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ABSTRACT Multiple kernel clustering (MKC) attracts considerable attention due to its competitive
performance in unsupervised learning. However, we observe that most of the existing MKC approaches
do not sufficiently consider the correlation between different clustering partitions. As a result, the existing
methods would cause redundant and low diversity of selected clustering partitions which deteriorate
clustering performance. To address these issues, we propose an effective and efficient multiple kernel
k-means clustering method termed Consensus Multiple Kernel Clustering with Late Fusion Alignment and
Matrix-Induced Regularization (CMKC-LFA-MR). Specifically, the correlations between different clustering
partitions are calculated as a matrix-induced regularization to encourage the diversity of clustering results.
Moreover, we propose to maximally align the consensus partition with the weighted base partitions. The
proposed algorithm jointly optimizes the basic clustering partitions and the optimal consensus clustering
result. To solve the resultant optimization problem, a three-step alternate algorithm is proposed with both
theoretically and experimentally proved convergence. As demonstrated by the experiments on six bench-
mark datasets, our algorithm outperforms the existing state-of-the-art multi-kernel methods in clustering
performance with less time complexity, which demonstrates the effectiveness and efficiency of our proposed
algorithm.

INDEX TERMS Multiple kernel clustering, late fusion, kernel method.

I. INTRODUCTION
Clustering is one of the most fundamental learning tasks in
machine learning and data mining fields. Nowadays, many
real-world data are represented by various heterogeneous
features or views, which are generated from multiple sources
of data collection or feature construction ways. For example,
images can be represented by its color and shape descrip-
tors, and web-page data can be described by using images,
text and hyper links. Normally, these multiple sources of
information encode complementary information, whichmoti-
vates the development of multiple kernel clustering (MKC)
whose goal is to explore such information for improvements
on clustering performance [1]–[27]. Existing researches on
multiple kernel clustering in this field can be summarized
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into three categories. The first one learns a latent consensus
matrix via a low-rank optimization framework from various
views [28]–[30]. In [28], it is proposed to learn a latent
low-rank transition probability matrix shared from the given
kernels as the input to the standard Markov chain for clus-
tering. The work in [29] captures the noises in each kernel
and integrate them into a low-rank framework. By follow-
ing multiple kernel learning framework, the second category
optimizes the into a low-rank framework. By following mul-
tiple kernel learning framework, the second category opti-
mizes the optimal kernel matrix as a linear combination of
known kernel matrices from a given library In [1], a three-
step alternate algorithm is proposed to jointly optimize clus-
tering, kernel coefficients and dimension reduction. The
work in [8] proposes a multiple kernel k-means clustering
algorithm with matrix-induced regularization to reduce the
redundancy of the pre-defined k-means clustering algorithm
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with matrix-induced regularization to reduce the redundancy
of the the clustering performance in [9]. In [10], a multiple
kernel algorithm is proposed to allow the optimal kernel
to reside in the neighborhood of the optimal kernels. The
last category methods are implemented via a late fusion-
based manner, which obtain final clustering by combining
the results generated from each view [11], [32], [33]. Similar
to ensemble clustering, the work in [32]–[36] propose to
fuse multiple clustering results from kernels into a consensus
clustering partition instead of fusing kernels in advance. Our
method in this paper belongs to the third category.

Although the aforementioned algorithms have been pro-
posed to improve multiple kernel clustering from differ-
ent aspects, we observe that they suffer from the follow-
ing drawbacks. i) The intensive computational complexity,
i.e., usually O(n3) per iteration the number of samples n,
prevents the first two kinds’ algorithms from being applied
into medium or large-scale clustering tasks [11], [37]. ii) The
`1 norm constraint on weights in [32] leads to sparse solution,
which reduces the diversity of selected partitions and leads to
unsatisfying clustering performance.

To address these issues, we propose a novel algorithm
termed Consensus Multiple Kernel Clustering with Late
Fusion Alignment Maximization and Matrix-induced Regu-
larization (CMKC-LFA-MR) in this paper. Firstly, it max-
imizes the alignment between the consensus partition
and the weighted base partition matrices with orthogonal
transformation, where each base partition is generated by
performing clustering on each single view. The proposed
CMKC-LFA-MR jointly optimizes the rotation matrices,
weight coefficients and the optimal consensus partition.
Moreover, we develop an efficient algorithm to solve the
resultant optimization problem, and theoretically analyze
its computational complexity and convergence. Extensive
experiments on six multiple-kernel benchmark datasets are
conducted to evaluate the effectiveness and efficiency of
our proposed method, including the clustering performance,
the running time and the objective value with iterations.
As demonstrated, the proposed algorithm enjoys superior
clustering performance with significant reduction in com-
putational cost, in comparison with several state-of-the-art
multi-kernel clustering methods.

