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ABSTRACT Occupants’ comfort level has a strong correlation with health problems. Providing a com-
fortable environment for the occupants will bring the benefits of improved health. To achieve this goal,
it is necessary to have a reliable human comfort model for predicting the occupants’ comfort level and
subsequently controlling the involved comfort condition. However, the comfort perception of occupants is
subjective. There is a lack of objective indices for measuring comfort level. Furthermore, human comfort is
affected by various environmental factors. Such situations make it difficult to set up a model for measuring
human comfort. To address the challenges, we use Blood Pulse Wave (BPW) as an objective comfort index
and adopt a data-driven approach to predict human comfort level based on data including both environmental
factors and human factors. We propose a framework for collecting the data followed by investigating the
relationship between the factors with the purpose of building a scalable comfort model. In consideration
of the nonlinear relationship present in the dataset, we opt for support vector regression with radial basis
function (SVR-RBF) algorithm to establish the comfort model. To validate the predication performance of
this method, we have applied the other six popular machine learning models on the same dataset. In order
to choose an optimal model, we apply the holdout method and k-folder cross-validation method together
with the grid search. The comparison results show that the SVR-RBF has the best performance for comfort
prediction according to the mean squared error, mean absolute error and R-squared score.

INDEX TERMS Machine learning, human comfort prediction, support vector regression.

I. INTRODUCTION
Human comfort plays a key role in individuals’ health and
wellbeing and also has great impact on their work effi-
ciency. Nowadays 90% of people spend most of their time in
buildings which are generally built for individuals’ working
and living [1], [2]. Comfortable indoor conditions would
considerably improve the occupants’ health, well-being and
work performance. Therefore, there has been an increasing
demand for the improvement of indoor comfort. To achieve
this objective, a reliable human comfort model is required to
be established to delineate the relationship between external
factors and human comfort. The validated model can be used
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to predict the occupants’ comfort level so as to adjust the
external factors to suit their comfort needs.

On the other hand, development of human comfort model
would contribute to the improved energy efficiency of build-
ings. Currently buildings all around the world consume a
significant amount of energy which accounts for about one
third of the total energy consumption [2]. The majority of
the energy consumption in buildings is resulted from Heat-
ing Ventilation and Air Conditioning (HVAC) systems [2].
To activate HVAC systems according to occupants’ comfort
needs instead of based on fixed criteria would definitely help
reduce energy consumption.

Comfort is usually characterized as a lack of hardship or
a sense of psychology or physical ease [3]–[7]. It involves
some dimensions of the physical environment and depends
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on occupants’ physical and psychological factors. It can be
assessed in terms of thermal comfort [3], [8], respiratory
comfort [4], [9], visual comfort [10], [11] and acoustic com-
fort [12], [13]. Comfort is a subjective term. Thus, it is
difficult to quantify it. In order to represent or predict the
comfort level of individuals, firstly a common indicator is
required. Previous studies have proposed some thermal com-
fort indicators. For instance, the PredictedMean Vote (PMV),
the Predicted Percentage of Dissatisfied (PPD), the percent-
age of local dissatisfaction (PD) and the extended adaptive
version aPMV are adopted as indices [14]–[17]. However,
these indicators involving occupants’ votes are subjective
and cannot accurately reflect human comfort or thermal
comfort.

A reliable human comfort model with high accuracy to
predict or improve human comfort is also demanded and nec-
essary. Basically, previous studies mainly carry out research
on thermal comfort models. These models are generally
classified into three categories: Regression [18]–[24], Clas-
sification [25]–[27] and other models [14]–[17], [28]–[30].
Regression models primarily use the PMV index as the sub-
jective comfort index to predict continuous comfort levels.
Classification models only predict discrete comfort states.
Other models such as PMV model and PDD model have low
prediction accuracy about 41.68-65.5% as reported in [31]
and are difficult to handle diverse factors and scenarios.

To address the above-mentioned problems, in this paper
we use blood pulse wave (BPW) [32] as a proxy for com-
fort. Blood Pulse Wave is an objective composite index
which qualitatively measures how the blood pulsate over
time. In order to continuously monitor individuals’ comfort
levels and take into account the nonlinear relationship inves-
tigated based on our dataset, we adopt an environmental and
human data-driven model namely support vector regression
with radial basis function (SVR-RBF) to predict human com-
fort [33], [34]. SVR-RBF is selected based on our considera-
tion that this model is able to learn complex patterns and can
deal with nonlinear relationship and mass data well. In addi-
tion, this model is scalable, which has the ability to incor-
porate multiple factors. The model is set up based on input
environmental data collected from physical sensor nodes and
output human data extracted from medical-level wearable
sensors. This model has been compared with other popular
machine learning models according to the criteria of Mean
Squared Error (MSE) [35], Mean Absolute Error (MAE) [36]
and Adjusted R-squared score [37].

The main contributions of our paper are as follows.
• We present a detailed framework to obtain the environ-
mental and human data.

• We use Blood Pulse Wave (BPW) as an objective com-
fort index.

• Prior to building the comfort model, we visualize the
data and explore the relationship between the environ-
mental (input) factors and the human (output) factor
from one dimension to multiple dimensions so as to
guide the selection of suitable model.

