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ABSTRACT A vast amount of pictures are taken every day by using cameras mounted on various mobile
devices. Even though the clarity of such acquired images has been significantly improved due to the advance
of the image sensor technology, the visual quality is hardly guaranteed under varying illumination conditions.
In this paper, a novel yet simple method for low-light image enhancement is proposed via the maximal
diffusion value. The key idea of the proposed method is to estimate the illumination component, which is
likely to appear as the bright pixel even under the low-light condition, by exploring multiple diffusion spaces.
Specifically, the illumination component can be accurately separated from the scene reflectance by selecting
the maximal value at each pixel position of those diffusion spaces, and thus independently adjusted for the
visual quality enhancement. That is, we propose to adopt the maximal value among diffused intensities at
each pixel position, so-called maximal diffusion value, as the illumination component since illumination
components buried in the dark tend to be revealed with bright intensities through the iterative diffusion
process. In contrast to previous approaches that still pose difficulties to balance between over-saturated and
conservative restorations, the proposed method improves the image quality without any significant distortion
while successfully suppressing the problem of noise amplification. Experimental results on benchmark
datasets show the efficiency and robustness of the proposed method compared to previous approaches
introduced in literature.

INDEX TERMS Visual quality, varying illumination condition, low-light image enhancement, maximal

diffusion value, multiple diffusion spaces.

I. INTRODUCTION
The low-light condition in everyday photos often occurs due
to various environmental factors, e.g., night time, uneven illu-
mination, and structured shadow. This leads to loss of details
and surface changes of underlying structures in a given scene,
which significantly deteriorate the image quality and degrade
the viewing experience. Moreover, such distorted inputs make
a dramatic performance drop in many algorithms of computer
vision, e.g., object detection [1] and recognition [2], stereo
matching [3], etc. Even though the latest mobile devices,
especially smartphones, have equipped with camera modules
including the relevant solution, it still works under limited
situations.

To efficiently improve the visual quality of low-light
images, various methods have been developed. In the
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beginning, many researchers attempted to directly amplify
the buried structure to be visible based on the statisti-
cal information of the original input image, which can be
regarded as the most intuitive and simplest approach for
this task. However, relatively bright regions tend to be over-
saturated in restoration results of those algorithms and thus
the textural features belonging to the corresponding region
probably becomes invisible. Histogram equalization and its
variants [4], [5] are capable of alleviating this problem by
somewhat flattening the distribution of pixel intensities over
the whole range. Further, they can be easily combined with
several optimization techniques, which give a great help
to adaptively adjust the dynamic range by regularizing the
histogram of the original image. However, most histogram-
based methods only concentrate on improving the contrast
without estimating the illumination component in a given
scene and thus frequently fail to moderately recover the
underlying structure buried in the dark (e.g., under- or
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over-enhanced in uneven illuminations). On the other hand,
the assumption of the Retinex theory [6] that the image can
be decomposed into scene reflectance and its illumination
has been widely employed for low-light image enhancement.
Many studies belonging to this category, i.e., decomposition-
based approach, attempted to firstly estimate the illumination
component and separate it from the reflectance one, which is
directly utilized as the enhanced result in the early stage. Even
though textural details are well revealed in the reflectance
component, over-highlights of edge-like regions make visu-
ally unnatural effects in the enhancement result. Furthermore,
defects of halo artifacts around edge structures often occur
due to such excessive emphasis.

In this paper, a novel and simple method for low-light
image enhancement is proposed. The heart of the proposed
method lies on our observation that the bright-light prop-
erty included in the illumination component is well revealed
through the diffusion process even in the dark region. Accord-
ingly, we propose to select the maximal value at each pixel
position of multiple diffusion spaces as the illumination com-
ponent. This scheme is significantly different from previous
approaches utilizing the maximal value among RGB chan-
nels or the relationship with neighbor pixels for estimating
the illumination component, and the corresponding results
of illumination estimation are notably different as shown
in Fig. 1(c) and (d), for example. It is noteworthy that our
pixel-wise pooling operation has a good ability to reduce
the blur artifact driven by aggregation in the local window,
which has been widely considered for the local consistency
of illumination in previous approaches [7], [8]. To avoid
the problem of color inconsistency during the enhance-
ment procedure, selecting the maximal diffusion value is
only conducted in the intensity channel. Note that the esti-
mated illumination component is adjusted in terms of both
global and local stretching schemes as adopted in previous
approaches [9], [10]. The main contributions of this paper can
be summarized as follows:

o The proposed method attempts to realize the principle
that illuminations tend to appear with the bright intensity
even in the dark [6], [11]. To this end, we propose
to adopt the maximal value at each pixel position of
multiple diffusion spaces as the illumination compo-
nent. By maintaining the maximal value during the
diffusion process, the estimated illumination space can
be efficiently represented as the piecewise constant
form without amplifying unnecessary noise, which still
gives difficulties to clearly reveal the illumination space
in previous methods, while preserving the underlying
structure. This is fairly desirable to achieve the balanced
adjustment for the estimated illumination component.