The contributions of this paper are summarized as follows,
• The proposed CMKC-LFA-MR integrates multiple ker-
nels via a late fusion manner. It jointly optimizes the
consensus partition, rotation matrices and weight coef-
ficients. Moreover, we design a matrix-induced regular-
ization to consider the correlation of different partitions
in the framework of multi-kernel clustering with late
fusion.

• An alternate optimization algorithmwith proved conver-
gence is designed to efficiently tackle the resultant prob-
lem. By the virtue of it, CMKC-LFA-MR shows clearly
superior clustering performance in comparison with
state-of-the-art methods. Moreover, CMKC-LFA-MR

TABLE 1. Main notations used in the paper.

requires significantly less computational time, espe-
cially essential for large datasets with limited computing
sources.

The rest of this paper is organized as follows. Section II
introduces some notations in our paper. Section III outlines
the related work of multiple kernel clustering. Section IV
presents the Multiple-kernel k-means with late fusion Align-
ment and Matrix-Induced Regularization (CMKC-LFA-MR)
convergence and the computational complexity of our pro-
posed algorithm. Section VI shows the experimental results
with evaluation. Section VII concludes the paper.

II. PRELIMINARIES
In this section, we introduce some necessary notations and
preliminaries in our paper. Throughout this paper, we use
boldface uppercase and lowercase letters to denote matrices
and vectors respectively. The (i, j)-th elements of a matrixM
is referred asMij and the i-th element of a vectorµ is denoted
asµi. We denote Tr(K) as the trace norm of a kernel matrixK.
The notations are summarized in Table 1.

III. RELATED WORKS
A. KERNEL k-MEANS CLUSTERING(KKM)
Kernel k-means clustering transfers the original data into
high-dimensional or infinite space serving for clustering
tasks. The optimization goal of kernel k-means clustering
algorithm is to minimize the square loss of the within-
cluster distance in kernel space. And the kernel function
φ(x) transfers the origin sample x onto a reproducing kernel
Hilbert spaceHwhich is a k-means-friendly space and easier
to cluster. By supposing the cluster indicator matrix Z ∈
{0,1}n×k , the optimization objective of KKM could be written
as follows:

min
Z∈{0,1}n×k

Zic‖φ(Xi) − υc‖
2 s.t.

k∑
c=1

Zic = 1, (1)

where nc =
∑n

i=1 Zic and υc =
1
nc

∑n
i=1 Zicφ(Xi) are the

number and centroid of the c − th(1 ≤ c ≤ k) cluster
respectively.
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By equivalently rewritten in matrix-vector form, the func-
tion in Eq. (1) is transformed to the following problem,

min
Z∈{0,1}n×k

Tr(K)− Tr(L
1
2Z>KZL

1
2 ) s.t. Z1k = 1n. (2)

Here, we apply the kernel matrix to the Eq. (1), and K
denotes the kernel matrix and L = diag([n−11 , n−12 , ·, ·, ·,

n−1k ]).
Directly solving the optimization problem in Eq. (2) is

difficult for the reason that the elements in matrix L are
discrete. We relax L to take real values, by letting the new
matrix H follows that H = ZL

1
2 . Then we rewrite the

problem in Eq. (2),

min
H∈Rn×k

Tr(K(In −HH>)) s.t. H>H = Ik , (3)

Compared with the formula set in Eq. (1), the kernel
k-means can correctly identify and extract a far more varied
collection of cluster structures than the linear k-means clus-
tering algorithm through the non-linear feature mapping. The
optimization problem in Eq. (3) could be solved by singular
value decomposition (SVD) of the kernelmatrixKmentioned
in [8].

However, the clustering performance of kernel k-means
mostly depends on the pre-specified kernel matrix. For most
applications in real life, it is hard for researchers to set
a proper kernel matrix in advance. advance. To address
this issue, multiple-kernel k-means clustering is proposed
to enhance the representation ability of kernel k-means in a
adaptively-weighted manner.