• Based on the analysis of the data, we adopt the Support
Vector Regression with radial basis function kernel for
human comfort prediction.

• To further validate the performance of the SVR-RBF
model, we compare its analysis result with those of other
six popular regression models.

The remainder of the paper is organized as follows.
Section II gives a brief introduction to previous studies related
to human comfort. Section III presents a framework for data
collection and the adopted predictionmodel. Section IV intro-
duces the methodology and model optimization. Experiment
results are described in Section V. We discuss our findings
and current limitations in Section VI. Section VII concludes
the paper.

II. RELATED WORK
A number of studies related to human comfort have been
conducted and previous research mainly focus on modelling
thermal comfort [28]. As we mentioned above, our work
focuses on the regression model since we aim to continuously
monitor the comfort levels of individuals. Thus, we primarily
review the regression models [18]–[24] and other continuous
prediction models [14]–[17], [28]–[30].

Regression models: A two-stage empirical PMV regres-
sion model was presented and it considered the architectural
parameters and control variables [18]. A regression approach
was proposed in [19] to analyse human thermal comfort.
An artificial neural network (ANN) was built in [20] to
analyse the relationship between the estimated PMV index
and the input parameters. The study presented in [21] adopted
an autoregressive neural network to establish thermal comfort
models for controlling heating settings. A recursive least
square estimation approach was applied to learn the thermal
comfort profile [22]. The study presented in [23] developed
a thermal comfort model with a kernel based method which
was used to learn occupants’ thermal comfort profile. Gaus-
sian Process (GP) regression was proposed in [24] to extract
subjects’ thermal preferences. However, these models mainly
concentrate on thermal comfort and involve human thermal
perception votes which is subjective in nature.

Other continuous prediction models: The PMV [28],
PPD [28], [29], and extended PMVmodels which were in the
form of equations were proposed to evaluate thermal comfort
focusing on specific factors [14]–[17]. A fuzzy rule-based
model was presented to set up a predictive model for thermal
comfort [30]. However, the PMV model and its extended
models have low prediction accuracy [14], [15] and are
difficult to handle multiple factors. It is tough to tune the
controller parameters of the fuzzy rule-based models [30].

III. DATA COLLECTION AND THE ADOPTED PREDICTION
MODEL
A. IoT BASED FRAMEWORK FOR DATA COLLECTION
In this section, we briefly describe the data information of
our dataset and introduce our adoptedmachine learning based
prediction model. We also need to protect user privacy and
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FIGURE 1. IoT sensor based framework for data collection.

keep academic ethics of our work. Thus, we briefly present
how the data is processed.

We study integrating a sensor network into an office work-
place, which can also compile the collected data and compute
the comfort level in the given context. We propose an Internet
of thing (IoT) sensor based framework shown in Fig. 1 to
collect data. The design introduces the equipment including
portable air conditioner, heater, humidifier and air purifier to
control the environmental parameters. This is for widening
the range of the value of individual environmental parameters
which serve as the inputs to the comfort model. Based on
the sensor data, we aim at designing an intelligent human
comfort model to automatically estimate indoor parameters
for occupants’ comfort. For developing the human comfort
model, the wearable sensor datamonitoring human vital signs
are collected in correlation with the environmental sensor
data. In our work, the wearable sensors collect human data
per second and the indoor air quality (IAQ) sensors acquire
environmental data every minute. Both the environmental
and human data have the time stamps for each data record.
To achieve data matching between the environmental data
and human vital sign data, a load sensor is adopted to detect
the presence of a human subject at his/her workstation and
the matched data must be acquired at the same time stamp.
We finally obtain the matched data including environmental
data and human data per minute.

We describe the detailed steps for data collection in Fig. 1.
Firstly, IAQ sensors are used to measure the temperature, air
pressure, humidity, CO2, TVOC and PM2.5 of the environ-
ment. The sensor data is transmitted wirelessly via a Wi-Fi
or Bluetooth Low Energy (BLE) to a server. These sensors
are placed on human volunteer’s workstation to measure the
exact environment parameters surrounding him/her. Then,
a wearable device is used for the continuousmonitoring of the
certain vital sign of individual human volunteer. It is an arm-
band and worn on the upper arm. It sends captured data via
Bluetooth wireless connection to a smartphone from which
it is then transmitted to cloud storage. Currently the device
measures the following vital sign: Blood Pulse Wave (BPW).

FIGURE 2. Stress indication-‘‘blood pulse wave (BPW)’’ reflects the
stress (happiness) to some extent. Colour shows low blood pulse wave
(light grey/blue) indicates a state of relaxation (low stress level).

Finally, we process and analyze the data from the servers.
Specifically, we explore the distribution of each variable
and relationship between environmental factors and human
factors. We also standardize and filter data for the model.
In our experiments, we have six volunteers and conduct the
experiments for 33 days.