« In contrast to previous approaches that allow for the
relationship between color channels or neighbor pixels,
the proposed method considers the relationship across
diffusion spaces in a pixel-wise manner and thus suc-
cessfully avoids the problem of color and blur artifacts.
This also brings a significant improvement by accu-
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rately restoring pixel-level surface details. Moreover,
the proposed method does not require any complicated
optimization process employed in recent approaches,
which is mostly resolved based on the local relationship.
The reminder of this paper is organized as follows.
The brief review of previous methods for low-light image
enhancement is provided in Section II. The technical details
of the proposed method is introduced in Section III. Exper-
imental results on benchmark datasets are demonstrated
in Section IV. The conclusions are finally summarized
in Section V.

Il. RELATED WORK

Since the visual quality of acquired images has a great
influence on the performance of various algorithms in com-
puter vision, many researchers have devoted their efforts to
improve the visibility regardless of lighting conditions. In this
Section, we give a brief review of previous methods for low-
light image enhancement.

Most representatively, the histogram equalization [12],
which makes the distribution of pixel intensities as flat as
possible for improving the dynamic range over the whole
image, has been widely employed as a prerequisite for var-
ious applications, e.g., object detection and recognition [13].
In particular, its locally-clipped version, called CLAHE [14],
provides the outstanding performance by efficiently sup-
pressing over-saturated pixels and thus has been widely
employed for enhancing the visual quality of medical images
as well as natural ones. On the other hand, several studies
attempted to adopt the optimization technique for adap-
tively adjusting the dynamic range by forcing various reg-
ularization effects to the histogram of the original input
image. For example, Arici et al. [15] conducted adaptive
histogram equalization by minimizing a weighted distance
between counts of the original histogram and the target one.
Celik and Tjahjadi [16] proposed to enhance the contrast by
mapping diagonal elements between the 2-D histogram of the
original image and its smoothed version, which is obtained
by the variational method. Authors of [17] also achieved
contrast enhancement by seeking a layered difference in the
2-D histogram constructed via the relationship of neighboring
pixels. Raju and Nair [18] proposed to utilize the fuzzy mem-
bership to adaptively stretch the dynamic range of intensity
values in the original histogram. Apart from this, the quality
assessment has been used to derive the optimal histogram
mapping for the automatic contrast change [38]. Even though
such histogram-based approaches are quite effective to the
globally degraded image and computationally efficient, most
approaches are vulnerable to nonlinear lighting conditions
due to lack of the spatial information.

More recently, inspired by the Retinex theory [6], which
tells us a simple principle that the image can be decom-
posed into two components, i.e., illumination and reflectance,
and each pixel value can be represented as a product by
those two factors, diverse methods for separating illumi-
nation components from a given image have been actively

129151



IEEE Access

W. Kim et al.: Low-Light Image Enhancement Based on Maximal Diffusion Values

explored. Specifically, the reflectance, which is often esti-
mated by Gaussian filtering and logarithmic operation both
in a single scale [20] and multiple scales [21], has been
popularly adopted as the enhancement result without
any modification [22], [23]. Even though illumination-
invariant features are successfully extracted in the estimated
reflectance, the visual unnaturalness (e.g., color inconsis-
tency and over-highlighted edges) often degrades the view-
ing experience significantly. To resolve this problem, many
researchers have begun to focus their attention on stretching
the dynamic range of the estimated illumination component
and eventually combining it with the separated reflectance
for generating the enhancement result. Dong et al. [8] pro-
posed to apply the dehazing algorithm, which represents
the illumination component as the transition map, to the
inverted low-light image. The enhancement result is obtained
by inverting the unrealistic estimated result once again.
Wang et al. [24] attempted to improve the visual quality while
keeping the naturalness of a given scene by exploiting the bi-
log transformation of the estimated illumination component.
Their enhancement results basically provide the visual com-
fort without over-saturation, however, the phenomenon of
the conservative restoration often occurs in our experiments.
Fu et al. [25] extracted the illumination component by uti-
lizing morphological closing and fused two enhanced illumi-
nation maps, which are driven by the sigmoid function and
the adaptive histogram equalization. Although their fusing
scheme provides the promising enhancement result, it suffers
from loss of textural details across multiple scales. To supple-
ment this limitation, they further proposed a weighted vari-
ational model for simultaneous reflectance and illumination
estimation (SRIE) [26]. Guo et al. [27] started with the initial
illumination map generated by simply selecting the maximal
value among RGB channels. Such initial status is consistently
refined by imposing a structural prior in the optimization
framework, which is effective to prevent the blur artifact in the
enhancement result. The method introduced in [9] proposed
to separately handle illumination and reflectance layers by
regularizing the color similarity and the spatial smoothness.
In [10], the principal energy in a small local region is used
as the illumination component, which is simply implemented
by applying the orthogonal transform (e.g., singular value
decomposition (SVD)) to the intensity lattice.

Even though diverse methods have been steadily studied
for low-light image enhancement, they are still struggling
to a risk yielding under- or over-enhancement results due
to the blindness of illumination structures. Most of recently
proposed methods tend to preserve the underlying structure
instead of exaggerating color effects, however, it often leads
to loss of textural details, e.g., textural features on the surface
of objects are smoothed out. Furthermore, several methods
require complicated optimization techniques, which are time-
consuming on mobile devices. In this paper, a simple and
novel method for low-light image enhancement is proposed.
Compared to previous approaches, the proposed method con-
centrates on exploring the brightness property by using the
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FIGURE 1. (a) Input color image. (b) Intensity channel of (a).