B. MULTI-KERNEL K-MEANS (MKKM)
In multiple kernel setting, we suppose that X = {xi}ni=1 ⊆ X
is a collection of n samples, and φp(·) : x ∈ X 7→ Hp be
the p-th feature mapping which transfers x into a reproducing
kernel Hilbert space Hp (1 ≤ p ≤ m). Hence each sample is
represented as φµ(x) = [µ1φ1(x)>, · · · , µmφm(x)>]> from
m views, where µ = [µ1, · · · , µm]> consists of the coef-
ficients of the m base kernels {κp(·, ·)}mp=1. The coefficients
will be optimized during learning. Based on the definition of
φµ(x), a kernel function can be expressed as

κµ(xi, xj) = φµ(xi)>φβ (xj) =
m∑
p=1

µ2
pκp(xi, xj). (4)

A kernel matrix Kµ is then calculated by applying the kernel
function κµ(·, ·) into {xi}ni=1. By using the notation that kernel
matrixKµ, the optimization goal of MKKM algorithm can be
expressed as

min
H,µ

Tr(Kµ(In −HH>))

s.t. H ∈ Rn×k , H>H = Ik , µ>1m = 1, µp ≥ 0, ∀p. (5)

where Ik is an identity matrix with size k × k . The opti-
mization problem in Eq. (5) can be solved by alternately
updating H and β: i) Optimizing H by fixed µ. With the
kernel coefficients µ fixed, H can be obtained by solving

a kernel k-means clustering optimization problem shown in
Eq. (6);

max
H

Tr(H>KµH) s.t. H ∈ Rn×k ,H>H = Ik , (6)

The optimal H for Eq. (6) can be obtained by taking the
k eigenvectors corresponding to the largest k eigenvalues
of Kµ. ii) Optimizing µ by fixed H. With H fixed, µ can be
optimized via solving the following quadratic programming
with linear constraints,

min
µ

m∑
p=1

µ2
pTr(Kp(In −HH>)) s.t. µ>1m = 1, µp ≥ 0.

(7)

As noted in [3] and [6], using a convex combination
of kernels

∑m
p=1 µpKp to replace Kµ in Eq. (5) is not a

valid option. With the norm constraint on µ, the solution
could be sparse and only one single kernel is activated while
others are given with zero weights. Along with this line,
many variants of MKKM have been proposed in the litera-
ture [8], [9], [18], [38]. Liu et al. proposes a multiple kernel
k-means clustering algorithm with matrix-induced regular-
ization to reduce the redundancy and redundancy and enhance
the diversity of the pre-defined kernels [8]. Furthermore, local
kernel alignment criterion has been applied to multiple kernel
learning to enhance the clustering performance in [9].

C. MULTIPLE-KERNEL CLUSTERING WITH LOCAL KERNEL
ALIGNMENT MAXIMIZATION(MKC-LKA)
In [9], the local kernel alignment criterion has been applied
to multiple kernel learning following the motivation that the
similar sample pairs shall stay more closer and the similarity
evaluations for farther sample pairs are unreliable because
of improper metric settings. Considering locally aligning the
similarity of each sample to its k-nearest neighbors with
corresponding ideal kernel matrix, in specific, the local kernel
alignment for the i-th can be calculated as,

max
H∈Rn×k ,µ∈Rm+

〈K(i)
µ ,H(i)H(i)>

〉√
〈K(i)

µ ,K
(i)
µ 〉

s.t. H>H = Ik ,µ>1m=1.

(8)

where 〈K(i)
µ ,H(i)H(i)>

〉 = Tr(K(i)
µ

>

H(i)H(i)>), K(i)
µ and H(i)

are the corresponding sub-matrix ofKµ andHwhose indexes
are specified by the τ -nearest neighbors of the i-th sample.
For more details, please refer to the [9].

The Eq. (8) can be conceptually expressed as,

min
H∈Rn×k ,µ∈Rm+

Tr(K(i)
µ (Iτ −H(i)H(i)>))+

λ

2
µ>M(i)µ

s.t. H>H = Ik ,µ>1m = 1. (9)

where K(i)
µ = S(i)>KµS(i),H(i)

= S(i)>H,S(i) ∈ {0,1}n×τ is
a matrix indicating the τ -nearest neighbors of the i-th sample
and Iτ is an identitymatrixwith size τ×τ .M(i) is a correlation

matrix withM(i)
pq = Tr(K(i)

p
>

K(i)
q )
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However, we observe that the intensive computational
complexity of MKC-LFA is O(n3) per iteration, prevents
it from being applied into medium or large-scale clustering
tasks.

