hidden layer, and an output layer, where
QMLP model treats signals as quaternion numbers, and
RGA-MLP model treats signals as multivectors in RGA
space.

All the experiments in this paper are performed using
MATLAB under the condition of Intel(R) Core(TM) i5-6500
3.20GHz CPU and 8 GB memory, Windows 7. We choose
sigmoid as the activation function, and the RGA-version has
been given in FIGURE 2. The training error and the test
errors are evaluated on the three networks for comparison
experiments.
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TABLE 2. Classification results of real-valued MLP, QMLP and RGA-MLP
models on 3D geometrical shapes dataset.

FIGURE 5. The training loss curves for a typical run of the real-valued
MLP with 200 hidden nodes, the QMLP with 100 hidden nodes and the
RGA-MLP with 100 hidden nodes on 3D shapes dataset.

C. 3D GEOMETRICAL SHAPES CLASSIFICATION
For 3D geometrical shapes dataset,we split 3D geometrical
shapes into 4 classes, where 3000 shapes and 1000 of each
class are used to training and testing, respectively. The net-
work for 3D geometrical shapes is a three layer network,
which has one hidden layer. Models are optimized with learn-
ing rate set at 0.04. The training ends at iteration 7200.

The optimal number of hidden nodes is explored as fol-
lows. Firstly, the QMLP and RGA-MLP model is trained
with 100 and 150 neurons, respectively. Then, the real-valued
MLPmodel followed with the same setting. We train the real-
valuedMLPmodel with a increasing number of hidden nodes
until it reached the performance of the RGA-MLP model.
Table 2 shows the test errors of the RGA-MLP model could
not be reached by the real-valued MLP using 100 hidden
nodes, both of them are roughly set the same number of
parameters. It is important to note that more neurons within
the hidden layer lead to a better performance as well, which
means more features will be achieved. Altogether, the pro-
posed RGA-MLP outperforms than the other methods in
terms of classification accuracy, which can better capture the
geometrical structure of 3D geometrical shapes.

The training loss curves for the three network with differ-
ent number of hidden nodes are ploted in FIGURE 5 and

FIGURE 6. The training loss curves for a typical run of the real-valued
MLP with 200 hidden nodes, the QMLP with 150 hidden nodes and the
RGA-MLP with 150 hidden nodes on 3D shapes dataset.

FIGURE 6 for comparision. For 3D geometrical shapes
database, the training loss curves of the RGA-MLP model
converges more quickly and reaches smaller loss than that of
real-valued MLP and QMLP finally. Furthermore, the train-
ing loss curves of real-valued MLP and QMLP models are
very unstable and fluctuate greatly during the training pro-
cess, in contrast, the training loss curves of RGA-MLPmodel
is more stable convergence.

The results illustrate that the RGA-MLP model outper-
forms the traditional real-valued MLP. It can be seen that
multi-dimensional signals processed by real-valued MLP
tends to be single channel independently, which are not rich
enough to preserves more discriminative information among
multiple channels. In contrast, the proposed RGA-MLP
model is capable of capturing the inter-relationship informa-
tion between different channels, such as the scaling and the
rotation of inputs in multi-dimensional space, this informa-
tion is mort important for classification.

D. COLOR IMAGES CLASSIFICATION
In this section, the color images classification experi-
ments with traditional real-valued MLP model, QMLP and
RGA-MLP models are carried out based on the CIFAR-10
dataset. In this experiment, 2 classes of color images in
CIFAR-10 are used, 6000 color images of each class for
training and 2000 color images of each class for testing. The
learning rate of the both models are fixed at 0.04 and the three
models are trained for 3600 iterations while the batch size is
set to 50. Since three color channels R,G,B are treated simi-
larly as input, the labels with respect to three channels are set
to the same,which ensures that the three channels (γ1, γ2, γ12)
are treated equallywith the same priority. Therefore, the inter-
relationship among the three color channels can be extracted
more effectively using RGA theory.