B. ADOPTED MACHINE LEARNING BASED PREDICTION
MODEL
Based on the data from environmental sensors and wearable
sensors, we find the relationship between them. More specif-
ically, we take the six environment parameters including
temperature, pressure, humidity, carbon dioxide (CO2), total
volatile organic compounds (TVOC) and particulate matter
(PM2.5) [38] as input variables and take the blood pulse wave
(BPW) [32] as the output/target variable. Previous studies
indicate that there is no common/popular and deterministic
indicator to reflect whether people are comfortable or not.
However, the Biovotion company has tested and done exper-
iments on BPW and shown that it can reflect stress (comfort)
of people to some extent [32]. Furthermore, the quality of the
BPW has been proven by an increasing number of papers
published independently from different renown resources
such as leading universities, pharma companies, government
agencies and so on [32], [39]. Thus, in our work we take
the BPW as the objective comfort index to reflect people’s
comfort and the range of the BPW is [0, 5.1]. The relationship
of the stress and the value of BPW is shown in Fig. 2 [32].
Since the BPW has continuous values and the relation-

ship between input factors and output factors is nonlin-
ear obtained in Section IV, our adopted environmental and
human data-driven model is based on support vector regres-
sion with radial basis function kernel (SVR-RBF) [40] for
human comfort prediction. The approach belongs to regres-
sion and supervised machine learning algorithms and can
predict continuous values. The overview of the approach is
shown in Fig. 3. We take the environmental factors as the
input data, and the BPW as the output data. We take all the
inputs as important and train and test some popular regression
models. We select the regressor with the minimum mean
squared error (MSE) [35] and the minimum mean absolute
error (MAE) [36] and the largest R-squared score [37] to
predict comfort level.

C. SUPPORT VECTOR REGRESSION
The support vector regression (SVR) technique is derived
from the support vector machine (SVM) which was invented
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FIGURE 3. Overview of our comfort prediction approach.

by Vapnik and his co-workers in 1995 [41] and based on
statistical learning theory and Vapnik-Cervonenkis (VC) the-
ory [42]. The fundamental idea of SVM is to map the input
data into a high-dimensional feature spaces using nonlinear
mapping, and then a linear problem is acquired in the feature
space. We briefly introduce an overview of the SVR and
the more detailed descriptions of the theory can be found
in [42], [43].

Given a set of training data with N data points
(x1, y1), . . . , (xN , yN ), where N is the size of the training data
and each xi ∈ Rn represents the input sample in the input
space and has a corresponding target value yi ∈ R(1 ≤
i ≤ N ). SVR aims to determine a function f (x) to fit the
data accurately such that the function has at most ε (ε ≥ 0)
deviations from the actually acquired data for all the input
data. The basic SVR function adopts the following form.

f (x) =< w, φ(x) > +b (1)

where w ∈ Rn is the coefficient (weight) vector, b ∈ R is an
offset scalar, <> is the dot product, φ represents a nonlinear
transformation from Rn to high-dimensional space, {φ(xi)}Ni=1
denotes the high-dimensional feature spaces. We focus on
finding the values of w and b to minimize the regression risk
function Rregression(f ) in (2).

Rregression(f ) =
1
2
‖w‖2 + C

N∑
i=1

0ε(f (xi), yi) (2)

The first item 1
2‖w‖

2 is the regularized term which is
served as a flatness measurement of f (x). C is a user defined
constant and can be used to control the weights to minimize
the error. The definition of the ε-insensitive loss function is
given as follows.

0ε(f (xi), yi) =

{
0 |yi − f (xi)| ≤ ε
|yi − f (xi)| − ε otherwise

(3)

ε used to fit the training data is a user defined insensitive
bound with non-negative value. As we mentioned above,
SVR aims to minimize the function Rregression(f ) in (2) with
the constraint (3). By introducing the slack variables ξi and
ξ∗i , the problem can be written as

minimize
1
2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i ) (4)

subject to


yi−< w, φ(x) >−b ≤ ε+ξi i=1, . . . ,N
< w, φ(x) >+b−yi ≤ ε+ξ∗i i=1, . . . ,N
ξi, ξ

∗
i ≥ 0 i=1, . . . ,N

(5)

The constrained optimization problem can be solved by
adopting the lagrangemultiplier techniques. The problem can
be transformed as the following problem.

L(w, ξ, ξ∗, α, α∗, λ, λ∗)

=
1
2
‖w‖2 + C

N∑
i=1

(ξi + ξ∗i )

−

N∑
i=1

αi(ε + ξi − yi+ < w, φ(x) > +b)

−

N∑
i=1

α∗i (ε + ξ
∗
i + yi− < w, φ(x) > −b)

−

N∑
i=1

(λiξi + λ∗i ξ
∗
i ) (6)

Here, L is the Lagrangian and α, α∗, λ, λ∗ are Lagrange
multipliers. For finding the optimal solution, the partial
derivatives of L with respect to primary variables w, b, ξ, ξ∗

are 0 and they are given as below.

∂L
∂w
= 0⇒ w =

N∑
i=1

(αi − α∗i )φ(xi)

∂L
∂b
= 0⇒

N∑
i=1

(αi − α∗i ) = 0

∂L
∂ξi
= 0⇒ λi = C − αi

∂L
∂ξ∗i
= 0⇒ λ∗i = C − α∗i (7)

Thus, we obtain the following equations.

w =
N∑
i=1

(αi − α∗i )φ(xi) (8)

f (x) =
N∑
i=1

(αi − α∗i )φ(xi).φ(x)+ b (9)

The extreme value problem can be transformed into the
following problem.

f (x) =
N∑
i=1

βi < φ(xi), φ(x) > +b (10)

βi is the coefficient corresponding to each (xi, yi). In SVR,
we can obtain the same solution by using all the training data
or only the support vectors.

