
Received August 13, 2019, accepted September 3, 2019, date of publication September 11, 2019,
date of current version September 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2940351

Adaptive Linear Address Map for
Bank Interleaving in DRAMs
JAE YOUNG HUR 1, (Member, IEEE), SANG WOO RHIM1, BEOM HAK LEE1,
AND WOOYOUNG JANG 2, (Member, IEEE)
1Faculty of Engineering, Vietnamese-German University, Ho Chi Minh 75114, Vietnam
2Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, South Korea

Corresponding author: Wooyoung Jang (wyjang@dankook.ac.kr)

ABSTRACT The conventional linear address map can degrade memory utilization and system performance
when an access pattern is not linear. To improve memory system performance, the adaptive bank-interleaved
linear address map for a DRAM technology is proposed. In our approach, the addresses are efficiently
rearranged using the bank-flipping technique for a given application and a memory configuration. The
system can configure the address map based on the bank interleaving metric in the systematic way when an
application is invoked. Considering image processing applications, the algorithm, the analysis, the design,
and the evaluation of the proposed address map are presented. The experimental results show that the
presented method can effectively improve the performance with a moderate hardware cost.

INDEX TERMS Address mapping, DRAM, embedded system, architecture, performance.

I. INTRODUCTION
A modern system on a chip (SoC) increasingly embeds high
bandwidth image processing components together with high
resolution displays and cameras. Typically, a dynamic ran-
dom accessmemory (DRAM) is attached to the SoC as amain
memory due to its high density and low cost. As a display
resolution increases, the memory bandwidth of multimedia
traffic accordingly increases. However, the capacity of a
DRAM is still limited and usually is the bottleneck of system
performance. From the architecture perspective, the low uti-
lization (or the bottleneck) is related to bank access patterns in
a DRAM. A DRAM typically accommodates multiple banks.
A bank is organized with two dimensional array of rows and
columns. When a different row in the same bank is accessed,
the previously accessed row must be precharged and a new
row must be activated. This operation (called a bank conflict)
requires significant cycles. Frequent bank conflicts degrade
memory utilization and system performance. Therefore, it is
important to minimize bank conflicts [1]–[3].

In an image processing application, a pixel is associated
with an address. A master generates memory transactions
using an address map and accesses memory locations using a
memory map. Typically, memory addresses of image pixels

The associate editor coordinating the review of this manuscript and
approving it for publication was Songwen Pei.

are organized in the row-wise linear and sequential manner.
If the memory access pattern of an application is linear, high
utilization can be maintained in a DRAM. This is because
bank conflicts are minimized. Accordingly, the linear address
map performs well for sequential address patterns such as
a raster-scan display operation. In some cases, however,
an access pattern is not linear. As an example, when an image
is accessed in the vertical direction, adjacent transactions can
incur bank conflicts and degrade memory utilization. The
conventional method to alleviate this problem is to design a
memory map in a slave for particular traffic patterns [2]–[4].
Nevertheless, traffic patterns vary with different use cases,
applications, or masters. A memory map for particular access
patterns may not be suitable for the other patterns.

A bank interleaving technique is one of the widely used
methods to improve memory utilization [1]–[3]. Using this
technique, adjacent transactions access multiple banks in
the statistically interleaved manner. Subsequently, activating
and precharging latencies can be possibly hidden. In some
cases, the conventional address map provides desirably inter-
leaved patterns. However, in the other cases, the conventional
address map incurs undesirably interleaved patterns. Depend-
ing on an application and a memory configuration, bank
access patterns are not always interleaved as desired. It is
expected that overall performance can be improved by cus-
tomizing an addressing scheme for those undesirable cases.

129604 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-4151-908X
https://orcid.org/0000-0002-7262-0028

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

TABLE 1. Summary of related works.

Based on these motivations, an adaptive approach is pro-
posed. To do this, a configurable address map is devised
to enhance bank interleaving. Combining the advantages of
the legacy linear address map and the customized address
map, the proposed approach can effectively improve memory
system performance. The main contributions of this paper
are:

1) It is proposed that the linear address map is adaptively
rearranged using the bank-flipping technique in the
grouped-superpage level. The generalized criteria to
apply the proposed method is derived.

2) The method to apply our address map to various mem-
ory maps is presented.

3) The performance of the proposed address map is
evaluated.

4) A hardware design is presented and the overheads are
evaluated.

