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ABSTRACT For centuries, human artists have been scaling images by hand, sketching with varying levels
of detail depending on the demands. Image scaling is a fundamental image operation and exists for various
devices includingmobile phones and computers. It has great commercial values and has attracted great efforts
in research. In this article, we suggest a stretch-shrink based framework for image scaling which imitates
the work of a human artist. This can be done by firstly representing the image with line segments (sketches)
and then stretching or shrinking the length of the representing segments under proper ratios to achieve the
desired scaling. Through extensive experiments, this framework exhibits the prominent ability to achieve
high quality scaled images efficiently with less storage consumption.

INDEX TERMS Image compression, image scaling (resizing), maximum-error bound, piecewise linear
approximation (PLA), sample-rate interpolation.

I. INTRODUCTION
Image scaling refers to representing and resizing an original
image with the use of a higher or lower number of pixels.
Resizing an image under guaranteed quality has many appli-
cations ranging from daily activities to advanced sciences
including astronomy, biology and medical sciences. To sup-
port qualified arbitrary scaling of images, many advanced
techniques have been developed, such as sample-rate interpo-
lation based techniques (i.e., bilinear, bicubic, box sampling
etc.) which are designed to prevent aliasing artifacts.

The most common existing linear methods are limited in
reconstructing complex structures, often resulting in alias-
ing artifacts, over-smoothed regions, and reduced sharp
edges [9]. Traditional image up-scaling methods suffer from
either a loss in high-frequency texture details or a high cost
in execution.

A. IMAGE SCALING
In a 2013 analysis from [23], Directional Cubic Convolution
Interpolation (DCCI) [27] had the best scores in PSNR and
SSIM on a series of test images. Kong et al. [6] method is

The associate editor coordinating the review of this manuscript and
approving it for publication was Md. Asikuzzaman.

similar to [27] but is much more time efficient. Kopf et al. [7]
proposed a filtering approach that adjusts the filter kernels on
the image content, whereas Weber et al. [20] used convolu-
tional filters to down scale images with hardly any temporal
artifacts. Oztireli and Gross [12] use the structural similarity
index to optimize the down-scaled image. Sun et al. [19]
have proposed a novel spatial interpolation method that
reconstructs a high-resolution (HR) image by collaging the
patches of its low-resolution (LR) observation. Compared to
those structured sparse representation-based methods such
as [3], [18], Sun’s method is very efficient and does not
require to solve complex optimization equations. Recently,
there have been developments of powerful example-
based or learning-based methods that can reproduce fine
texture details in images. The methods of [1], [2], [17], [26]
utilize an external database of images to learn amapping from
LR patches to their HR counterparts.

B. IMAGE COMPRESSION
Data compression techniques have been widely used to
reduce the costs on storage and transmission. There are a
large number of methods to compress images, including
Discrete Wavelet Transform [13], Symbolic Mapping [14],

129452 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4381-7988


G. Chen et al.: Image Scaling: How Hard Can It Be?

Histograms [15], Piecewise Linear Approximation (PLA)
[8], [10], [24] etc. Due to its simplicity and visual intuitive-
ness, PLA is still regarded as one of the most widely used
methods [21]. Its basic idea is to represent a series of pixels
with a number of straight line segments so that the original
pixels can be satisfactorily approximated.

In literatures, most of the early research1 focus on con-
structing a pre-defined (or minimized) number of line seg-
ments under minimized (or pre-defined) holistic error bound
between the original pixels and its representations respec-
tively. However, these holistic error bound (i.e., L2 norm)
approaches are incapable of generating error-guaranteed rep-
resentations on each individual pixel and can be inefficient in
obtaining error-guaranteed analytical results for many appli-
cations [4], [13]. In regard to this, many of the recent research
focus on constructing a minimum number of line segments
under a pre-defined maximum-error between the original
pixels and its representations, which is denoted as L∞-bound
PLA. For instance, Liu et al. [10] proposed an FSW (Feasi-
ble Space Window) algorithm to construct segments from a
fixed initial point. Qi et al. [16], [22] extended FSW to the
polynomial functions in the processing of multidimensional
data. Xie et al. [21] gave an optimal linear-time algorithm that
constructs minimum number of disconnected line segments
through maximally extending each ‘‘local’’ segment forward.
Zhao et al. [24], [25] proposed new algorithms that construct
connected and optimal semi-connected line segments by opti-
mizing two adjacent ‘‘local’’ segments only.