A kernel function can be applied to estimate the inner
product in the feature space which allows the inner prod-
uct to be implemented in high-dimensional feature space by
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adopting low-dimensional space input data while the trans-
formation function is unknown. We can rewrite the above
equation (10) by using the kernel function K (xi, x) (xi and
x are two samples). Here, the kernel function must meet the
Mercer’s condition [44].

f (x) =
N∑
i=1

βiK (xi, x)+ b (11)

In our work, we use the RBF kernel shown in (12) to model
the environmental factors as well as the human factor. σ is a
free parameter and the x and x ′ are any two samples.

K (x, x ′) = exp(−
‖x − x ′‖2

2σ 2 ) (12)

When the data including the environmental data (Tem-
perature, Air Pressure, Humidity, CO2, TVOC, PM2.5) and
human data (BPW) is obtained, the environmental data is
regarded as the input and the human data is considered to
be the output. We take the obtained environmental data and
human data as the training data and introduce them into
the (11) to acquire the values of w and b. Finally, we obtain
the model. If we get a new environmental data, we use the
obtained model to predict comfort value.

D. ACADEMIC ETHICS CONSIDERATION
When we collect user data, we need to take the academic
ethics seriously. We have signed the ethic agreement form.
We use a series of steps to protect users’ privacy involved in
our dataset and keep the ethics. First, all collected raw data
are stored in the protected cloud server. Second, we clean and
combine the data depending on the user id, device id and the
time. Finally, we delete all the personal information related
to users in the dataset and keep the data anonymous. Thus,
we get the dataset which only covers statistical information
of the users and environment information. We cannot trace
the actual users at all.

IV. METHODOLOGY AND MODEL OPTIMIZATION
A. INPUT AND OUTPUT FACTORS
We first introduce the input factors (parameters): Tempera-
ture, Pressure, Humidity, CO2, TVOC and PM2.5 [38] and
the output factor Blood Pulse Wave (BPW) [32]. The reasons
for choosing these six environmental factors to measure the
comfort are given as follows.
• The factors are considered in the indoor environmental
quality (IEQ) which has significant impact on occupant
comfort, health, and productivity [45], [46]. Further-
more, they are the commonly used parameters that can
bemeasured by the commercially available IEQ sensors.

• These factors can be measured easily from an indoor
environment and are representative. For example,
Kansas State University developed an empirical equa-
tion which expressed the Predicted Mean Vote (PMV)
index [18], [47] for measuring the thermal comfort. The
equations are only related to temperature and partial

vapor pressure. It has been adopted by ASHRAE [48]
which is a professional association whichmakes thermal
comfort standards and guidelines.

• Our model is designed for real-time control systems.
However, the traditional Fanger’s model [18], [47] is not
suitable for real-time control purpose due to its com-
plex nature and the difficulty in acquiring certain input
parameters. For example, it is impractical to get human
subjects wearing a sensor all the time for measuring their
activity and clothing level. Besides, previous studies
have reported that the traditional Fanger’s model has
low prediction accuracy about 41.68-65.5% which is far
from good (the best accuracy of themodel is 100%) [31].

To obtain a quick impression about the factors, we plot the
distribution of each factor in Fig. 4. In our work, we conduct
all the experiments in the indoor office room.
• Temperature: It is a quantity to express hot and cold.
It can make occupants feel comfortable and have a rest-
ful sleep. In our work, it represents the indoor tempera-
ture. We plot the distribution of this quantity in Fig. 4(a),
it shows a normal distribution with a mean value at 25.1.

• Air (barometric) Pressure: It is the pressure within
the atmosphere of Earth. It can contribute to understand
why arthritic pains happen. It represents the indoor air
pressure. Fig. 4(b) shows its distribution and it has a
normal distribution and its mean value is 100622.

• Humidity: It is the amount of water vapour present in
air. It can serve to minimize moisture. Here, it repre-
sents the indoor humidity. We also plot its distribution
in Fig. 4(c). It is under a normal distribution and its mean
value is 68.

• Carbon Dioxide (CO2): It is an atmospheric gas in the
atmosphere. It can affect people’s mind. It represents
the indoor carbon dioxide. Fig. 4(d) shows it also has
a normal distribution and its mean value is 811.

• Total Volatile Organic Compounds (TVOC): VOC are
gases emitted by different types of solids and liquids.
It can be useful to know which chemical and products to
keep out. It has a beta distribution shown in Fig. 4(e).

• Particulate Matter (PM2.5): It is microscopic or liquid
matter found in the atmosphere of Earth with a diameter
less than 2.5 micrometres. It helps prevent dust build-up
before infections occur. It also has a beta distribution
shown in Fig. 4(f).