The paper is organized as follows. In Section II, related
work is described. In Section III, the conventional designs are
presented. In Section IV, the proposed design is presented.
In Section V, the experimental results are described. Finally,
conclusions are drawn in Section VI.

II. RELATED WORK
1) BANK-INTERLEAVED ADDRESS MAP
In [1], an address map that is rearranged to enhance bank
interleaving is presented. This paper is similar to [1] in
that the bank-flipping technique is utilized to rearrange the
address map. Additionally, the metric analysis similar to [1]
is conducted in this paper. This paper differs from [1] in
the following ways. First, the adaptive linear address map is
presented in this paper, whereas a tiled map is claimed in [1].
Second, the system in this paper operates in the grouped-
superpage level, whereas the system in [1] operates in the
superpage level. As a result, our method can outperform [1].
Third, our design can be utilized for arbitrary image sizes
without an additional memory space compared to the con-
ventional design. In [1], an additional amount of memory
space can be required. Fourth, the design method to adapt an
address map to various memory maps is presented, whereas
only the fixed row-bank-column (RBC) map is considered
in [1]. Fifth, the hardware design, the overhead evaluation,
and the performance evaluation are described.

2) MEMORY MAPPING IN A SLAVE
A number of works to reduce bank conflicts are reported.
In [2], a memory map using the permutation-based page

interleaving is proposed. In [3], a memory map for the min-
imal open page is proposed. In [2] and [3], bank indices are
generated using the well-known XOR permutation with the
row bit patterns. In [4], multiple classes of memory compo-
nents in a system are described. Different types of config-
urable memorymaps are presented in [4]. These permutation-
based and configurable approaches are typically used in
practice. Moreover, these approaches require an insignificant
hardware cost. Table 1 summarizes the reference schemes.
In Table 1, a row, a bank, a column are denoted by R, B, C,
respectively.

In [5], the bit-reversal address mapping scheme is pre-
sented. The order of the high address bits is reversed in [5].
In [6], the memory technology is presented to enable both
row-wise and column-wise activations such that the memory
device is adapted to an access pattern. In [7], an application-
specific memory controller is presented. The DRAM access
patterns of an application are analyzed using a combinatorial
optimization. Then a customized memory map is generated
based on the analysis. In [8], the DRAM subsystem design
space exploration framework is presented. The framework
in [8] generates a customized memory map. To do this,
the DRAM access trace of an application is analyzed to detect
hot-spot row bits. Then XOR permutations (similar to [2]) are
conducted. In our approach, the trace analyses in [7] and [8]
are not required.

In [9], the run-time rearrangement of a memory map is
presented. The memory controller contains the on-line pre-
diction hardware that detects workload-specific address map-
ping using a counter. When an address mapping is changed,
the existing data are migrated to new locations in a DRAM.
In our work, such a data migration and its overhead are
not required. These methods [2]–[9] are implemented in a
memory controller or a DRAM device in the slave side.
An issue is that it is difficult for a single slave to meet various
requirements of different masters and exploit their access
patterns. Contrast to [2]–[9], our adaptive address map in a
master exploits its own pattern for a given slave configuration.
Our approach does not require the hardware modification of
a memory controller.

3) SOFTWARE APPROACH
In [10], The memory allocator of an operating system (OS)
for bank privatization is presented. In [10], expecting a thread
has a high spatial locality, physical frames mapped to the
same DRAM bank can be exclusively allocated to a single

VOLUME 7, 2019 129605

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

thread. In [11], the per-core bank privatization is presented.
The memory allocator can map an OS page into a specific
memory bank. In [10] and [11], bank conflicts between pro-
cesses can be reduced because a process can exclusively
access a bank. However, when multiple applications concur-
rently run, it can be difficult for a single process to priva-
tize a bank because the number of banks is limited. In our
work, using the legacy OS allocator, a hardware rearranges
an address layout when an application is invoked and bank
conflicts are expected.

4) APPLICATION-SPECIFIC DESIGN
In [12], to exploit regular multimedia data access patterns,
the system accommodates the prediction logic that monitors
an access pattern. Then the memory controller conducts a
prefetch using the monitored information. An issue is that,
when multiple applications concurrently run, it is difficult to
analyze multiple type of patterns. Additionally, a hardware
can be complex to support the run-time prediction. In [13],
the processor architecture that accommodates a customized
instruction for multimedia applications is presented. In this
architecture, multiple pixel data are computed in parallel
using the instruction. In our work, the customized address
map for bank-level parallelism in a DRAM is presented.
In [14], conflict-free addressing schemes for the memory-
based FFT processor is presented. In [14], data are distributed
to different memory banks and the data can be concurrently
accessed. Our work differs from [14] in that an addressing
scheme to exploit the characteristics of DRAM banks is
presented.