In this article, different from the most popular interpolation
based methods on image scaling nowadays, we study how
to use the line-segmentation and PLA techniques for image
scaling which is yet unknown in current literature. In our
proposed framework, the pixels in an image are linearized and
represented by straight line segments either precisely or under
maximum-error bound (L∞ norm) on a small error toler-
ance (for example, δ = 0.3). This guaranteed quality on
errors would subsequently pass to the up-scaled image with-
out requiring any manual adjustments such as interpolation,
denoising and deinterlacing. For small error like δ < 0.5,
this framework losslessly compresses images. This is because
that each pixel is an integer and can be decoded exactly.
As such, the constructed scaled images from this framework
possess desired properties such as up-stability and topologi-
cal down-consistency. A pair of up-scaling and down-scaling
algorithms are called up-scaling stable if, for any input image,
after up-scaling and then down-scaling to its original size,
the output image is exactly the same as the input image.
Furthermore, a scaling algorithm is called topological down-
consistency if it transforms each representing segment of the
input image into a representing segment of the down-scaled
output image. These two properties either directly or indi-
rectly imply that the scaled images are very similar to the
original ones. This has been confirmed in our experiments

1including the most existing commercial compression software such as
JPEG, JPEG2000, etc.

in terms of high peak signal-to-noise ratio (PSNR) and high
structural similarity (SSIM).

To the best of our knowledge, no other linear-time image
scaling algorithms with these two properties have yet to be
reported. Our proposed image scaling algorithms have linear-
time complexity with extremely low memory requirements.
The effectiveness of the algorithms has been demonstrated
on several test cases yielding results that, in practice, possess
a low appearance of artifacts.

Along with the high efficiency in both execution and
quality, the proposed methods also revealed that scaling
operations can be realized directly from compressed data
(i.e., segments), which can be significantly smaller than the
total number of original data points and thus can be more
efficiently processed. This indicates that data compression
technique can efficiently support data analysis (operations) in
addition to the data storage reduction and data transmission
acceleration.

The rest of this article is organized as follows.
Section 2 introduces our methods and the proposed algo-
rithms. Section 3 describes the properties of the scaled images
from the proposed framework. Section 4 reports our experi-
ment results. Section 5 concludes this article.

II. ALGORITHMS
In this section, we first explain two fundamental algorithms
which take pixels of a row (or column) and represent them in
line segments in Section II-A. This is followed by a discussion
on the general idea of image scaling in Section II-C.

A. SEGMENTATION
The two segmentation algorithms, Linearization (Function 1)
and OptimalPLR (Function 2) are displayed in Figure 1(I)
where OptimalPLR is adopted from [21]. As depicted in
Figure 1(III), Linearization and OptimalPLR are called by
NaiveScale and PLAscale respectively for image scaling.

The difference between Linearization and OptimalPLR
is their methods in generating line segments: Linearization
can quickly construct segments by linearizing pixels while
OptimalPLR builds line segments under L∞ norm tolerant.
Mathematically, OptimalPLR and Linearization can be
defined formally [21] as follows.

Given an array of pixels P = (p1, . . . , pn) and an error
bound δ, OptimalPLR is to divide P and build k segments
S1, S2, . . . , Sk ; where each segment Si = (psi , psi+1, . . . , pei )
(i ∈ {1, 2, . . . , k}, ps1 = p1, pei+1 = psi+1 and pek = pn)
can be approximated by a linear function fi(t) satisfying the
pre-defined error bound of

|fi(t)− pt | ≤ δ (1)

for t ∈ {si, si + 1, . . . , ei} with minimized k value. That is,
OptimalPLR constructs the minimum number of segments
for P where each segments satisfies Equation 1. Interestingly
enough, it comes to Linearization when δ = 0.