• Blood Pulse Wave (BPW): When the heart contracts,
blood is ejected generating a pulse wave that travels
through the circulatory system. BPW is a measure of
the wave and describe the rhythmicity and shape of the
wave. It is a powerful proxy indicator) for stress (happi-
ness). It basically has a normal distribution with a mean
value at 2.37 shown in Fig. 4(g). It has a slight fluctuate
around zero. The reason is that BPW is a human factor
and it can be changed abruptly by many factors such as
environmental factors, psychological factors and so on.

We also explore the relationships between each two factors
and their pairwise relationships are shown in Fig. 5. Figures in
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FIGURE 4. Univariate distribution: seven factors (X axis) and density (Y axis).

FIGURE 5. The scatterplot to visually assess the nature of association between two factors.

each row represent the relationship between the variable
of this row and other variables including itself. Figures on
the diagonal show the marginal distribution of each vari-
able. Specifically, we apply kernel density estimation (KDE),
a nonparametric technique for density estimation, to estimate
multivariate densities on the lower triangle and univariate
density on the diagonal. For the upper triangle, we draw a
scatter plot. The upper and lower triangles are mirrored along
the diagonal. The figures on the lower triangle show the
contour plot of each bivariate density and the contour lines
define regions of probability density from high (inner circle)
to low (outer circle). Color is the probability density at each

point and the regions with darker color has higher densities
than other regions. Fig. 5 shows that PM2.5 is close to have
a linear relationship with the other environmental (input)
factors and the humidity is close to have a linear relationship
with the temperature. For other factors, they have a nonlinear
relationship. For the diagonal, the figures have the same
properties as we described in the previous paragraph. With
respect to the upper triangle, the coordinates of each point
are defined by the two variables and each point is denoted
by a filled circle. The plot show the distribution of the values
of the points. The denser the region, the more points it has.
For example, the figure in the 4th row (counted from top to
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FIGURE 6. Three-dimensional graph: two environment factors with the human (output) factor.

bottom) representing CO2 and 6th column (counted from left
to right) denoting PM2.5 reflects the relationship between
CO2 and PM2.5. More points are located in the region (CO2:
500-1000, PM2.5: 3-28) and the two variables are more likely
have the nonlinear relationship.

We then explore the relationships between every two envi-
ronment (input) factors and the output factor (BPW) and their
relationship are shown in Fig. 6. The point in the figures rep-
resents the value of the BPW. The larger the value, the big
the size of the point. The figures from Fig. 6(a) to Fig. 6(o)
shows that every two environmental factors cannot clearly
distinguish the BPW values which also showed they have the
nonlinear relationship.

Finally, we explore the relationship between all the input
environmental factors and the output factor (BPW), and
the relationship is shown in Fig. 7. We first use the

t-SNE [49], a tool for visualizing high-dimensional data,
to fit the six environmental factors and the human factor
into a two-dimensional embedded space. T-SNE runs at
perplexity 50 which is a recommended parameter and the
plot is made with 5000 iterations which is generally enough
for convergence. Next, we study the relationship between
the two-dimensional factors and the output factor (BPW).
Since each original item of the data containing seven fac-
tors (before transforming) corresponds to an unique value
of BPW, we can use the color to mark each item denot-
ing the new point in the two-dimensional embedded space
and the larger the BPW value, the darker blue the point.
If all the points in the embedded space are well separated,
we may understand their relationship better. Fig. 7 shows
that the different values of BPW are irregularly distributed in
the two-dimensional embedded space, which means that the
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FIGURE 7. T-SNE results: Two-dimensional factors with the output BPW.

environmental factors and the output factor seem to be a
nonlinear relationship.

B. DIFFERENT MACHINE LEARNING MODELS
We tested different models on the same dataset. The different
models [33], [34] are briefly introduced as follows.

(1) Linear Regression (LinearR): It models relationships
between independent variables (input) and a dependent
variable (output) using linear predictor functions. One
case occurs when the two (or more) of the input vari-
ables are very strongly correlated. In such cases, it may
make a large variance in the final parameter estimates.

(2) Ridge Regression with Built-In Cross-validation
(RidgeRCV): It performs generalized cross-validation.
It is biased and accepts little bias to reduce the mean
squared error and variance, and make the prediction
more accurate, which has more stable solutions.

(3) Bayesian Ridge Regression (BayesianRR): It esti-
mates a probabilistic model of the regression problem.

(4) Linear Support Vector Regression (LinearSVR): It
sets a margin of tolerance (epsilon) and minimizes
error, individualizing the hyperplane which maximizes
the margin.

(5) Multi-layer Perceptron Regressor (MultiLPR): It is
a type of artificial neural network and each node is
a neuron using a nonlinear activation function. It can
distinguish data which is non-linear separated.

(6) SVR with Kernel Function (RBF) (SVR-RBF): It is
the support vector regression with radial basis function
kernel which maps a lower dimensional data to a higher
dimensional data.

(7) Kernel Ridge Regression (RBF) (KernelRidge-
RBF): It combines ridge regression with radial basis
function kernel.

A comparison on these models is given as follows [50].

• Linear Regression assumes that the dependent (output)
variable and its predictors (input variable) have a linear
relationship. It offers a straightforwardly interpretable

model. However, it is inaccuracy to predict nonlinear
relationship [50].