(c) lllumination estimated by max-selection among RGB color channels in
the local window support. (d) lllumination estimated by the proposed
method.

max pooling scheme with multiple diffusion spaces in a
pixel-wise manner, which is useful for preventing loss of the
textural information. Technical descriptions of the proposed
method will be explained in the following Section.

Ill. PROPOSED METHOD

The principle behind the proposed method is that the illumi-
nation component at each pixel position is likely to appear
bright even in the dark. In order to robustly extract such
“buried” illuminations for low-light image enhancement,
we propose to exploit the maximal value obtained from the
diffusion process of the intensity channel, which efficiently
reveals the illumination structure of a given scene in a piece-
wise constant manner. In contrast to previous approaches,
the proposed method has a good ability to suppress noise
as well as blur artifacts by the pixel-wise pooling operation
(i.e., selecting the maximal value at each pixel position) on
diffusion spaces. The estimated illumination component is
adjusted via the global stretching scheme, e.g., conventional
Gamma correction, and subsequently combined with the
reflectance component, which is estimated according to the
Retinex theory. The corresponding result follows by the local
refinement for generation of the final enhancement result.

A. ILLUMINATION ESTIMATION USING MAXIMAL
DIFFUSION VALUES

Several methods have attempted to extract and represent
the bright attribute of the illumination component as intro-
duced above. Most notably, seeking the maximal value of the
RGB color channel shows the promising result, which can be
simply formulated as follows [25], [27]:

L(x) < max I°x), €))
ce{R,G,B)

where [¢ denotes the color channel of a given image
and x denotes the pixel position, respectively. Most of
such pooling-based improvements essentially require to
allow for the local consistency, for example, L(x) <«
maXyeQ(x) (maxce{R,G,B} Ic(y)) where Q(x) indicates the
local patch centered at the pixel position x. Even though
this scheme efficiently improves the local consistency of the
illumination component, aggregation within the local patch
often makes the estimation result include unwanted blur and
blocky artifacts as shown in Fig. 1(c).
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FIGURE 2. (a) Intensity channel of the original image (i.e., u°(x)).
(b) u3(x). (c) u'(x). (d) L(x) computed in (2) (i.e., proposed method).

To cope with this limitation, we propose to exploit the
maximal value of multiple diffusion spaces. Since the illu-
mination component is apt to maintain the bright attribute
during the diffusion process, our pooling operation across the
scale spaces of the intensity channel is expected to success-
fully reveal the illumination component, which is defined as
follows:

L(x) < u*(x), where s = m]?x{uo(x), T 2 ) R )

where ¥ denotes the diffusion space generated with the
iteration number of k € {0, 1,..., P}. Note that W =1
(i.e., no iteration) denotes the intensity channel of the original
image. P is the maximal number of iterations, which is set to
P = 10 in our implementation. An example of the estimated
illumination component driven by (2) is shown in Fig. 2.
As can be seen, lighting properties are well revealed while
preserving the underlying structure (e.g., salient edges) of a
given scene. Moreover, the proposed method does not yield
blocky artifacts in terms of patch-based operations and thus
the scene reflectance can be accurately separated from the
given scene without any severe distortion. It should be empha-
sized again that the piecewise constant result is desirable for
illumination estimation since illumination can be regarded
as the lighting component and therefore does not contain
textural details of a fine scale. In this viewpoint, the diffu-
sion result shown in Fig. 2(b) shows a good performance of
edge-aware smoothing, however, fine-scale textural details
(e.g., boundaries of eyes and lip) are not suppressed enough.
Compared to this, the proposed method yields the piecewise
constant result while preserving the boundaries between dif-
ferent surfaces as shown in Fig. 2(d). Therefore, it is thought
that the proposed max pooling scheme is more suitable for
estimating the illumination space and leads to the reliable
performance of image enhancement.

Now, the next task is to construct the diffusion space uk (x)
in an efficiency way. To this end, the nonlinear diffusion
equation [28], which has been most widely employed in this
field, is adopted as follows:

UK () = W () + Ardiv (g(|Vuk(x)|)Vuk(x)) E

where g is the conductance function for controlling the dif-
fusivity and At denotes the time step, i.e., evolution rate.
In our implementation, the total iteration number is adaptively
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determined by considering the contextual information of a
given scene. More specifically, it is thought that the nonlinear
diffusion is converged when the difference between diffusion
spaces becomes sufficiently small, which can be formulated
as follows: ¢ = ﬁ oy luk(x) — u¥~1(x)| where H and
W denote height and width of the input image, respectively,
and the diffusion process stops when ¢ < 1.0 for the proposed
method. Note that the maximal number of iterations is limited
to 10 (i.e., P = 10) as introduced. The original diffusion
model in (3) provides quite reliable results for selective
smoothing, however, it is theoretically ill-posed [29], [30],
i.e., it cannot discriminate textural edges, which need to
be smoothed out during the diffusion process, from salient
ones (e.g., object boundaries). Therefore, this property
gives a difficulty to simultaneously satisfy both conditions,
i.e., suppression of textural edges and preservation of surface
boundaries, which is highly required for our illumination esti-
mation. To resolve this problem, the total variation flow [31]
is employed for the conductance function in the proposed
method, which is simply computed as follows:

g(IVul) = “

|[Vu| +¢€’
where € is a small positive number to avoid the problem of
zero gradients. According to the property of the total variation
flow, relatively small-scale elements in the intensity channel
are efficiently smoothed out while preserving the boundary
across different structures [32]. This is fairly desirable for
excluding textural features on the surface from the illumina-
tion component as shown in Fig. 2(d).