5) ADDRESS LAYOUT IN A MASTER
In the master side, a number of address maps for effi-
cient memory accesses are reported. In [15]–[17], a tiled
address layout is presented. In [15], the image tile sizing
algorithm using the constraint programming is presented.
In [16], the 4D tile format is presented. In [17], the 4-level
Z-order tile format for 2D data processing is presented. These
formats can be suitable for a particular access pattern or a
system configuration. An issue is that it is difficult to exploit
the characteristics of different access patterns because the
tile formats are fixed. In our work, the configurable address
layout is presented.

In [18], to reduce bank conflicts, the data-to-DRAM bank
mapping algorithm is presented. To do this, a graph traversal
analysis is required. In [19], the hashed addressing for the
banked scratchpad in a GPU using the configurable bit-vector
is presented. To configure hash functions, a heuristic (exhaus-
tive) search is conducted. Similar to our work, an address
layout is reorganized for an application. Our work differs
from [18] and [19] in that the address map is selected using a
metric criteria in the deterministic way. In our work, the met-
ric criteria is represented by relatively simple formulations.
Our approach does not require the off-line analysis.

III. CONVENTIONAL DESIGN
In this section, the conventional address map and the memory
map are described as a background. Then an image rotation
application is described as a motivational use case. Image
pixels are mapped onto a transaction address using an address
map. There are three general rules to associate an image pixel
with an address. First, a unique image pixel is mapped to a
unique address. Second, the address value should be within
the allocated memory space. Third, when multiple masters
(or processes) communicate using a shared address space,
the masters should use the same address map to maintain
consistent data.

FIGURE 1. Linear address map (LIAM).

A. LINEAR ADDRESS MAP
The linear address map (LIAM) is one of the most widely
used address maps because of its simplicity and clarity.
A software developer typically uses the linear map by
default. Fig. 1(a) shows the linear map. Addresses sequen-
tially increase in the horizontal direction. ImgH is an image
horizontal size and ImgV is an image vertical size in the
number of pixels. The address of the coordinate (A,B) is the
following:

Address = BaseAddr + A× BytePixel + B× ImgHB (1)

where BaseAddr denotes the base address of an allocated
memory space. BaseAddr is the address of the coordinate
(0, 0). BytePixel denotes a pixel size in bytes. ImgHB denotes
an image horizontal size in bytes. Suppose an image size
is 128 × 64. When BytePixel is 4 B, ImgHB is 512 B
(=128 × 4 B). In case BaseAddr is 0, the address of the
coordinate (16, 1) is 576 (= 0 + 16 × 4 + 1 × 512) or
0 × 240.
Image pixel data are written to or read from memory in the

granularity of a transaction. A transaction is typically a burst
of data transfers. A data transfer can contain multiple pixels.
Suppose the datawidth of a system bus is 16 B. In case a pixel
is represented in 4 B, a data transfer contains 4 (= 16 B

4 B) pixels.
When a transaction has 4 transfers, the transaction contains

129606 VOLUME 7, 2019

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

FIGURE 2. Mapping example in LIAM.

16 (=4x4) pixels or 64-byte data. Fig. 1(b) shows the example
of a linear map in the transaction granularity. The number in
a circle is the transaction number. This number indicates the
order of addresses.

B. MEMORY MAP
A transaction address is mapped onto a DRAM location
(row, bank, column) using a memory map. Fig. 2 shows the
case study that is referred to throughout this paper. Fig. 2(a)
shows a linear address mapping example. ImgHB is 512 B
(=128 x 4 B). Fig. 2(b) shows a memory map. A physical
address is organized in the order of row, bank, and col-
umn. This is called an RBC memory map. As an example,
the address 0x240 of the transaction 9© is mapped to the
row 1, the bank 0, and the column 0x40. Fig. 2(c) shows
a DRAM organization. The number of banks is 4. A row
in a bank is called a page. An entire row of all banks
is called a superpage. A superpage size (SPS) is calcu-
lated by page size x number of banks. In this example, page
size is 128 B. Therefore, SPS is 512 B (=128 B x 4).
In Fig. 2, the entire image data are mapped to 64 superpages
with superpage numbers (SPNs) 0 to 63 in the sequential
manner.