• Ridge Regression is a technique adopted when the data
suffers frommulticollinearity (independent variables are
highly correlated). It does not differentiate the impor-
tance of different predictors and adds just a bias to make
the estimates reliable. It also performs well when the
number of predictors larger than the number of obtained
data. However, ridge regression does not perform feature
selection and meet the requirements to reduce the input
features.

• Bayesian Ridge Regression is a linear regression
approach. When the regression model has errors with
a normal distribution, and if a particular form of prior
distribution is assumed, the results of the posterior prob-
ability distributions of the models’ parameters are avail-
able. It offers a natural and principled way to combine
prior information with data under a decision theoretical
framework, and abide by the likelihood principle. How-
ever, it does not tell us how to select the prior and what
is the best way to choose the prior. It also has a high
computational cost.

• Linear Support Vector Regression is a regression
model which mainly solves the linear problems.

• Multi-layer Perceptron Regressor is a powerful
approach for nonlinear regression. It usually has high
accuracy and does not need the prior knowledge. How-
ever, it has the black-box nature that it is difficult to
interpret the results, which makes a limitation for us to
deep into the reasons for performance degradation and
impact of different scenarios. It is also very insentive to
outliers [50].

• SVR with Kernel Function (RBF) is a regression
approach which applies the RBF in the support vec-
tor regression. It has strong theoretical guarantees and
sparse solutions. It also can make use of different ker-
nels. Comparedwith othermodels, it is more generalized
and deals with nonlinear relationship well.

• Kernel RidgeRegression (RBF) is a kernel-based regu-
larized form of regression which combines ridge regres-
sion with the kernel trick. It utilizes the kernel trick to
operation data in high-dimensional feature space with-
out computing the coordinates of the data in that space.
It only needs to computing the inner products between
all pairs of data in the original feature space. The method
has strong theoretical guarantees and can use different
kernels. However, the solution is not sparse and has long
traing time for large matrices.

C. MODEL OPTIMIZATION
Before modelling the relationship between environmen-
tal factors and the human factor. We perform a data
pre-processing step. To standardize the range of the inde-
pendent input variables, we do feature standardization [51].
Kalman filtering is an algorithm which uses a series of
measurements observed over time and noise to generate
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FIGURE 8. The values of the BPW between the original measurements
and the kalman filtering results.

FIGURE 9. The diagram of k-folder cross-validation.

estimates of unknown variables for each timeframe [52].
It tends to have a more accurate measurement. To reduce the
influence of noise, we also apply the kalman filtering [52]
to the BPW (human factor) [32]. Fig. 8 shows that the
values of BPW between the original measurement and the
filtered results. After filtering, we can get a more reliable
result.

In order to find the best optimized parameters for SVR,
we combine the grid search with the k-folder cross-validation
method [53], and apply them on the model. The grid search
is adopted to choose the best combination parameters for
the SVR. First, we specify the range of parameters for a
model. For each group of parameters, we employ k-folder
cross-validation approach on the data to evaluate the model.
The cross-validation technique averages measures of the
score (fitness) of the prediction and find a more accurate pre-
diction model [53]. For the diagram of k-fold cross-validation
method shown in Fig. 9, the original data is randomly parti-
tioned in to k equal subsamples. K-1 subsamples are the train-
ing data, and the remaining one is the testing data. It repeats k
times and each of the k subsamples is used as the testing data
once [53]. The k-folder cross-validation method can be used
to reduce underfitting and overfitting.

The framework of parameter selection and model opti-
mization is briefly presented in Alg. 1. Lines 1 through
3 introduce the initialization of the the variables and param-
eters. From line 4 to line 17, the procedure employs grid

Algorithm 1 The Framework of Parameters Selection and
Model Optimization
1: Given a dataset D
2: Specify the range of the parameters of a model and let the
P denotes the parameter set

3: tmpscore = 0 //initial the value. record the score of the
model based on the data

4: for each group of parameters ∈ P do
5: tempscorea = 0 //‘‘mean absolute error’’ acts as crite-

ria. the smaller the value, the better the model
//apply the k-folder cross-validation

6: Divide the dataset D into k subsamples. k−1 subsam-
ples act as training data, the left one acts as testing data.

7: for i = 1 to k do
//each part of k subsamples will act as testing data
once in the k-folder cross-validation

8: Calculate the score and its value is denoted by tem-
ponetimescore

9: tempscorea = tempscorea + temponetimescore
10: Use currentModel to record both the current model

and the corresponding parameters
11: end for
12: tmpscorea = tempscorea / k //get the mean value (k

times)
13: if tempscorea < tmpscore then

//if find a better model
14: tempscore = tempscorea
15: modelbest = currentModel
16: end if
17: end for
18: Return the best model modelbest ///it will be used to

predict

search and k-folder cross-validation technique to find the
optimized parameters so as to obtain the best model. Specif-
ically, lines 5 through 6 initialize the variable and divide the
data. Lines 7 through 11 indicate the k-folder cross-validation
step. Lines 12 through 16 evaluate and compare the models.
Line 18 returns the best model and indicates the procedure
finishes.

We also adopt the holdout method [53] to find the optimal
model. We randomly divide the data set into the training set
and the testing data in the holdout method. We train a model
based on the training data only and use the model to predict
results based on the testing data.