IV. CONSENSUS MULTIPLE-KERNEL K-MEANS WITH
LATE FUSION ALIGNMENT AND MATRIX-INDUCED
REGULARIZATION(CMKC-LFA-MR)
In this section, we firstly propose a simple but effec-
tive multiple kernel clustering algorithm termed Consen-
sus Multiple-kernel k-means with late fusion Alignment and
Matrix-Induced Regularization(CMKC-LFA-MR). In spe-
cific, CMKC-LFA-MR proposes to maximally align the
consensus partition with the weighted base partitions and is
regularized to reduce the redundancy and enforce the diver-
sity of the selected base partitions.

As mentioned in [32], we complete our multiple-kernel
k-means with late fusion as follows,

max
H∗,{Wp}

m
p=1,µ

Tr(H∗T
∑m

p=1
µpHpWp)+ λTr(H∗

TH0),

s.t. H∗TH∗ = Ik ,WT
pWp = Ik ,µT1m = 1,µp ≥ 0,

(10)

where X and H∗ are the data and the consensus partition
matrix respectively. The latter Tr(H∗TH0) is a regularization
on the consensus partition to prevent H∗ from being too far
way from prior average partition. To be easily extended into
multiple kernel clustering, after obtaining the basic partitions{
Hp
}m
p=1 from each single view, we conduct the new consen-

sus partition
∑m

p=1 µpHpWp.
To further analysis in depth, we assume that HpWp is

selected and assigned to a large weight.As can be seen from
Eq. (10), the `1 norm constraint onµ leads to sparse solution,
which increases the redundancy and reduce the diversity of
selected partitions. According to Eq. (10),the rotated HqWq
with high correlation with HpWp would be also selected
together and assigned to similar important weights. This
would result in the high redundancy among the given par-
titions. On the other hand, the selection of highly correlated
partitions could suppress the weights of partitions that are less
correlated with Hp due to the sparsity constraint (`1 norm)
imposed on the weights.This would cause the low diversity
among the selected partitions or even prevent complementary
partitions from being utilized.

To reduce the redundancy and enforce the diversity of the
selected kernels, we need a regularization term that is able to
characterize the correlation of each pair of rotated partitions.

Motivated by the work of [8], we firstly define a correlation
M
(
Hp,Hq

)
between HpWp and HqWq. Larger value of

M
(
Hp,Hq

)
represents high correlation betweenHp andHq.

Based on our prior work [8], we introduce the matrix-induced
regularization terms as,

min
u∈Rm+

∑
p,q=1

µpµqMpq = µ>Mµ, (11)

whereM is a matrix with Mpq = Tr(W>p H
>
p HqWq).

A. PROPOSED FORMULATION
By integrating the matrix-induced regularization into the
objective function, we derive a novel optimization formula-
tion for multiple-kernel clustering. In general, after obtaining
the basic partitions

{
Hp
}m
p=1 from every single view, we con-

duct the new optimal combinational partition
∑m

p=1 µpHpWp
to maximally align with the consensus partition.
As a result, we obtain the objective function of our

adaptively-weighted algorithm follows,

max
H∗,{Wp}

m
p=1,µ

Tr(H∗TX)+ λTr(H∗TH0)−
β

2
µ>Mµ,

s.t. H∗TH∗ = Ik ,WT
pWp = Ik ,X =

∑m

p=1
µpHpWp,

(12)

where
{
Wp

}m
p=1 are a set of rotation matrices, H0 denotes

the average partition region and λ is a trade-off parameter.
The latter Tr(H∗TH0) is a regularization on the consensus
partition to prevent H∗ from being too far way from prior
average partition. It is worth noting that we not only set an
optimization goal set an optimization goal for the multi-view
clustering with late fusion, but also offer a new framework
to fuse various clustering methods, which implies that any
kind of ensemble clustering results can be applied to our
framework. Moreover, as the following optimization process
shows, the proposed function could be easily solved by an
alternate algorithm with proved convergence.

B. OPTIMIZATION FOR ADAPTIVE ALGORITHM
In order to solve the consultant optimization problem in
Eq. (12), we design a three-step alternate alternate optimiza-
tion algorithm with theoretically-proved convergence, where
each step could be easily solved by the existing packages.