In general, the nonlinear diffusion of (3) has been solved
in a numerical manner, which requires quite a lot iterations
with the small time step for the stability. To alleviate this hard
constraint, the additive splitting operator (AOS) scheme [33]
can be regarded as a good alternative due to its semi-implicit
nature. That is, the AOS scheme guarantees the stability
of the diffusion process even with the arbitrary large value
for the time step At. The original version of the nonlin-
ear diffusion can be reformulated with the AOS scheme as
follows:

uk“(x):% 3 (I(x)—ZArAd (uk(x)))_luk(x), (5)

de{x.y}

where Ay is a diffusive matrix whose elements are related
to derivatives with respect to horizontal (x < d) and ver-
tical (y <« d) directions, respectively. For more details
about the diffusive matrix, see [33]. At denotes the time
step as mentioned above, and it now can be set to the
relatively large value, e.g., At = 10.0, for the fast
operation.

In summary, the intensity channel of the input image is
diffused by utilizing the AOS scheme with the adaptive stop-
ping criteria (i.e., ¢ < 1.0), and the maximal value at each
pixel position is selected during this diffusion process for
estimating the illumination component.
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Algorithm 1 Low-Light Image Enhancement Based on
Maximal Diffusion Values
Data: I: intensity channel of the input color image
x = (x, y): pixel position
H : height, W : width
Result: Enhanced color image
while | <x <Wand1 <y <Hdo
1. lllumination estimation
i) Compute the diffusion space uk (x) via AOS
ii) Select the maximal diffusion value at each pixel
position as the illumination component
cL(x) < (%), s = max{u’(x), ..., ul(x)}
: Use the adaptive stopping criteria
2. Image enhancement
iii) Apply the Gamma funftion to L(x) (see (ii))
: L(x) = 255 x (L(Tx)) v
iv) Restore the intensity I x) = Z(x) X R(x)

x = (x, y) increases in a raster scanning manner
end

* Final step : CLAHE is applied to 1(x)
* For the color image, conduct HSV—RGB conversion
with the restored intensity (obtained from final step)

B. IMAGE ENHANCEMENT
According to the Retinex theory, the scene reflectance can be
easily extracted from a given scene as follows:

1(x)

R(x) = ———,

Lx)+¢€
where /(x) and L(x) denote the intensity channel and the
estimated illumination by using (2), respectively. € is the
small positive number to avoid the zero division as men-
tioned. An example of the reflectance estimation R(x) is
shown in Fig. 3(c). As can be seen, underlying structures, for
example, shaded eyes of a boy, are well revealed in the scene
reflectance. On the other hand, the estimated illumination is
now ready to be adjusted for improving the visual quality of
the original low-light image. Similar to previous methods,
we first apply the Gamma function to stretch the dynamic
range in a global sense as follows:

1/y
L(x) =255 x (%) , (7)

where Z is a scaling factor that makes the result to be the form
of an image, which is set to 5.0 in our implementation. y is
also set to the conventional level, i.e., y = 2.2. After that,
the intensity image is newly restored by a product of illumi-
nation and reflectance components at each pixel position as
follows:

(6

I1(x) = L(x) x R(x). (8)

To allow for the local adjustment as well as global stretching
conducted in (7), the CLAHE [14] method is applied to
the restored intensity image for the final result, which is
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FIGURE 3. (a) Intensity channel of the original image. (b) Estimated
illumination. (c) Estimated reflectance. (d) Adjustment result by the
Gamma function. (e) Final enhancement result for the intensity channel
of the original image.

FIGURE 4. (a) Original color image. (b) Enhancement result by the
proposed method. (c) Enlarged regions from (a) and (b). Note that the
effect of uneven lighting is moderately adjusted without color distortions
and over-saturation in the result of the proposed method.

shown in Fig. 3(d). It is noteworthy that nonuniformly lighted
regions are successfully adjusted without yielding the over-
saturated effect. Finally, the enhanced color image can be
obtained from the conversion of HSV—RGB via our restored
intensity channel shown in Fig. 3(d). The comparison of the
visual quality between the original input and the enhancement
result by the proposed method is provided in Fig. 4. The
shaded eye in the original image (see @) is successfully
restored in the enhancement result and the surface details are
clearly revealed as well (see @) due to the balanced light-
ing effect. Along with low-light images, the hyper-reflective
effects often occur in daily-life photos. Even though the key
idea of the proposed method, i.e., the concept of the maximal
diffusion value, for estimating illumination components from
a given scene is still valid for such high-light conditions,
the other procedures need to be additionally refined and
optimized to achieve the best performance for high-light
conditions, which are beyond the scope of this paper.

For the sake of completeness, the summary of the proposed
method is shown in Algorithm 1.

IV. EXPERIMENTAL RESULTS

In this Section, various experimental results are demonstrated
based on two benchmark datasets, i.e., NASA [34] and
HDR [35] datasets, which have been most widely employed
for the performance evaluation of low-light image enhance-
ment. The samples from the NASA dataset (25 images) con-
tain various low-light conditions, e.g., backlighting, casting
shadows, cloudy weather, etc., while those of the HDR dataset
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FIGURE 5. Low-light image and its enhancement results by various
methods. (a) Original input image. (b) CLAHE [14]. (c) CVC [16].