V. EXPERIMENT RESULTS
We conduct the experiments and obtain our experimental data
in indoor office using indoor air quality (IAQ) sensors [38]
and wearable sensors [32] described in previous sections.
We adopt the support vector regression with radial basis
function (SVR-RBF) model (SVR-RBF) in our work and
use the mean squared error (MSE) [35], mean absolute error
(MAE) [36] and R-squared score (R2 Score) [37] of the
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FIGURE 10. The different measure values under seven different models.

testing set as the criteria to evaluate the efficiency of the
model. We also compare the other six widely adopted regres-
sion models including Linear Regression (LinearR), Ridge
Regression with Built-In Cross-validation (RidgeRCV),
Bayesian Ridge Regression (BayesianRR), Linear Sup-
port Vector Regression (LinearSVR),Multi-layer Perceptron
Regressor (MultiLPR) and Kernel Ridge Regression (RBF)
(KernelRidge-RBF) on the same data set with the same
criteria. We employ the holdout method [53] and K-folder
cross-validation method [53] to measure each model. In our
experiment, we use 70% data as the training data and 30%
data as the testing data, widely used in previous studies,
in the holdout method and run 10 times with different random
seeds for each experiment and present the average result for
the holdout method. We adopt the 10-folder cross-validation
method since we choose a trade-off between the computation
cost and the accuracy. The parameters used in SVR-RBF are
that ε and C are 0.1, 200 respectively. The total number of
data is 11812.

A. THE RESULT OF THE HOLDOUT METHOD
We obtain the average result of the holdout method for seven
different machine learning models and measure each model
based on three criterions: Mean Squared Error (MSE), Mean
Absolute Error (MAE) and R-squared score (R2 Score). The
average results are shown in Fig. 10 and the black bars show
the MSE values, the red bars show the MAE values and the
blue bars show the Adjusted R2-Score values under seven
different models.

1) MEAN SQUARED ERROR (MSE)
MSE is the average squared difference between the orig-
inal values and the estimated values. It is non-negative.

The smaller the value, the better the model [35], [54]. MSE
is a measure of the quality of the estimator.

From the black bars in Fig. 10, we observe that SVR
with RBF kernel function (SVR-RBF) and Kernel Ridge
Regression with RBF kernel function (KernelRidge-RBF)
have better results than other models since they have the
smaller MSE.

2) MEAN ABSOLUTE ERROR (MAE)
MAE is the average of absolute difference between the orig-
inal values and the estimated values [36]. It is non-negative.
The smaller the value, the better the model. From the red bars
in Fig. 10, we observe that SVR with RBF kernel function
(SVR-RBF) has the best result than other models since it has
the smallest MAE.

3) ADJUSTED R2 SCORE
R2 score is the coefficient of determination and is the
proportion of the variance of the output variable which
can be predictable from the input variables [37]. Adjusted
R2 score penalizes the statistic when extra variables are
considered in the model. The maximum of the R2 score
is one. The larger the R2 score, the better the model.
From the blue bars in Fig. 10, we observe that SVR
with RBF kernel function (SVR-RBF) has the better
result than other models since it has the largest adjusted
R2 score.

In summary, based on these three criterions we obtain
Support Vector Regressionwith Radial Basis FunctionKernel
(SVR-RBF) is the best model for the prediction of com-
fort level. The reason is that compared with other models,
the SVR-RBF model is more generalized and deals with
nonlinear relationship better.

132918 VOLUME 7, 2019



F. Mao et al.: Environmental and Human Data-Driven Model

TABLE 1. Measure values under different models.

FIGURE 11. Performance analysis of the impact of parameter C.

B. THE RESULT OF THE 10-FOLDER CROSS-VALIDATION
METHOD
We also use the 10-folder cross-validation method for these
models and the results containing the MSE, MAE and
R2 score are shown in the Table 1. FromTable 1, we know that
the MSE, MAE and adjusted R2 score on testing data under
the support vector regression with radial basis function kernel
(SVR-RBF) model are 0.36, 0.47 and 0.48 respectively. The
results show that the SVR-RBF is also the best model for the
prediction of comfort level since it has the smallest MSE,
the smallest MAE and the largest R2 score compared with
other models.

C. PARAMETER ANALYSIS OF METHOD
We explore the impact of parameter C and parameter ε on the
performance.

Fig. 11 shows the variation of the MSE, MAE and
R2 score with different values of parameter C (within the
range [0.01,600]) under the fixed ε (ε = 0.1). The curves
in Fig. 11(a) (circular marks, blue color), Fig. 11(b) (rectan-
gularmarks, red color) and Fig. 11(c) (triangularmarks, green
color) show the variations of the MSE, MAE, R2 score with
the different values of parameter C, respectively. Fig. 11(a)
indicates that when the parameter C varies from 0.01 to 5,
the MSE decreases quickly. After that, the MSE does not
change. The reason is that when the C is small, it has lit-
tle impact on minimizing the error. With an increasing C,
it reaches a good level which can minimize the error.
Fig. 11(b) shows that when the parameter C varies from
0.01 to 5, the MAE decreases quickly. After that, the MAE
does not change. The reason is the same as that for MSE.
Fig. 11(c) indicates that when the parameter C varies from

0.01 to 20, the R2 score increases quickly. When C varies
from 40 to 200, the R2 score keeps at a steadily state. After
that, the R2 score slowly decreases. The reason is that the
large value of Parameter C impacts the fitting of the model.
These figures show that the best range for choosing parame-
ter C should be [40, 200].