1) OPTIMIZATION H∗ WITH FIXED
{
Wp

}m
p=1 AND µ

With
{
Wp

}m
p=1 and µ being fixed, the optimization Eq. (12)

could be rewritten as follows,

max
H

Tr(H>U)

s.t. H>H = Ik , (13)

where U =
∑m

p=1 µpHpWp + λH0. And this problem in
Eq. (13) could be easily solved by taking the singular value
decomposition(SVD) of the given matrix U. Here the follow-
ing Theorem gives a closed-form solution for the problem in
Eq. (13).
Theorem 1: Suppose that the matrix U in Eq. (13) has

the economic rank-k singular value decomposition form as
U = Sk6kV>k , where Sk ∈ Rn×k , 6k ∈ Rk×k ,Vk ∈ Rk×k .
The optimization in Eq. (13) has a closed-form solution as
follows,

H∗ = SkVT
k , (14)

Proof: By taking the the normal singular value decom-
position U = S6VT, the Eq. (13) could be rewritten as,

Tr(H∗TS6VT) = Tr(VTH∗TS6). (15)
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Considering that Q = VTH∗TS, then we have
QQT

= VTH∗TSSTH∗V = Ik . Therefore we can take
Tr(VTH∗TS6) = Tr(Q6) ≤

∑k
i=1 σi. Hence in order to

maximize the value of Eq. (13), the solution should be given
as Eq. (14). This completes the proof. �

2) OPTIMIZATION
{
Wp

}m
p=1 WITH FIXED H∗ AND µ

WithH∗ andµ being fixed, for each singleWp, the optimiza-
tion problem in Eq. (12) is rewritten as follows,

maxWp Tr(WT
pT) s.t.W

T
pWp = Ik , (16)

where T = µpHT
pH
∗. And this problem in Eq.(16) could

be easily solved by taking the singular value decomposition
(SVD) of the given matrixV. Like the closed-form expressed
in Theorem 1, if the matrix V has the singular value decom-
position form as A = S66GT, the optimization in Eq.(16)
has a closed-form solution asWp = SGT. Hence we optimize
one Wp with other Wi6=p fixed at each iteration. As a result,
we can obtain a set of optimized

{
Wp

}m
p=1.

3) OPTIMIZATION µ WITH FIXED H∗ AND
{
Wp

}m
p=1

WithH∗ and
{
Wp

}m
p=1 being fixed, the optimization problem

in Eq. (12) is equivalent to the optimization problem as
follows,

min
µ

β

2
µ>Mµ− f>µ,

s.t. µ>1 = 1,µ ≥ 0, (17)

where f = [f1, f2, . . . , fm] with fp = Tr(H∗THpWp), Mpq =

Tr(W>p H
>
p HqWq).

It seems difficult to solve the Eq. (17). However the follow-
ing proof illustrates the matrix M is a positive semidefinite
(PSD) matrix. Hence, with the simplified problem proposed
in Eq. (17), we have observed that this problem is a quadratic
programming optimization and could be efficiently solved via
the existing convex optimization package.
Lemma 1: for every x ∈ Rm, we have that

x>Mx =
m∑
p=1

m∑
q=1

xpxqTr(W>p H
>
p HqWq),

= Tr(
m∑
p=1

m∑
q=1

xpxqW>p H
>
p HqWq),

= Tr(
m∑
p=1

xpW>p H
>
p

m∑
q=1

xqHqWq),

=

∥∥∥∥∥∥
m∑
p=1

xpw>p H
>
p

∥∥∥∥∥∥
2

F

≥ 0. (18)

Therefore, the matrixM is a positive semi-definite matrix and
the optimization in Eq. (17) could be solved by quadratic
programming.

Our algorithm termed CMKC-LFA-MR is outlined in
Algorithm 1, where obj(t) denotes the objective value at the
t-th iteration.

Algorithm 1 CMKC-LFA-MR

1: Input:
{
Hp
}m
p=1 and ε0.

2: Output: H∗,µ.
3: Initialize

{
Wp

}m
p=1 = Ik ,µ = 1

m and t = 1.
4: Repeat
5: Update H∗ by solving Eq.(13) with fixed

{
Wp

}m
p=1

and µ.
6: Update

{
Wp

}m
p=1 with fixed H∗ and µ by Eq.(16).