(d) LDR [17]. (e) NPEA [24]. (f) SRIE [26]. (g) FUN [36]. (h) LIME [27].
(i) PPEA [10]. (j) Proposed method.

ik

FIGURE 6. Enlarged regions of enhancement results by FUN [36],

PPEA [10], and the proposed method (from left to right) in each
sub-figure. Note that textural details are well revealed even in the dark by
the proposed enhancement scheme.

(seven images) are mostly acquired under backlighting envi-
ronments. The sizes of images are generally set to 2000 x
1312 (or 1312 x 2000) pixels and 1350 x 900 (or 900 x 1350)
pixels in NASA and HDR datasets, respectively. Details of
experiments will be explained in the following subsections.

A. QUALITATIVE ANALYSIS

For the performance comparison, we employ some represen-
tative methods for low-light image enhancement, which are
CLAHE [14], CVC [16], LDR [17], NPEA [24], SRIE [26],
FUN [36], LIME [27], and PPEA [10]. First of all, enhance-
ment results for the previous sample provided in Fig. 1(a) are
shown in Fig. 5. Specifically, several methods, e.g., CLAHE,
CVC, and LDR, show somewhat conservative results whereas
attribute and saturation of the original color are pretty
changed in NPEA and SRIE methods. Even though FUN
yields the moderately enhanced result, textural details are
relatively less restored compared to PPEA and the proposed
method. In the result of CLAHE and PPEA, the shaded area is
adversely emphasized, for example, the left eye of a boy. Note
that LIME shows the visually impressive result, however,
it still suffers from the over-saturation problem. In contrast
to previous approaches, the proposed method has a good
ability to successfully stretch the dynamic range of low-
lighted regions while revealing the surface details as well.
To support the corresponding analysis, some enlarged regions
from the enhancement results are compared in Fig. 6. As can
be seen, the shape of iris, which is buried in the dark of the

VOLUME 7, 2019

original input, is most accurately revealed in the result of
the proposed method (see the rightmost image), and textural
details are clearly restored as well.

Comparison results based on the NASA dataset whose
samples are acquired under various low-light environments
are shown in Fig. 7. Overall, results by the proposed method
are reliably restored without under- or over-enhancement, and
efficiently highlight textural details as well as local contrast
compared to previous approaches. More concretely, CLAHE,
CVC, and LDR tend to conduct conservative restoration
while LIME shows some results of over-enhancement, e.g.,
the second and the fifth rows in Fig. 7(h). In particular,
the last row of Fig. 7 shows an example of the medical image,
which is generally captured under the skin (i.e., very low-light
condition with the existence of light scattering). Most pre-
vious approaches fail to accurately represent textural details
buried in the dark of the mammography image, for example,
SRIE and FUN yield the low contrast whereas the result by
LIME is extremely over-saturated. In contrast, PPEA and the
proposed method provide quite a good enhancement result,
which efficiently reveal textural details while keeping the
relative contrast as well. To show details of the difference
between enhancement results by previous models and the
proposed method, enlarged regions of several samples are
shown in Fig. 10. Specifically, the contrast of the picture in
the T-shirt is successfully improved by the proposed method,
which gives better viewing experience to users. In the second
example, facial structures are clearly restored with relatively
high contrast in the result of the proposed method. Moreover,
surface textures, which belong to the bright area (see the
white rectangle in the bottom), are well preserved during the
enhancement procedure without over-saturation compared to
previous approaches. More examples of enhancement results
by the proposed method are shown in Figs. 8 and 9. It can
be seen that the proposed method yields good overall results,
and improves the image quality successfully even under the
low-light environment in terms of the existence of the haze as
shown in the last example of Fig. 8.

In the following, enhancement results for the HDR dataset
are also shown in Fig. 11. First of all, most samples from
the HDR dataset are taken under the backlight condition and
thus the image is globally dark. In this case, LIME shows
the visually impressive results, however, it sometimes fails to
make a balance of the contrast in foreground and background,
for example, the tree outside the window is over-saturated
in the first sample, whereas LDR shows the result of the
under-enhancement. NPEA and SRIE yield loss of surface
details with slight distortions of color attributes as shown
in Fig. 11(e) and (f). Compared to previous approaches,
the proposed method moderately improves the contrast while
efficiently revealing textural details on the surface. To high-
light the difference between the performance of PPEA and
the proposed method, enhancement results for several local
regions, which are obtained from Figs.7 and 11, are shown
in Fig. 12. As can be seen, the proposed method efficiently
restores details of textures while maintaining the high contrast
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@) (b) © (d) (e) ® © (h) @

FIGURE 7. (a) Test samples from the NASA dataset. Enhancement results of test samples in the NASA dataset by (b) CLAHE [14], (c) CVC [16], (d) LDR [17],
(e) NPEA [24], (f) SRIE [26], (g) FUN [36], (h) LIME [27], (i) PPEA [10], and (j) the proposed method.