OptimalPLR constructs desired segments through incre-
mentally maintaining two minimized convex hulls when
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FIGURE 1. The proposed algorithms.

a new point is added in. To avoid extensively searching
throughout the entire convex hull, this algorithm only requires
checking two points to decide whether or not the current

convex hull needs to be updated. OptimalPLR achieves the
minimum number of line segments (optimal output) through
maximally extending each ‘‘local’’ segment forwardly.
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In order to adjust a line segment to approximate themaximum
number of pixel points, the algorithm determine the range of
all feasible line segments, which is incrementally maintained
during the processing of consecutive sequence points. When-
ever the current point cannot be approximatedwithin the error
bound, the algorithm begins to construct a new segment.

As declared in [21], OptimalPLR is a linear-time online
algorithm and has demonstrated better performances than
many other similar algorithms in terms of time and space
costs on the extensively tested data sets.

FIGURE 2. Segments from Linearization and OptimalPLR.

Example 1: Figure 2 displayed the segments built from
Linearization and OptimalPLR respectively. Linearization
requires that each constructed segment should go through
every pixel point located in the region while OptimalPLR
allows a δ tolerance on the distances between pixel points
and segments. As such, OptimalPLR generates less number
of segments than that of Linearization.

In terms of functionality, OptimalPLR is more flexible on
error tolerance and Linearization is more efficient in execu-
tion. In reality, both NaiveScale and PLAscale achieve very
similar high quality image scaling for δ < 0.5. However,
PLAscale does offer better memory efficiency.

B. METHOD
In comparison to the kernel based image scaling methods
where new pixels are constructed from adjacent pixels on
up-scaling, NaiveScale and PLAscale interpolate by stretch-
ing representing segments. Our intuition for the proposed
techniques follows: under a small maximum-error bound, a
line segment representing the pixels in the original image
can be stretched or shrunk to represent the pixels in the
scaled images. Through this, we can represent significantly
larger patterns using simple structures with high accuracy and
reduced storage simultaneously. It should be noted that the
line segments constructed via L2-bound (on holistic error)
PLA algorithms may not work well as it does not guar-
antee the approximate error at each individual data point
[5], [11], [24]. Furthermore, for simplicity, only scaled
imaged of integer multiples are considered within this article.

Scaling an image to a plausible larger or smaller image
needs to stretch and shrink segments in a proper way.

For the visual effects of the scaled images, two policies for
the stretch and shrink operations are proposed. As depicted
in Figure 1(II) and Figure 3, the major difference between
Policy I and Policy II is that Policy I does not (overly) smooth
the pixels of two adjacent segments like that of Policy II.
Policy I and II exemplify the two most common encountered
interpolation situations in image scaling. In applications,
Policy I is preferred for binary images and Policy II is much
more suitable for grey scaled and other images.

C. SCALING
For NaiveScale and PLAscale, the general steps for up-scale
and down-scale operations can be illustrated in Figure 1(III)
and Figure 4. In the process of up-scaling, both proposed
algorithms first segment the pixels for each row of the input
image with the respective functions of Linearization and
OptimalPLR (Figure 1(I)). The algorithms then stretch the
formed segments under the desired policy (Figure 1(II)) and
ratio to obtain a row-enlarged image. In this new image,
the above segmentation and stretching processes are then
performed for the columns of the row-enlarged image to
eventually obtain the enlarged image. In the process of down-
scaling, we conventionally suggest performing the segmen-
tation and shrinking processes on columns first and then on
rows for the consistency of consequently applying up-scaling
and then down-scaling (or down-scaling and then up-scaling)
operations.

Under this framework, we only need to store and transmit
the set of segments on rows (or columns) when transmit-
ting images for up-scaling (or down-scaling) respectively.
As such, the data shipping cost is reduced.