7: Update µ by solving Eq.(17) with fixed H∗ and{
Wp

}m
p=1.

8: t = t + 1.
9: Until

(
obj(t−1) − obj(t)

)
/obj(t) ≤ ε0

V. ALGORITHM ANALYSIS
In this section, we show our theoretical analysis on the pro-
posed algorithm’s convergence and computational complex-
ity to verify the efficiency of proposed algorithm.

A. CONVERGENCE ANALYSIS
The following Theorem 2 shows our algorithm is guaranteed
to converge into a local minimum.
Theorem 2: The proposed algorithm 1 is proved to con-

verge to a local optimum.
Proof: Note that for ∀p, q, Tr[(µpHpWp)T

(µqHqWq)] ≤ Tr[(HpWp)T(HqWq)] ≤ 1
2 (Tr[(HpWp)T

(HpWp)]+Tr[(HqWq)T(HqWq)]) = k . As a result, we could
derive the upper bound of the optimization goal in Eq.(12).
We obtain that Tr(H∗TX) ≤ 1

2 (Tr[H
∗TH∗] + Tr[XTX]) =

1
2 (Tr[H

∗TH∗] + Tr(
∑m

p,q=1 (µpHpWp)T(µqHqWq))) ≤

k
2 (m

2
+ 1). Meanwhile, the (H∗TH0) ≤ 1

2 (Tr[H
∗TH∗] +

Tr[H0
TH0]) = k . As for the last term −β2µ>Mµ, with

Lemma 1 proved, −β2µ>Mµ ≤ 0 (since β ≥ 0). Conse-
quently, the whole optimization function is upper bounded
by k

2 (m
2
+ 1) + k . As the three subproblems are strictly

convex when optimizing one variable and keeping the oth-
ers fixed. The objective of Algorithm 1 is monotonically
increased when optimizing one variable with the others fixed
at each iteration. At the same time, the whole optimization
problem is upper-bounded. As a result, the proposed algo-
rithm can be verified to be convergent. This completes the
proof. �

B. COMPUTATIONAL COMPLEXITY
Since our algorithm completes multiple kernel clustering via
late fusion manner, comparing to the early-fusion method,
our algorithm has less time complexity. And in this section,
we theoretically analyze the time complexity of the proposed
algorithm.

Theoretically, we assume that the number of samples in
given datasets is n, the number of clusters k and the number
of kernels is m. Going back to the our optimization algorithm
in 1, the total time complexity consists of three parts referring
to the three alternate steps. With the optimization process
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TABLE 2. Multi-kernel datasets used in our experiments.

outlined in Algorithm 1, the computational complexity of
CMKC-LFA-MR is O(nk2 + mk3 + m3) per iteration. This
implies that our algorithm has a linearly growing complexity
with the number of samples(since n � k,m), making it
efficient to handle large-scale tasks comparing to the state-
of-the-art multiple-kernel clustering algorithms.

C. DISCUSSION AND EXTENSIONS
CMKC-LFA-MR can be easily extended with the follow-
ing considerations. Firstly, CMKC-LFA-MR could be fur-
ther improved by capturing the noises or bad partition exist-
ing in basic partitions. For example, we could integrate the
basic partitions

{
Hp
}m
p=1 into the optimization procedure to

capture more advanced base partitions. By doing so, the
high-quality basic partitions are further used to guide the
generation of consensus partition. Secondly, we could apply
more similarity-based clustering methods to generate basic
partitions. Further exploring other generating methods and
evaluating their clustering performance will be an interesting
future work.

VI. EXPERIMENTS
In this section, we evaluate the effectiveness and efficiency
of the proposed CMKC-LFA-MR for six widely used multi-
kernel benchmark datasets from the aspects of clustering
performance, running time and convergence.

A. DATASETS AND EXPERIMENTAL SETTINGS
The datasets used in our experiments are Oxford Flower17,1

Protein fold prediction(ProteinFold),2 Columbia Consumer
Video (CCV)3 and Caltech.4 The detailed information of the
used datasets are listed in Table 2.

For Caltech datasets, we select 10, 15 and 20 samples
randomly from each class. By this way, we generate three
datasets on Caltech102, which each dataset has 102 classes
and is represented by 48 base kernels. We term the three
generated datasets as Caltech102-10, Caltech102-15 and
Caltech102-20 respectively. For other benchmark multiple
kernel datasets, we use the pre-defined kernel matrices and
download them from the official website.