A memory interface has a command bus, an address bus,
and a data bus. To access the data of a DRAM cell, the row
of a bank must be activated and copied to the row buffer
of the bank. The row buffer stores the currently activated
row. Then read or write bursts are issued to the row buffer.
When a different row of the bank is accessed, the previously
activated row should be precharged and stored back into
the memory cell. Then a new row must be activated. This
operation (bank conflict) requires typically tens of cycles

depending onmemory devices. During this period, any data in
the same bank can not be accessed. Therefore, it is important
to minimize bank conflicts. Additionally, from the utilization
perspective, it is desired to access an activated row as much as
possible.

C. MOTIVATIONAL USE CASE
Memory performance is in general significantly affected by
address patterns. A rotation application is considered as an
example since it is widely used in modern mobile devices.
Typically, a hardware accelerator conducts this operation
because the application requires high memory bandwidth.
Fig. 3 shows the rotated preview scenario example. First,
a camera captures an image in the raster-scan order and
conducts the rotation. Second, the camera controller writes
the image in the vertical direction. Third, a display controller
reads the image in the raster-scan order and finally displays
the rotated image.

In the linear map, a system often suffers from bank con-
flicts when an access pattern is not linear. In Fig. 2(a), suppose
an image is vertically accessed in the order of 0©, 8©, 16©,
and so on. The first transaction 0© accesses the bank 0 and
the row 0 (represented by B0R0). The second transaction 8©

accesses the bank 0 and the row 1 (B0R1). To do this, the pre-
viously activated row 0 should be precharged and the new
row 1 should be activated. Fig. 2(d) shows the timing diagram
of the transactions 0©, 8©, 16©. The consecutive transactions
8© and 16© incur bank conflicts. Subsequently, the precharge
(PRE) and the activation (ACT) operations are serialized. This
bank conflict overhead is undesirable.

Another issue is an adaptivity. Fig. 4 shows various mem-
ory maps. Specific memory maps (for example [2], [3] to

VOLUME 7, 2019 129607

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

FIGURE 3. Image rotated preview scenario.

FIGURE 4. Various memory maps.

enhance bank interleaving and [4] to provide configurabil-
ity) can be designed for particular access patterns. However,
applications running in different masters can have different
requirements. Even when a master runs a single applica-
tion, access patterns can vary. An access pattern is often not
well matched with the underlying memory map. Moreover,
a memory map is typically fixed at design time or configured
at booting time. As an underlying memory map is fixed,
it is difficult to exploit the characteristics of different access
patterns. In [4], a rule to configure the memory maps is not
presented.

IV. BANK-INTERLEAVED LINEAR ADDRESS MAP
The aim is to improve the performance of an application using
an adaptive approach. An I/O device accelerator that oper-
ates dedicated image processing tasks and generates physical
addresses in embedded systems is mainly considered. In this
case, the address map is implemented in hardware. Therefore,
it is desired to design the hardware with an insignificant cost.

A. OVERVIEW
The bank-interleaved address map that adapts itself to an
application for a given memory configuration is devised. The
main approach is to exchange bank addresses of the linear
map. An example is shown in Fig. 5. In Fig. 5(a), a set of

FIGURE 5. The general approach.

FIGURE 6. Mapping example in BFAM.

addresses (the solid and the dotted rectangles) are flipped
in every other row. Then the address map is rearranged by
exchanging the addresses. This is shown in Fig. 5(b).
Fig. 6(a) shows the rearranged address map. The addresses

in the odd-numbered rows are rearranged. When an image
is vertically accessed, the order of addresses is 0x0, 0x300,
0x400, and so on. In this case, the order of mapping pat-
terns is B0R0, B2R1, B0R2, and so on. As clearly can be
found, the adjacent addresses are bank interleaved. An imple-
mentation technique to rearrange the addresses is to flip
the (most significant) bank bit of a LIAM address. This is
shown in Fig. 6(b). The address of the coordinate (16, 1)
becomes 0x340. The LIAM address 0x240 is exchanged with
the address 0x340 by flipping a bank bit. This is called bank
flip address map (BFAM). In this example, BFAM is expected
to be beneficial in terms of bank interleaving. Fig. 6(c) shows
the timing diagram of the transactions 0©, 12©, 16©. The consec-
utive transactions 0© and 12© access different banks. The acti-
vation (ACT) command for 12© is issued in advance (in cycle 5)
while 0© is served. In this way, the bank conflict latency

129608 VOLUME 7, 2019

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

overhead can be hidden. In Fig. 6(c), BFAM requires
29 cycles. For comparison, in Fig. 2(d), LIAM requires
42 cycles. In this case, BFAM can significantly reduce
bank conflicts and improve memory utilization compared to
LIAM. It is noted that, depending on an image size and a
superpage size, BFAM may not be always beneficial. It is
necessary to clarify the cases where BFAM is expected to be
better.