III. PROPERTIES
The core procedures in the proposed scaling algorithms are
Linearization and OptimalPLRwhich allow an input image to
be partially loaded into memory and processed progressively
on row (or column) segmentations. As a result, the pro-
posed scaling algorithms can potentially manipulate very
large images with low requirements on memory size. These
algorithms can be used to scale video, 3D object data and
be efficiently parallel-processed. In terms of time costs, since
each algorithms of Figure 1(I-II) has a linear time complexity,
the proposed scaling algorithms of Figure 1(III) have linear
time costs on the number of input and output pixels.

In the following, we use two concepts to characterize the
quality of scaling algorithms and their practical advantages:
Stability and Topological Consistency. We indicate that the
proposed algorithms are up-stable and down-consistent.

Let Iinput and Ioutput be an input image and the manipulated
image from the input respectively. Let z = f (x, y) be the
input image Iinput where x ∈ [0,m] and y ∈ [0, n]. Suppose
we want to scale it w × h (or 1/w × 1/h) times in width
and height. For simplicity, we only consider that w and h
are integer values in this article. Mathematically, the scaled
image z = g(x, y) can be expressed as g(x, y) = f (x/w, y/h)
with x ∈ [0,w ∗m] and y ∈ [0, h ∗ n] for w× h times scaling.
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FIGURE 3. Two policies on stretching segments (in ratio 2).

FIGURE 4. Up-scaling and down-scaling processes.

A. STABILITY ON SCALING
Let Iup−down be the output image which is constructed by first
up-scaling Iinput into I ′ and then down-scaling I ′ into the same
size of Iinput .

A pair of up-scaling and down-scaling algorithms is called
up-stable if Iup−down = Iinput holds for any Iinput under any
integer zooming ratio.Similarly, Idown−up and down-stable
can be defined.

In the up-scaling process, all the proposed algorithms
first stretch the row segments and then stretch the column
segments. Alternatively, in the down-scaling process, all the
proposed algorithms shrink in the reverse order; shrinking the
column segments first and then shrinking the row segments.
Therefore, px,y = p′x ′,y′ holds for any pixel px,y ∈ Iinput and
its correspondingmapped pixel p′x ′,y′ ∈ Iup−down as each pixel
px,y ∈ Iinput would not vanish through the scaling process,

implying that this pair of proposed up-scaling and down-
scaling algorithms is up-stable.
It should be noted that our proposed algorithms may not

preserve down-stability as some segments may be completely
removed in the down-scaling stage. These removed segments
may not be recoverable in the afterwards up-scaling stage.

B. TOPOLOGICAL CONSISTENCY
This property measures if any ‘‘representing’’ line segments
in the original image can be preserved in the scaled image.
Let z = sg(q1, q2) or z = sg(x, y) be a straight line segment
with q1 and q2 as the two end points. Let DXY (sg) be the
domain of sg(x, y) in theXY -plane. Segment sgf (x, y) of Iinput
is called a δ-representing segment (or simply, δ-segment) if
|qx,y − px,y| < δ holds for any qx,y of sgf (x, y) and px,y
of Iinput where (x, y) ∈ DXY (sgf ). It should be noted that
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the pixels of q1 and q2 on the δ-representing segment (z =
sgf (q1, q2)) may not be pixels of Iinput . The definition implies
that |qx1,y1 − px1,y1 | < δ and |qx2,y2 − px2,y2 | < δ where
q1 = qx1,y1 , q2 = qx2,y2 and px1,y1 , px2,y2 ∈ Iinput .
Suppose that a scaling algorithm transforms a δ-segment

z = sgf (qx1,y1 , qx2,y2 ) of Iinput into a segment z′ = sgg(qx ′1,y′1 ,
qx ′2,y′2 ) of Ioutput where (x

′

1, y
′

1) = (w∗x1, h∗y1) and (x ′2, y
′

2) =
(w ∗ x2, h ∗ y2). A scaling algorithm is called topological
consistent (or simply, consistent) if each δ-segment z =
sgf (qx1,y1 , qx2,y2 ) of Iinput is transformed into a δ-segment
of Ioutput . Specifically, it is called up-consistent (or down-
consistent) if each δ-segment of Iinput is transformed into a
δ-segment of any up-scaled (or down-scaled) image Ioutput .
It can be seen that our proposed scaling algorithms are down-
consistent as qx ′,y′ = qx,y holds for each point qx ′,y′ of
z′ = sgg(qx ′1,y′1 , qx ′2,y′2 ) and point qx,y of z = sgf (qx1,y1 , qx2,y2 )
where x ′ = x/w and y′ = y/h.