In all our experiments, suggested by [39],all base kernels
are first centered and then scaled so that for all sample xi
and p, we have Kp(xi, xi) = 1. For all data sets, it is assumed
that the true number of clusters is known and set as the true
number of classes. For the proposed algorithm, the tradeoff

1http://www.robots.ox.ac.uk/˜vgg/data/flowers/
2http://mkl.ucsd.edu/dataset/

protein-fold-prediction
3http://www.ee.columbia.edu/ln/dvmm/CCV/
4http://www.vision.caltech.edu/Image_Datasets/

Caltech101

TABLE 3. ACC, NMI and purity comparison of different clustering algorithms on six benchmark data sets.
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FIGURE 1. The objective value of our adaptive algorithm at each iteration in Flower17(a), ProteinFold(b), Caltech-10(c), Caltech-15(d), Caltech-20(e)
and CCV(f).

FIGURE 2. The running time comparison of different algorithms on six
benchmark datasets.

parameter λ andβ are chosen from
[
2−5, 2−4, · · ·, 25

]
by grid

search.
The widely used clustering accuracy (ACC), normalized

mutual information (NMI) and purity are applied to evaluate
the clustering performance. For all algorithms, we repeat
each experiment for 50 times with random initialization to
reduce the effectiveness of randomness caused by k-means,
and report the best result. All the experiments are per-
formed on a desktop with Intel core i7-7820X CPU and 64G
RAM.

B. COMPARED ALGORITHM
In this section, we list the compared algorithms as follows,
• Average multiple kernel k-means (A-MKKM): All ker-
nels are averagely weighted to conduct the optimal
kernel, which is used as the input of kernel k-means
algorithm.

• Single best kernel k-means (SB-KKM): Kernel k-means
is performed on each single kernel and the best result is
outputted.

• Multiple kernel k-means (MKKM) [4]: The algorithm
alternatively performs kernel k-means and updates
the kernel coefficients, as introduced in the related
work.

• Co-regularized spectral clustering (CRSC) [40]: CRSC
provides a co-regularization way to perform spectral
clustering on multiple views.

• Multiple kernel k-means with Matrix-induced Regular-
ization (MKKM-MR) [8]: The The algorithm applies
the multiple kernel k-means clustering with a matrix-
induced regularization to reduce the redundancy and
enhance the diversity of the kernels.

• Multiple Kernel Clustering with Local Kernel Align-
ment Maximization (MKC-LKA) [9]: The algorithm
maximizes the local kernel alignment with multiple ker-
nel clustering and focuses on closer sample pairs that
they shall stay together.

• Optimal neighborhood kernel clustering with multiple
kernels (ONKC) [10]: ONKC allows the optimal kernel
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FIGURE 3. The ACC result of our MKC-LFA-MR method with different parameters’ settings at benchmark datasets. Other metrics are similar.

to reside in the neighborhood of linear combination of
base kernels and effectively enlarges the region from
which an optimal kernel can be chosen, and therefore is
in a better position than the traditional ones to identify a
more suitable kernel for clustering.

TheMatlab codes of A-MKKM, SB-KKMandMKKMare
publicly available at http://github.com/ mehme-
tgonen/lmkkmeans. For the rest of algorithms, we use
their Matlab implementations from authors’ websites in our
experiments.

C. EXPERIMENTAL RESULTS
The three evaluation metrics (ACC, NMI and Purity) of
the compared algorithms on the six benchmark datasets are
displayed in Table 3. Concluded from the results, we have
the following observations:

• As can be observed from the results, the recently
proposed ONKC ([10]) outperforms other early-
fusion manner multiple kernel k-means cluster-
ing methods (MKKM, OKKC, CRSC, MKC-LKA,
MKKM-MR and ONKC) in comparison. For exam-
ple, it exceeds the second best approach (MKC-LKA)
by 0.3%, 1.4%, 0.2%, 12.7%, 3.3% in terms of ACC
on Flower17, ProteinFold, Caltech-10, Caltech-15,
Caltech-20 and CCV, respectively. These results verify
the effectiveness of enlarging the chosen region of opti-
mal kernel matrix in a neighborhood way.