B. METRIC ANALYSES
To compare BFAM with LIAM, three metrics are defined.
Then a comparative analysis is conducted.

1) METRIC OF ADJACENT TRANSACTIONS
To compare bank access patterns, the metric of adjacent
transactions is defined by the following:

Metricadj =

−1, if same bank and different row
2, if same bank and same row
1, if different banks

(2)

where the (low or undesirable) metric -1 is given when adja-
cent transactions incur bank conflicts. The (higher) metric 2
is given when adjacent transactions access the same bank
and the same row. This is because a bank is better utilized
in this case. The (high) metric 1 is given when adjacent
transactions access different banks. As an example, for the
adjacent transactions 15© and 8© in Fig. 6(a), Metricadj is
1 because they access different banks. It is noted that these
metric values are given for the relative analysis.

2) METRIC OF A TRANSACTION
Considering an image is accessed in both vertical and hori-
zontal directions, the metric of a transaction is defined by the
following:

Metrici,j =
∑

N ,S,E,W

Metricadj (3)

where Metrici,j indicates the metric of a transaction in the
row i and the column j. Metrici,j is calculated by summing
up Metricadj in the northern (N), the southern (S), the east-
ern (E), and the western (W) directions. As an example, for
the transaction 15© in Fig. 6(a), Metric1,3 is 5 (= 1+1+1+2).
Fig. 7 shows Metrici,j values of LIAM and BFAM. The
numbers in the shaded rectangles indicate Metricadj values
for Metric1,3.

3) AVERAGE METRIC
An average metric for the total number of transactions is
derived by the following:

Average metric =

∑
i,jMetrici,j

Total number of transactions
(4)

In Fig. 7, the total number of transactions is 512 (=64x8).
The average metrics of LIAM and BFAM are 0.8 and 4.7,
respectively. The higher metric suggests that bank accesses

FIGURE 7. Metric of a transaction in LIAM (Fig. 2) and BFAM (Fig. 6).

are highly interleaved. In this case, BFAM is expected to be
better.

In Fig. 2, ImgHB is 512 B. This is equal to SPS. When
an image is vertically accessed, significant bank conflicts are
expected to occur. However, when ImgHB is 1.5 times SPS,
bank conflicts will be minimized. It is observed that the bank
interleaving pattern varies with the ratio of ImgHB to SPS.
Subsequently, the average metrics are derived for different
image sizes and superpage sizes. This is shown in Table 2.
T denotes the ratio of ImgHB to SPS. In Table 2, the bold
numbers indicate higher metrics.

TABLE 2. Average metrics of LIAM and BFAM for different image sizes.

Similar to Table 2, average metrics versus T values are fur-
ther derived. This is depicted in Fig. 8. The main observations
are:

1) The metric is periodic. The period of T is 1.
2) The metrics of LIAM and BFAM are mutually supple-

mentary. The metric of BFAM is higher in one half of a
period. The metric of LIAM is higher in the other half
of a period.

3) If T is within the ranges of [0.75, 1.25], [1.75, 2.25],
[2.75, 3.25], and so on, the metric of BFAM is higher
than LIAM.

C. CONDITION TO SELECT BFAM
Based on the observation in Fig. 8, the condition to select
BFAM is derived as follows:

k −
1
4
≤ T ≤ k +

1
4

(5)

where k is a positive integer. If the condition is met, the metric
of BFAM is higher than LIAM. This means that BFAM

VOLUME 7, 2019 129609

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

FIGURE 8. Average metrics versus T values.

is expected to provide better bank interleaving. Otherwise,
LIAM is expected to provide better interleaving. Typically,
thememory access pattern of an image processing application
is regular and has certain strides. A stride is defined as an
address distance between adjacent memory transactions.