Fig. 12 shows the variation of theMSE,MAE and R2 score
with different values of parameter ε (within the range
[0.01,1]) under the fixed parameter C (C = 200). The curves
in Fig. 12(a) (circular marks, blue color), Fig. 12(b) (rectan-
gularmarks, red color) and Fig. 12(c) (triangularmarks, green
color) show the variations of the MSE, MAE, R2 score with
the different values of parameter ε, respectively. Fig. 12(a)
indicates that when the parameter ε varies from 0.01 to 0.4,
the MSE keeps a small value. After that, the MSE increases
quickly. The reason is that when the ε is small, the model
has a high accuracy. With an increasing ε, it becomes inac-
curate. Fig. 12(b) shows that when the parameter ε varies
from 0.01 to 0.3, the MAE has a small value. After that,
the MAE increases rapidly. The reason is the same as that
for MSE. Fig. 12(c) indicates that when the parameter ε
varies from 0.01 to 0.3, the R2 score increases. After that,
the R2 score decreases quickly. The reason is that the large
value of Parameter ε makes the model inaccuracy. Based on
the criteria, the best range for choosing parameter ε should
be [0.01, 0.2].

VI. DISCUSSION
We present a framework to obtain environmental and human
data, and adopt a data-driven machine learning model
namely support vector regression with radial basis function
(SVR-RBF) to predict the human comfort. We have explored
the relationships between environmental factors and the
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FIGURE 12. Performance analysis of the impact of parameter ε.

human factor. From the plotted figures, we know that there
is a nonlinear relationship between the environmental factors
and the human factor. We also prove that the best model
that fits these data is SVR-RBF which is a nonlinear model.
This agrees with the conclusion of our preceding exploration
on the characteristics of the data. However, the results of
our model do not reach the best theoretical value according
to the MSE, MAE and the adjusted R2 score. The reason
could be that we only considered part of the factors related to
human comfort which are not comprehensive. Thus, we need
to investigate more human factors and improve the model.
Previous studies do not have a common good indicator which
can represent human comfort well. We adopt the BPW as an
objective comfort index from the verified sensor to reflect the
human comfort to some extent. Although it is an objective
index, a single parameter of BPW alone may not be able
to fully represent the overall human comfort. Thus, a better
composite reliable indicator is needed.

The dataset used in our work and the corresponding results
are limited. Due to the lack of volunteers and resources
(funding, office room etc.) to conduct the experiments, in this
study we develop a general model by combining BPW of all
the volunteers. However, individuals are different from each
other in terms of their comfort range, ages, health conditions
etc which may lead to biased results. The more the acquired
data, the more information we can obtain. In order to gain
the more generalized and reliable model, we need to involve
more volunteers with widened range of physiological and
psychological factors in the experiments. To predict comfort
status more accurately for an individual occupant, we may
consider developing personalized comfort model for each
individual.

As we mentioned above, people spend most of their time
in the indoor buildings. Building a robust and highly accurate
comfort model for individuals plays an important role for
improving human comfort and saving energy. The comfort
model can be used to monitor the comfort status of peo-
ple in real time. Based on the predictions from the com-
fort model, the environmental condition for the individuals
can be well controlled. For instance, if it is raining out-
side, the indoor temperature of a building equipped with
air conditioner decreases that makes the people feel cold

or discomfort. Through comfort model, the temperature can
be automatically adjusted to a high value that saves the
energy. In addition, improvement of human comfort not only
brings positive effects on humanwellbeing, but also promotes
the work efficiency. Specifically, promoting health at work
contributes to employees’s engagement and productivity as
well as leads to significantly savings in operating cost for
employers.

VII. CONCLUSION
In this paper, we proposed a framework for data collec-
tion and adopted an environmental and human data-driven
model namely support vector regression with radial basis
function (SVR-RBF) to detect comfort level of occupants in
the indoor buildings. We took environmental factors from
indoor air quality sensors as input and the human factor
(blood pulsewave: BPW) fromwearable sensors as the output
to derive a machine learning model. The model predicted
the comfort level (value) based on the environment input,
which helped monitor the comfort status of the occupants
with the aim to prevent health problems in advance. We have
explored the relationship between environmental factors and
the human factor which shows they have nonlinear rela-
tionship. We also studied several popular regression models
based on the same dataset and evaluated them by the hand-
out method and the 10-folder cross-validation method. The
experimental results showed that the SVR-RBF achieved the
best prediction results according to the values of the mean
squared error (MSE), mean absolute error (MAE) and the
R-squared score. The results also showed that the factors have
nonlinear relationship which matches our previous investiga-
tion. The employed approach provided a potential solution
to improve the health of occupants which was significantly
important to our life. In future work, we aim to include in our
model more human factors and other external factors such
as different regions. This would help build smart buildings
which has certain requirements on energy efficiency.
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