• The proposed algorithm CMKC-LFA-MR in red sig-
nificantly and consistently outperforms ONNKC by
0.6%, 0.5%, 9.1%, 9.5%, 9.2%, 9.8% in terms of ACC
on Flower17, ProteinFold, Caltech-10, Caltech-15,
Caltech-20 and CCV, respectively.

• Comparing to the MKKM-MR, CMKC-LFA-MR con-
sistently achieves higher performance among the bench-
mark datasets. Since both of the two approaches adopt
the matrix-induced regularization, the experimental
the experimental results illustrate that the late fusion
manner benefits from high-level partition kernel level
fusion.

Table 3 also reports the comparison of NMI and purity.
As can be seen, our proposed algorithm outperforms all other
methods in other metrics. The experimental results clearly
demonstrate the effectiveness of our proposed algorithm.

Table 3 also reports the comparison of NMI and purity.
Again, we observe that the proposed algorithm has promising
performance among datasets. In all, these results have well
verified the effectiveness of our proposed algorithm.

In summary, the above experimental results have well
demonstrated the effectiveness of our proposed CMKC-LFA-
MR comparing to other state-of-the-art methods.We attribute
the superiority of CMKC-LFA-MR as three aspects:
• CMKC-LFA-MR adopts iterative fusion to update basic
partitions, consensus partition and achieves better per-
formance than other approaches. More specifically,
when better consensus partition is obtained, we could
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further make full use of the high-quality consensus
to align with weighted basics partitions serving for
clustering.

• Comparing with the existing early-fusion methods,
the proposed CMKC-LFA-MR fuses multiple kernel
information in the partition level, which demonstrates
the benefits of fusing high-level information.

• Our proposed algorithm introduces a matrix-induced
regularization term to enhance the diversity and reduce
the redundancy of the selected basic partitions. Compar-
ing to the sparse solution, CMKC-LFA-MR could utilize
more high-quality partitions.

These three factors contribute to the significant improve-
ments on clustering performance and update the consensus
optimal partition better serving for clustering.

D. RUNNING TIME
To evaluate the computational efficiency of our proposed
algorithm, we record the running time of these algorithms
on the six benchmark datasets and report them in Figure 2.
As can be seen, CMKC-LFA-MR has the shortest running
time on all datasets comparing to the-state-of-art multiple ker-
nel methods (MKKM, OKKC, CRSC, MKC-LKA, MKKM-
MR and ONKC), demonstrating the computational efficiency
of the proposed approach. As theoretically demonstrated,
CMKC-LFA-MR reduces the time complexity from O(n)3

to O(n) per iteration and avoid complicated optimization
procedure.

In sum, both the theory and the experimental results in Fig-
ure 2 have well demonstrated the computational advantage of
CMKC-LFA-MR, making it efficient to handle with multiple
kernel clustering.

E. CONVERGENCE AND PARAMETER SENSITIVITY
Our algorithm is theoretically guaranteed to converge accord-
ing to Theorem 2. For the experimental study, we con-
duct experiments on the benchmark datasets. Furthermore,
as shown in Figure 1, the objective value of CMKC-LFA-MR
does monotonically increase at each iteration among six
datasets and it usually converges in less than 10 iterations in
practical.

We also conduct the parameter sensitivity study on CCV
dataset and report the clustering performance by ranging λ
and β within the set of

[
2−5, 2−4, · · ·, 25

]
shown in Figure 3.

From the observation, increasing λ will improve the perfor-
mance, and vice versa, that is, increasing β will improve the
performance. Moreover, the clustering metric ACC increases
when both λ and β increase.The curves with other datasets
are similar and committed.

VII. CONCLUSION
This work has proposed a multiple kernel clustering frame-
work with late fusion alignment to jointly utilize the var-
ious views of clustering partitions. The algorithm aligns
the consensus partition with weighted base partitions.

Moreover, a matrix-induced regularization is introduced to
enhance the diversity and reduce the redundancy of selected
clustering results. The proposed approach jointly optimizes
the rotation matrices, weight coefficients and the opti-
mal consensus partition. Our proposed algorithm, termed
CMKC-LFA-MR, is proved to be an effectiveness and effi-
cient algorithm comparable with state-of-the-art multiple
kernel methods. In the future, we are supposed to analy-
sis the influence of different initialization of basic parti-
tions and more deep considerations about the connection
between multi-view learning and ensemble learning needs to
be explored.
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