FIGURE 8. More enhancement results for the NASA dataset by the proposed method. Top : original input images. Bottom : enhancement results by the
proposed method.

compared to PPEA. In addition, more enhancement results without any significant distortion both in the color attribute
for images acquired by the smartphone under various real- and the contrast. However, the proposed method sometimes
world scenarios are shown in Fig. 13. It is noteworthy that yields halo artifacts around strong edges on the flat back-
the proposed method provides visually comfortable results ground, e.g., second example in Fig. 8 and fourth example
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TABLE 1. Performance comparison using the NASA dataset (concerning each metric, the best results are shown in bold).

Methods | Input [ CLAHE [14] | CVC[I6] | LDR[17] | NPEA [24] [ SRIE[26] | FUN [37] [ LIME [27] [ PPEA [10] [ Ours
NIQE ({) 5.106 4.161 3.873 4.458 3.755 4.108 4.201 4.018 4.512 3.672
BTMQI () | 4.763 3.809 4.393 4.527 3.466 3.508 3.527 4.549 3.537 3.375
NIQMC (1) | 4.625 5.057 5.437 5.129 4.709 4.809 4.962 5.097 5.287 5.406
C-PCQI (1) - 1.132 1.032 1.039 0.955 0.960 1.098 0.955 1.110 1.189

TABLE 2. Performance comparison using the HDR dataset (concerning each metric, the best results are shown in bold).

Methods | Input [ CLAHE [14] [ CVC[16] [ LDR[17] [ NPEA[24] [ SRIE [26] | FUN [37] | LIME [27] [ PPEATIO] [ Ours
NIQE (1) 4.653 3.622 3.917 4.326 3.536 3.958 3.799 3.582 3.212 3.195
BTMQI (}) | 5.943 3.872 5.982 5.541 4.106 3.197 3.082 4.618 2.671 3.068
NIQMC (1) | 4.685 5.058 5.258 4.952 4.370 4.989 4.927 5.027 5.273 5.394
C-PCQI (1) - 1.122 1.007 1.014 0.883 0.963 1.049 0.918 1.053 1.134

FIGURE 9. More enhancement results for the NASA dataset by the
proposed method. Top : original input images. Bottom : enhancement
results by the proposed method. Note that the proposed method works
well even under various lighting conditions, e.g., structured shadows and
uneven lighting.

in Fig. 13. This is because the reflectance (i.e., textural sur-
face) is computed by dividing the original intensity image
with the piecewise constant illumination space, which is
estimated by using our maximal diffusion values, according
to the Retinex theory. Therefore, small-scale components
(e.g., strong edges or highly textured regions), which make
relatively large changes of pixel values during the diffusion
process, tend to be excessively emphasized in the enhance-
ment result. This probably leads to the performance drop even
though the proposed method successfully suppresses such
artifacts in most cases.

B. QUANTITATIVE ANALYSIS

To compare the enhancement performance quantitatively,
the visual quality metric (VQM) has been popularly
employed in literature. In our experiments, we also adopt four
representative VQMSs, which are NIQE [37], BTMQI [38],
NIQMC [39], and C-PCQI [40]. The first three metrics are
defined in a no-reference manner, i.e., they do not require
distortion-free images (ground truth) whereas the last one is
based on the full-reference scheme, utilizing the difference
between the ground truth and the input image. Specifically,
NIQE [37] works based on the quality-aware collection of the
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FIGURE 10. Performance comparison in several local regions (white
rectangles). (a) Original input. (b) SRIE [26]. (c) FUN [36]. (d) LIME [27].
(e) PPEA [10]. (f) Proposed method.

natural scene statistics (NSS) model, which enables to pro-
vide the perceptual quality of a given image. The performance
of color tone mapping can be measured by BTMQI [38] while
the difference of the color attribute between the original input
and the enhancement result is efficiently estimated by using
the C-PCQI [40] metric. NIQMC [39] computes the entropy
for informative areas predicted by visual saliency and com-
bines local and global properties to estimate the image qual-
ity. It is noteworthy that such VQMs are useful to evaluate the
performance of image enhancement at various viewpoints.
The results of the performance evaluation in each dataset are
shown in Table 1 and 2, respectively. Note that lower values
are more desirable in NIQE and BTMQI metrics whereas the
higher values indicate the better performance in NIQMC and
C-PCQI. As shown in Table 1, the proposed method is able to
provide the visually acceptable result even with diverse low-
light conditions in the NASA dataset. Regarding the backlight
environment mostly contained in the HDR dataset, color
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TABLE 3. Performance comparison with standard image datasets, i.e., 1SO12640-2 [41], Canon [42], and Kodak [43] datasets.