IV. EXPERIMENTS
In the following, we demonstrate the advantages of our pro-
posed algorithms against four common interpolation ker-
nel based methods: NearestNeighbor, Bilinear, Bicubic and
Lanczos methods. All the tested algorithms are implemented
in Eclipse with C++ and use the Open Source Computer
Vision Library (OpenCV). All the experiments are performed
on a laptop with CPU of Intel Core i7-5500U 2.40GHz and
12G memory. The error bound of PLAscale method is set to
δ = 0.4.
We have tested more than 50 images for the proposed

algorithms in terms of compressed storage, time efficiency
and visual quality. Because of the space limitations and the
similarities on the tested results, we only exemplified a few
in this article.

TABLE 1. The compressed storage.

A. COMPRESSED STORAGE
In Figure 1(I), OptimalPLR constructs line segments in linear
time and low memory costs. It can compress images loss-
lessly when the error bound is set to a value less than 0.5.
The Linearization is a special case of OptimalPLR on δ = 0.
The storage costs on different images are list in Table 1. From
this table, we can see:
• In general, both OptimalPLR and Linearlization can
effectively reduce the storages of original images, about
10% and 5% repsectively.

• This reduction is more effective for binary or larger
images. For instance, the compressed storages of ‘‘Bird’’
by OptimalPLR are less 50% than the original storage.

In addition, the compression storages of OptimalPLR will
be decreased as the error bounds increase. For example,
the compressed storages on ‘‘Lenna’’ from PLAscale are
58594, 47104, 36574, 23665 and 16022 under the error bound
of 0.4, 1, 2, 5, and 10 respectively.

B. TIME COSTS
Figure 5 lists the time costs of various methods on up-scaling
image ‘‘Lenna’’ of 256*256 pixels to different sizes. We have
the following observations on up-scaling:
• In PLAscale and NaiveScale, the time costs on compres-
sion have little impact on the total time consumption.
Furthermore, these two proposed algorithms have a very
similar performance on both Policy I and II.

• NearestNeighbor, Bilinear, Bicubic and Lanczos are less
efficient than that of PLAscale (I and II) and NaiveScale
(I and II), especially on a larger scale. The time costs
of interpolation methods increase much more than that
of PLAsacle and NaiveScale. For example, the time
costs for 15 times up-scaling are 0.655s, 0.965s, 1.729s,
6.288s, 0.497s, 0.472s, 0.469s and 0.469s respectively.
The time differences are due to their different indwelling
interpolation mechanisms. Bilinear, Bicubic and Lanc-
zos reconstruct each new pixel by considering its
4,16 and 64 neighbor pixels respectively, while the pro-
posed methods only use two points to generate the rep-
resentation lines for interpolating the new pixels.

For an original image ‘‘Lenna’’, the compression time costs
of NaiveScale and PLAscale are about 3ms and 4ms, which
are independent on scaled sizes. In fact, the time cost of Opti-
malPLR is very low, with about 1 microsecond for each data
point [21]. The cost of Linearlization is much lower than that
of OptimalPLR since it does not need to compute the ‘‘convex
hull’’ required for the implementation of OptimalPLR.

Unfortunately, the down-scaling performance of our meth-
ods is more expensive than that of interpolation methods Our
intuitive explanations are as follows.

Let t be the time cost of scaling aw∗h image intom∗n times
magnification and t ′ be the time cost of scaling it back into
the original size. In a interpolation method, t is about m ∗ n
times of t ′. Therefore, the time cost on up-scaling is much
higher than that of down-scaling in a interpolation method.