More precisely, as shown in FIGURE 7 and FIGURE 8,
the RGA-MLP model outperforms the real-valued MLP and
QMLP model with the faster rate of convergence under
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FIGURE 7. The training loss curves achieved by the real-valued MLP,
QMLP and RGA-MLP models with one hidden layer on color image
dataset.

FIGURE 8. The training loss curves achieved by the real-valued MLP,
QMLP and RGA-MLP models with two hidden layers on color image
dataset.

smaller number of iterations, that is to say, the proposed
RGA-MLP model has the formidable ability in approaching
a stable value more rapidly. Moreover, it can be clearly con-
cluded that the proposed RGA-MLP model achieves a more
stable convergence trend and lower training losses while the
real-valued MLP model and QMLP model fluctuate greatly.

In order to study the effects of different number of hidden
layers on the performance of networks, we adopt different
number of hidden layers of three networks in this experiment.
FIGURE 7, FIGURE 8 and table 3 show a clear improvement
in both the convergence rate and the test accuracy when
increasing the number of hidden layers for each network.

For quantitatively comparison, test errors obtained by color
images classification experiments performed by the real-
valued MLP, QMLP and the proposed RGA-MLPmodels are
listed in table 3. The second column denotes different topolo-
gies in hidden layers ranging from a single layer net with
100 output neurons to a net with two hidden layers each with
100 and 50 neurons, respectively. Expectedly, the proposed

TABLE 3. Classification results of real-valued MLP, QMLP and RGA-MLP
models on color image dataset.

TABLE 4. Computational time of QMLP and RGA-MLP models on
different dataset.

RGA-MLP exhibits lower test errors compared with the real-
valued MLP and QMLP. As suggested in table 3, in the case
of RGA-MLP model only with one hidden layer, the test
errors of classification yielded by the proposed RGA-MLP
reaches approximately 19.4% while that of real-valued MLP
is only 26.2 and QMLP is 20.1%. When the number of
hidden layer increases, the corresponding test accuracy of the
traditional real-valued MLP go down to 20.3%, and the test
errors of QMLP reduce to 19.9%, while that of the proposed
RGA-MLP decrease to 19.2%.

To bemore precise, the proposedmodel treats color images
as RGA multivectors with the strong ability in capturing the
relationship of color channels. Furthermore, a more simpli-
fied network and a powerful learning algorithm are presented
in the proposed RGA-MLP model, thereby superior perfor-
mance is achieved compared with the traditional real-valued
MLP and QMLP models.

E. COMPLEXITY ANALYSIS
The computational complexity of QMLP and RGA-MLP
models is evaluated in this section. The computation time for
QMLP and RGA-MLP models with two different datasets
are listed in table 4. The elapsed time for the RGA-MLP
model is less than the elapsed time for QMLP model. Thanks
to the commutative multiplication rule of RGA, the com-
putational time of the RGA-MLP model is nearly the two-
thirds of QMLP with lower computational complexity. The
experiments have verified the effectiveness of RGA-MLP
model, where the correlation among channels in multi-
dimensional signals can be preserved well and the network
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has been simplified using RGA theory. Moreover, this kind
of computational workload reduction does not influence the
classification results.

VI. CONCLUSION
In this paper, we have proposed an extended multilayer per-
ceptron model for multi-dimensional signal processing and
presented an error back-propagation algorithm for its learning
scheme in RGA space. Taking advantage of RGA theory,
the multi-dimensional signals are represented as RGA mul-
tivectors, multiple channels treated as a single unit instead
of the separate components. And all elements and operators
are extended into RGA domain, exploits strong ability in
capturing the inherent structures and significantly acts as
an efficient and simplified network with formidable train-
ing ability. The experiments demonstrate that our proposed
model can achieve higher classification accuracy, faster con-
vergence rate and lower computational complexity. Avenues
for future work includes the combination of the RGA-MLP
model with other different network and more excellent net-
works designed for multi-dimensional signal processing.
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