Stride =

{
ImgHB if vertical access
TransSize if hotizontal access

(6)

where TransSize denotes a transaction size in bytes. In a
raster-scan operation, an access pattern is horizontally linear.
In this case, Stride is a transaction size, for example 64 B.
If an access pattern is vertical, Stride is ImgHB. The condition
in Eq. (5) is affected by Stride. Accordingly, T is redefined
as follows:

T =
Stride
SPS

(7)

In Eq. (5), k is defined by a round operation as follows:

k =

{
1 if Stride < SPS
round (T) otherwise

(8)

The T value can be determined when an application is
invoked. Based on this value, the system checks the condition
in Eq. (5). If the condition is met, the system selects BFAM.
Otherwise, the system selects LIAM.

D. OPERATION OF THE ADDRESS MAP
When an application runs, the address map operates as shown
in Fig. 9. This is summarized by the following:

FIGURE 9. Operation of the address map.

FIGURE 10. Bank-flipping algorithm.

1) Taking an image coordinate as an input, the address
map calculates a LIAM address using Eq. (1).

2) If BFAM is selected, the LIAM address is rearranged to
obtain a BFAM address. To do this, the bank-flipping
algorithm (in the next section) is applied.

3) If BFAM is not selected, the LIAM address is used.

E. BANK-FLIPPING ALGORITHM
The bank-flipping algorithm is indicated in the line 3 of
Fig. 9. In this section, the algorithm is described. As an image
can be arbitrarily sized, a generic algorithm is presented.
In the proposed approach, superpages can be grouped. The
grouping is conducted to enhance bank interleaving when
an image is large sized. A grouped superpage contains k
superpages. If superpages are not grouped, k is 1. In this case,
the bank flipping operates similar to [1]. For a given LIAM
address, our algorithm modifies a bank number as shown
in Fig. 10. This is summarized by the following:

1) Taking a LIAM address as an input, a grouped-
superpage number (GSPN) is calculated. GSPN is
defined by floor (SPNk).

2) If GSPN is an odd number, the bank flipping is con-
ducted to obtain a new bank number.

3) If GSPN is an even number, the bank flipping is not
conducted. In this case, a BFAM address is same as a
LIAM address.

Fig. 11 shows the mapping example for the image size
256 x 64. In this example, T is 2 (= 1 kB

512 B). Accordingly, k is
2 (=round (T)). This means a grouped superpage contains

129610 VOLUME 7, 2019

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

FIGURE 11. Grouping example in BFAM.

2 superpages. As T is within the range [1.75, 2.25], BFAM
is selected. In this case, the bank flipping is applied to the
odd-numbered GSPNs 1, 3, 5, and so on. In this way,
the addresses are rearranged in every other grouped super-
page as shown in Fig. 11.

Compared to LIAM, BFAMdoes not require extra memory
space. In [1], it is inherently assumed that an image horizontal
size is aligned with a superpage size. This implies that a
significant amount of unused memory space can be required
in [1]. By using a grouped-superpage number, the presented
technique can be utilized for arbitrary image sizes without
an additional memory space. In this work, image processing
applications (related to image display) are mainly considered.
The presented method can be used in applications (for exam-
ple, 2D data processing) that have the regular address patterns
with certain strides. The usage of the presented method in
other applications can be further investigated. This investiga-
tion is left for future work.

F. ADAPTING TO MEMORY MAPS
In the previous sections, it is assumed that an underlying
memory map is RBC format for the sake of simplicity.
In case the address starts with a row (for example, RBC,
RCBC), these memory maps are called R-star formats. The
proposed method can be applied to various R-star formats
by changing the bank bit positions. However, the assumed
(RBC) map and an underlying memory map may be different.
In this case, the bank interleaving pattern highly relies on the
underlying memory map. The generated addresses may not
be efficient as intended. The approach to handle this issue is
to convert the RBC format into the underlying memory map
format. This is shown in Fig. 12. The format is modified with
simple bit operations. In this way, the presented design can
be adapted to various memory maps. Then memory banks are
possibly accessed as intended by a master.

G. HARDWARE DESIGN
Fig. 13 shows the adaptive address map hardware. The hard-
ware implements the operation depicted in Fig. 9. First,
the condition checker selects LIAM or BFAM. Second,

FIGURE 12. Adapting to various memory maps.

FIGURE 13. Address map hardware.

taking an image coordinate as an input, the hardware cal-
culates a LIAM address. Third, if BFAM is selected, the
hardware calculates a BFAM address. The shaded rectangle
in Fig. 13 shows the additional logic to implement the pro-
posed method.