For our proposed methods, as depicted in Figure 4,
the time cost consists of four parts: the cost of column
(or row) compression, the cost of column (or row) scaling,
the cost of row (or column) compression and the cost of row
(or column) scaling, which are briefly denoted as t1, t2, t3, t4
for up-scaling and t ′1, t

′

2, t
′

3, t
′

4 for down-scaling. It can see that
t ′1 is aboutm∗n times of t1. All the others, t ′2, t

′

3 and t
′

4 are quite
similar to t2, t3 and t4 respectively. As a result, the time cost
for down-scaling is more expensive than that of up-scaling
for our methods.
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FIGURE 5. Time costs including compression costs.

C. VISUAL QUALITY
We would compare the scaled visual qualities for binary and
non-binary images seperately.

For binary images, the quality comparisons on up-scaling
are listed in Figure 6. Figure 6(I) illustrates the results of
up-scaling of an original image (a) 10 times from 8 different
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FIGURE 6. Binary Image (a) and its up-scaling results.

methods. Intuitively, both NaiveScale (b) and PLAscale (d),
using Policy I, can successfully upscale the binary image and
achieve a similar up-scaling quality as that of Nearest Neigh-
bor (f). All others, (c), (e), (g), (h) and (j), cannot maintain the
original brightness level. As seen in Figure 6(I), Bicubic (g)
and Lanczos (j) have changed the structural features of the
original image, particularly at the corners and the spike areas
but Lanczos (j) generates an additional grey shape around the
image. Furthermore,
• As shown in Figure 6(I)(g) marked by rectangles,
the black area is invaded by white and grey at the corner;

• As shown in Figure 6(I)(g) and (j) marked by ellipses,
the black jagged edge is smoothed;

• As shown in Figure 6(I)(g) and (j) marked by squares,
the black spike area blurred and rounded.

In Figure 6(II), the impacts of various methods upon
the Nearest Neighbor method were examined to indirectly
compare the visual quality. For the original image (a)
of 10*10 pixels, we construct the images of Figure 5(b to j) by
first up-scaling (a) two times with the listed methods and then
using Nearest Neighbor to upscale each of them five times
again. We have the following observations:
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TABLE 2. Measurements on down-up scaling.

TABLE 3. Measurements on up-down scaling.

• All of the three methods, NaiveScale (Policy I) (f),
PLAscale (Policy I) (g) and NearestNeighbor (b), are
very similar to the original image (a): Both the white and
black areas are stretched 2 times in both horizontally and
vertically;

• The other methods can overly amplify the original image
size than the proposed methods. For example, the width
of NaiveScale(Policy II) (h) and PLAscale(Policy II) (j)
is 6.5 cells, while Bilinear (b), Bicubic (c) and Lanc-
zos (d) reach 7 cells. NaiveScale and PLAscale under
Policy II possess lower appearances of artifacts than that
of Bilinear, Bicubic and Lanczos. Additionally, it turns
out that our algorithms can be more accurate and have
fewer artifacts than that of Bilinear (b), Bicubic (c) and
Lanczos (d).

For non-binary images, we show visual results of 2 times
up-scaling ‘‘Lenna’’ in Figure 7, 8 and 9 on an error bound of
0.4. As shown in Figure 8 and 9, the up-scaled image in Policy
II has a higher overall visual quality than that of in Policy I.
In our view, Figure 8(II) and Figure 9(II) are very similar.
It is suggested that (1) uses a smaller max-error bound (<0.5)

for high quality image; and (2) uses NaiveScale for a faster
process but with some increased storage.