Results for the ISO12640-2 dataset

Methods | Input | CLAHE [14] [ CVC[16] | LDR[17] | NPEA [24] | SRIE [26] | FUN [37] | LIME [27] | PPEA[I0] | Ours
NIQE ({) 7.483 6.375 7.363 7.561 6.471 5.699 6.561 7.147 6.367 5.609
BTMQI (}) | 4.937 4.879 4728 4.723 4.664 4.529 4.571 5.142 4.687 4951
NIQMC (1) | 4.987 5.347 5.326 5.291 4.722 5.273 5.202 5.237 5.535 5.375
C-PCQI (1) - 1.031 0.982 1.009 0.966 0.965 1.019 0.946 0.988 1.061
Results for the Canon dataset
Methods | Input | CLAHE [14] | CVC[16] | LDR[17] | NPEA [24] | SRIE[26] | FUN [37] | LIME [27] | PPEA[10] | Ours
NIQE ({) 4971 4.597 4.495 4.691 4.509 4.551 4.646 4481 5.492 4.874
BTMQI (}) | 3.441 3.396 3.228 3.186 3.211 3.293 2.977 4.923 3.786 3.862
NIQMC (1) | 5.121 5.517 5.675 5.638 5.109 5.279 5.291 5.398 5.437 5.497
C-PCQI (1) - 1.151 1.027 1.032 0.958 0.956 1.091 0.963 1.087 1.206
Results for the Kodak lossless dataset
Methods | Input | CLAHE [14] [ CVC[I6] | LDR[17] | NPEA [24] | SRIE[26] | FUN [37] | LIME [27] | PPEA[10] | Ours
NIQE (J) 3.019 3.329 3.075 3.026 3.048 2.858 3.324 3.093 4.539 3.654
BTMQI () | 3.577 4.289 4.092 3.736 3.977 4.401 3.722 5.853 4.292 4.429
NIQMC (1) | 4.981 5.566 5.548 5.543 4.927 5.055 5.179 5.101 5.336 5.453
C-PCQI (1) - 1.233 1.078 1.086 0.968 0.939 1.134 0.927 1.203 1.261

(@)

FIGURE 11. (a) Test samples from the HDR dataset. Enhancement results of test samples in the HDR dataset by (b) CLAHE [14], (c) CVC [16], (d) LDR [17],
(e) NPEA [24], (f) SRIE [26], (g) FUN [36], (h) LIME [27], (i) PPEA [10], and (j) the proposed method.

attributes and textures are well preserved in the enhancement
result of the proposed method compared to previous models
as shown in Table 2. Therefore, it is thought that the pro-
posed method is fairly desirable to be applied for diverse
applications, which require the high-visibility in the dark.
For more detailed analysis, metric values for all the samples
from both datasets are also shown in Fig. 14. Note that the
image index follows that of the original dataset. Based on this,
we analyzed the performance drop of the proposed method
occurring in NIQMC or BTMQI metrics. Specifically, highly
textured areas in the eighth image (see Fig. 15(a)) of the
NASA dataset are excessively emphasized by the proposed
method, which probably leads to the performance drop of the
NIQMC value compared to approaches yielding the conser-
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vative restoration. Since the NIQMC metric takes account the
maximum-information region for estimating the visual qual-
ity, distortions of such textured regions give negative effects
to calculate a score. That is the reason why the proposed
method shows the lower performance compared to CVC for
the NIQMC metric. On the other hand, the BTMQI values of
the proposed method are mostly higher than those of PPEA
for samples from the HDR dataset. This is because the color
tends to slightly darken compared to those of PPEA (see
Fig. 15(b)) even though the structural information (e.g., edges
and textures) is efficiently restored with high contrast in the
result of the proposed method.

Furthermore, experimental results on the standard image
datasets, i.e., [SO12640-2 [41] (15 images), Canon [42]
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FIGURE 12. Detailed comparison between enhancement results of PPEA
and the proposed method. 0dd columns : results by PPEA. Even columns :
results by the proposed method. Note that details of textures and high
contrast are well revealed in results of the proposed method.

FIGURE 13. More enhancement results for images taken by the
smartphone. Top : original captured images. Bottom : enhancement
results by the proposed method.

(18 images), and Kodak lossless [43] (24 images) datasets,
also have been provided in Table 3. Specifically, all the meth-
ods employed for our experiments are devised to particularly
improve the visibility of low-light images, and thus the per-
formance of the certain method is not dominant for standard
images, i.e., images acquired under the normal lighting condi-
tion. Since methods conducting conservative restorations for
low-light images, e.g., CVC and LDR, do not make signif-
icant changes, they provide relatively stable performance in
normal environments. Note that the proposed method con-
sistently shows a good ability to preserve the color attribute
(see results of the C-PCQI metric). Some enhancement
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TABLE 4. Performance comparison with tone-mapping methods.

Results for the NASA dataset
Methods ‘ NIQE (J) ‘ BTMQI (J) ‘ NIQMC (1) ‘ C-PCQI (1)

MST [46] 4.216 5.059 3.597 0.781
CRM [47] 4.131 4.469 4.696 0.912
LD [48] 3.564 3.788 5.251 0.953
Ours 3.672 3.375 5.406 1.189

Results for the HDR dataset
Methods | NIQE (J) [ BTMQI()) [ NIQMC (1) | C-PCQI (1)

MST [46] 4.152 5.945 3.458 0.734
CRM [47] 3.763 5.745 4.574 0.861
LD [48] 3.447 3.029 5.543 0.985
Ours 3.195 3.068 5.394 1.134

TABLE 5. Performance variations according to parameter settings for the
NASA dataset.

Methods | NIQE (1) | BTMQI ({) | NIQMC (1) | C-PCQI (T)
c=05 3.696 3331 5.381 T.191
c=1.0 3672 3375 5.406 1189
c=15 3.689 3268 5341 1189
At =50 3.679 3351 5398 1189
At =100 | 3672 3375 5.406 1189
At =150 | 3676 3371 5401 1189

TABLE 6. Performance variations according to parameter settings for the
HDR dataset.