1) CONDITION CHECKER
Eq. (5) is implemented in this logic. It is possible that soft-
ware (or device driver) checks Eq. (5), selects an address
map, and configures the hardware. In this work, this is imple-
mented in hardware as follows. First, the hardware calculates
the remainder, ImgHB % SPS. Considering SPS is 2n bytes,
the remainder is ImgHB[n-1:0]. Second, the hardware checks
whether it belongs to +25% or -25% range from an integer.
This can be efficiently implemented by taking two bits and
checking the following:

ImgHB[n-1:n-2] is 002 or 112 (9)

VOLUME 7, 2019 129611

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

If this value is 002, T belongs to+25% range. If this value is
112, T belongs to -25% range. In case Eq. (9) is true, the sys-
tem selects BFAM. Otherwise, the system selects LIAM.

2) BFAM ADDRESS CALCULATION
This hardware logic calculates a BFAM address as shown
in Fig. 13. The bank-flipping algorithm shown in Fig. 10
is implemented in this logic. The hardware calculates the
remainder, GSPN % 2. If the remainder is 1, GSPN is an
odd number. Then the bank flipping is conducted to obtain
a new bank number. In this logic, SPNk requires certain cost

because it conducts a division. The 1
k is a constant when an

image size is determined and the value does not change during
run time. Software can configure 1

k using a control register.
Then hardware can conduct an integer multiplication. In this
work, a divider is used to conservatively measure the hard-
ware area. Other logics are implemented in simple gates and
multiplexers.

TABLE 3. Hardware cost. The number of slice look-up tables (LUTs) in
Xilinx Virtex-7 xc7vx980t.

3) OVERHEADS
The presented adaptivity feature is added in the address map
hardware component. Accordingly, the hardware complex-
ity of the address map itself increases. Two overheads are
evaluated as follows. First, to measure the hardware area
overheads, the address map is implemented in Verilog, syn-
thesized, placed, and routed in Xilinx FPGA device. Table 3
shows the results. BFAM additionally requires 1137 slice
look-up tables (LUTs). BFAM requires 3.5x more area than
LIAM. The targeted device contains 612000 LUTs in total.
Though BFAM has some area overheads, the additional logic
occupies less than 1% of the targeted FPGA device. Accord-
ingly, the area overhead is considered to bemoderate. Second,
the latency overhead is evaluated. Based on the logic imple-
mentation, the presented design has one more cycle latency
compared to the conventional design. It is observed that the
additional latency is insignificant because the design operates
in the pipelined way. In our experiment, the latency overhead
is less than 1%.

An image size and a memory configuration significantly
affect the degree of bank interleaving in a DRAM. Accord-
ingly, the degree of adaptivity can vary with image sizes
and memory configurations. The presented address map is
configured using the generic criteria shown in Eq. (5). This
criteria is applied to arbitrary image sizes and superpage
sizes. The hardware cost (shown in Table 3) to implement
the criteria does not vary with image sizes and superpage
sizes. Subsequently, the variable degree of adaptivity does
not affect the hardware cost (or other design parameters) of
the address map. It is noted that the presented approach does

FIGURE 14. System organization.

TABLE 4. System configuration.

not require the modification of other system components. The
design parameters of other components are not affected by the
presented adaptivity feature.

V. EXPERIMENTAL RESULTS
The experimented system is shown in Fig. 14. The system is
configured as shown in Table 4. The interface of a component
operates with AXI bus protocol [21]. Traffic generators are
implemented to represent the memory access behavior of
masters. A single datum is 128 bits wide. A pixel is repre-
sented in 4-byte sized RGB format. A transaction contains
64 bytes of data. A physical address is 32 bits wide. The
double data rate 3 (DDR3) timing parameters in [22] are
used. To conduct the conservative performance experiment,
the device that has the least tCL, tRCD, and tRP values is
used. To evaluate the performance of the presented address
map, the cycle-based transaction-level performance model
is implemented in C++. The model is integrated in the
simulation environment of [20]. Execution cycles are signif-
icantly affected by memory efficiency. Memory efficiency is
highly determined by address patterns and scheduling poli-
cies of a memory controller. To improve memory efficiency,
high priority is typically given to a request that accesses
an activated row in the requested bank [23]. The memory
controller model is implemented to increase the memory
efficiency [20].

129612 VOLUME 7, 2019

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

FIGURE 15. Execution cycles for different image sizes. A superpage size is 8 kB. A memory map is RBC.

TABLE 5. Workload scenarios.