D. QUALITY MEASUREMENT
For further illustration of the differences between the ker-
nel based interpolations and the proposed methods, we use
higher peak signal-to-noise ratio (PSNR) and structural simi-
larity (SSIM) to indirectly measure the performance qualities
and confirm our above observations. Our experiments are
conducted on eight methods (i.e., Bilinear, Bicubic, Lanc-
zos, NearestNeighbor, NaiveScale and PLAscale (in both
Policy I and Policy II)) under the downscale/upscale oper-
ations. We adopt the common used image ‘‘Lenna’’ of
256*256 pixels as the original image. The referee images
are the images that has been downscaled/upscaled from the
original 2 times through one scaling algorithm then scaled
back through the same (or another) algorithm. Table 1 and
Table 2 are the measurements on scaling-stability. For exam-
ple, the PSNR and SSIM at cell (Lanczos, Bicubic) of Table 2
(Table 3) are derived from the original image against the
image that was first down-scaled (up-scaled) by Lanczos and
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FIGURE 7. The original image (I) and its two times up-scaling results (II) by Bicubic.

then up-scaled (down-scaled) by Bicubic to its original size
respectively.

From these two tables, the following observations were
made:

1) In these two tables, the better results (marked in bold)
depend on which methodology is used. The best results
in these two tables are generated from our proposed
algorithms. This is due to the differing ideologies
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FIGURE 8. Two times up-scaling results by NaiveScale.

behind the two types of techniques. The pixels of scaled
images from convoluted interpolations are generated
from its neighboring pixels, while our methods recon-
struct the scaling pixels from the compressed represen-
tation lines.

2) Either way, results of the up-down scaling process
(Table 3) are better than the ones of the down-up
(Table 2). The down sampling process may lose some
information that cannot be recoverable, due to its reduc-
tion of the original.
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FIGURE 9. Two times up-scaling results by PLAscale.

3) In the above ‘‘down-up’’ process, the quality mea-
surements at each cell would drop when the scaling
increases. The drop trends of our methods are a little

more serious than that of interpolation methods. For
example, bicubic performed relatively well. However,
the results on our algorithms could be further improved
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by adding some heuristic strategies into the down-
scaling process. For example, in the down-scaling pro-
cess, we may not discard the representation lines when
the number of its covering pixels is smaller than the
down-scaling factors. Those lines may contain the
jumping grey information which may be characteristics
of the original image.

4) As shown in Table 3, when the error bound is smaller
than 0.5, our algorithms is up-stable. This property
is derived from the fact that the compressed results
by PLA with smaller error bound (less than 0.5) is a
lossless compression for images.

Through a large number of experiments, our general obser-
vations of our methods can be summarized as follows:

- On compressed storage, the OptimalPLR is an
effective and efficient algorithm for compressing
binary or non-binary images. Especially, when the
max error bound is less than 0.5, this compression
is lossless.

- On time cost, the performance of our proposed algo-
rithms outperform that of interpolation methods on
up-scaling.

- On visual quality, both NaiveScale and PLAs-
cale achieve very similar high quality results effi-
ciently: NaiveScale (Policy I) is preferred for binary
images and PLAscale (Policy II) is much more
suitable for grey scaled images. Compared with
interpolation methods, the results of Policy I (with
NaiveScale or PLAscale) is similar to that of Near-
est Neighborhood, and NaiveScale (or PLAscale)
with Policy II is not obviously different from
Lanczos.

- On the quality measurements of PSNR and SSIM,
the up-stable property of our algorithms guarantees
the high quality up-scaled output image.

V. CONCLUSION
In this article, we have presented two new image scaling
algorithms. These two algorithms have linear-time complex-
ity with extremely low memory requirements, and can con-
struct quality-guaranteed scaled images. The effectiveness of
the algorithms has been demonstrated on several test cases
yielding results that, in practice, possess a low appearance of
artifacts. Two policies on segment stretching and shrinking
operations have been proposed. In terms of applications,
a better perceived visual result could be achieved through
using both policies in a combined manner for image scaling.
This would need to be studied in further detail. Our other
future work would consider: (a) if the proposed algorithms
satisfy the up-consistent property; and (b) how to designmore
efficient image scaling algorithms, specifically in terms of
high image quality and compression rate. We will investigate
the use of other max-error bound PLA algorithms such as the
connected or semi-connected PLA of [24], [25] in the image
processing for further space reductions.
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