Methods | NIQE (J) | BIMQI(]) | NIQMC (1) | C-PCQI (T)
c=05 3226 3.038 5358 L34
c=10 3.195 3.068 5394 1134
c=15 3.083 2.956 5.300 L.i32
At=50 3.206 3.028 5378 1.133
At=100 | 3.19 3.068 5394 1134
At=150 | 3204 3116 5394 1.134

results by the proposed method for these datasets are shown
in Fig. 16.

The proposed method is further compared with tone-
mapping methods, which also improve the visibility of low-
light images efficiently by reproducing the standard dynamic
range while preserving the visual information. To do this,
we employed three tone-mapping methods, i.e., MST [45],
CRM [46], and LD [47], and the comparison results are
shown in Table 4 and Fig. 17, respectively. As can be seen,
models, which are based on the multiscale decomposition via
edge-aware smoothing [45] and the camera response [46],
basically restore the structural information as well as color
attributes from low-light conditions, however, they are apt to
yield hazy-like results as shown in Fig. 17(b) and (c). In par-
ticular, the layer decomposition-based approach [47] shows
a good performance in the metric considering tone mapping,
i.e., BTMQI. From Table 4 and Fig. 17, it is thought that the
proposed method still provides the competitive performance
for low-light image enhancement compared to tone-mapping
approaches.

For optimization of the proposed method, the performance
according to various parameter settings is also evaluated.
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FIGURE 14. (a) Metric values for all the samples (25 images) from the NASA dataset. (b) Metric values for all the samples (seven images) from the HDR
dataset. Best view in colors.

TABLE 7. Comparison of the average processing time (Matlab) in NASA and HDR datasets.

Methods [ CLAHE [14] [ CVC[16] | LDR[17] | NPEA [24] [ SRIE[26] | FUN [37] | LIME[27] | PPEA[10] [ Ours
NASA 0.22 sec 4.11 sec 1.23 sec 87.75 sec 64.29 sec 2.58 sec 1.74 sec 27.68 sec 15.84 sec
HDR 0.17 sec 2.07 sec 0.68 sec 44.29 sec 39.77 sec 1.44 sec 0.87 sec 13.27 sec 7.31 sec

Specifically, two main parameters, i.e., the stopping criteria ¢ of Gamma correction, i.e., ¥, also can be tuned and we
and the time step Ar for the nonlinear diffusion, are tuned checked that the performance for the NIQMC metric is
to achieve the best performance as shown in Table 5 and 6, successfully improved (e.g., 5.394 — 5.417 for the HDR
respectively. In particular, the performance for the BTMQI dataset) without the significant performance drop for other
metric is significantly improved when the threshold value metrics when y is set to 3.2. Note that the default setting
for stopping the diffusion process is set to 1.5. The overall is given as ¢ = 1.0 and Ar = 10.0, and a parameter
performance is relatively stable with various setting condi- is fixed as the default value when the other one is in the
tions of the time step. For more improvement, the parameter test.
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FIGURE 15. Examples of the performance drop in the proposed method.
(a) Excessively highlighted textures (left : input, middle : CVC, right : ours).
(b) Darken colors (left : input, middle : PPEA, right : ours).

FIGURE 16. Top : original input images. Bottom : enhancement results by
the proposed method. From left to right : samples from 1SO [41],
Canon [42], and Kodak lossless [43] dataset.

The comparison of the average processing speed is also
shown in Table 7. All the methods are run on a single PC with
Intel Xeon 2.2GHz CPU and 64 GB of RAM. Note the source
codes for previous methods, which are written by using
Matlab, are available on their websites and adopted for
our experiments without any change. As shown in Table 7,
histogram-based approaches, e.g., CLAHE, CVC, and LDR,
work very fast even with the high resolution image. LIME
also shows the fast operation since it employs various
speed-up techniques, e.g., FFT (fast Fourier transform) and
quadratic approximation, for implementation. In contrast,
NPEA and SRIE take quite a lot of times due to the region-
based computation and the complicated optimization process,
which seriously make the algorithm slow when the image
size increases. Since PPEA conducts the subspace analysis
at every pixel position, it also takes some time with the
high resolution image. As introduced in the previous Section,
the proposed method requires the iterative operation, and it
thus runs relatively slow compared to several fast algorithms.
To improve the processing speed, the proposed method is
also implemented with the C language, which accelerates
the average processing speed up to 5.27sec and 2.38sec for
NASA and HDR datasets, respectively. For further improve-
ment, the spectral domain-based implementation [44] can
be applied to the adaptive diffusion process of the proposed
method.

VOLUME 7, 2019

FIGURE 17. (a) Original input images. Enhancement results by
(b) MST [45], (c) CRM [46], (d) LD [47], and (e) the proposed method.

V. CONCLUSION

In this paper, a novel and simple method for low-light image
enhancement is proposed. The key idea of the proposed
method is to exploit the maximal value obtained from the dif-
fusion process as the illumination component, which greatly
complies with the illumination property in the dark. The
estimated illumination component is subsequently separated
from the scene reflectance according to the Retinex the-
ory and efficiently stretched by global and local adjustment
schemes. One important advantage of the proposed method
is that the pixel-wise operation for illumination estimation
is effective to suppress blurry artifacts while successfully
revealing the underlying structure of a given scene. Based on
various experimental results, it is thought that the proposed
method can be applied to efficiently improve the visual qual-
ity of images acquired under various low-light environments.
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