Theworkloads for the simulation are shown in Table 5. The
rotated preview scenario is described in Section III-C. The
image scaler resizes an image. The image blender combines
two images to generate a composite image. It is noted that
a scenario is associated with multiple processes that concur-
rently operate in multiple masters. Accordingly, transactions
from multiple masters are mixed in the shared main mem-
ory. To evaluate the performance of the proposed approach,
execution cycles to run a single frame are measured. Three
parameters (an image size, a superpage size, a memory map)
are explored.

First, different image sizes for a given superpage size and
a memory map are experimented. Fig. 15 shows the results
for the superpage size 8 kB and the RBC memory map.
When an access pattern is (raster-scan) linear, the stride is
the transaction size 64 B. In this case, T is 0.008 (= 64

8192) and
LIAM is selected. As shown in Fig. 15, LIAM and BFAM
provide similar performances. This means BFAM does not
degrade performance because bank interleaving is conducted
in a superpage. When an access pattern is vertical, the stride
is ImgHB. As shown in Fig. 15, the performances of LIAM
and BFAM vary with image sizes. When an image size is
720 x 480, T is 0.35 (= 720x4

8192) and LIAM is selected. In this
case, LIAM performs up to 14% better than BFAM. When
an image size is 4096 x 2160, T is 2 (= 4096x4

8192) and BFAM
is selected. In this case, BFAM performs up to 50% better
than LIAM. The results indicate that the proposed design can
improve performance by adapting to an image size.

Second, different superpage sizes for a given image size
and a memory map are experimented. Fig. 16 shows the
results for the image size 1080 x 1920 and the RBC mem-
ory map. When an access pattern is linear, the performance
difference between LIAM and BFAM is insignificant sim-
ilar to the previous experiment. When an access pattern is
vertical, the performances of LIAM and BFAM vary with
superpage sizes. When a superpage size is 4 kB, T is 1.06 and
BFAM is selected. In this case, BFAM performs up to 57%
better. When a superpage size is 8 kB, T is 0.53 and LIAM
is selected. In this case, LIAM performs up to 13% better.
The results indicate that the proposed design can improve
performance by adapting to a superpage size.

Third, different memory maps for a given image size and
a superpage size are experimented. In [1], the tiled map
operates in the superpage level. For fair comparison, a tile
in [1] is sized by 16x1 because it operates as a linear map.
Fig. 17 shows the results. The performances of [1] and our
design are the same when k is 1. Our design can perform
better than [1] when k is greater than 1. In Fig. 17, our design
performs on average 18% better than [1].

In the reference designs of [2] and [3], LIAM operates
over the permuted memory maps. In the experimented image
sizes, ImgHB vary from 2880 B (for 720 x 480) to 16384 B
(for 4096 x 2160). When an access pattern is vertical, bit
positions 13 and 14 are hot-spots in that these bits frequently
change. Therefore, these bits are chosen for the permutation
to increase bank interleaving in [2] and [3]. In Fig. 17,
when an access pattern is linear, the performance difference
between [2] and ours is insignificant. Our design performs
up to 37% better than [3]. This is because memory accesses
from multiple masters incur interferences and frequent bank
conflicts in [3]. In a certain configuration, the traffic pattern is
well matched with [2] and [3]. In Fig. 17(b), when an access
pattern is vertical, bit positions 13 and 14 are well utilized
in [2] and [3]. In this case, our performance is comparable
to [2] and [3]. However, in Fig. 17(a), these bit positions
in [2] and [3] are not well utilized because of the superpage
size. In Fig. 17, our design performs on average 10% better
than [2] and 35% better than [3].

VOLUME 7, 2019 129613

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

FIGURE 16. Execution cycles for different superpage sizes. An image size is 1080 x 1920. A memory map is RBC.

FIGURE 17. Execution cycles for various memory maps. An image size is 4096 x 2160.

FIGURE 18. Execution cycles of the rotated preview scenario for various image sizes and memory maps.

The design in [4] can be configured in BRC or RBC.
Accordingly, LIAM operates over BRC or RBC map. When
an access pattern is linear, our performance is comparable
to [4]. When an access pattern is not linear, our design
performs significantly (up to 42%) better than [4]. When [4]
is configured in BRC, only a single bank is utilized. When [4]
is configured inRBC, it operates in the sameway as the LIAM
shown in Fig. 2. In both cases, significant bank conflicts
occur. In Fig. 17, our design performs on average 19% better
than [4]. The results indicate that the proposed design can
improve performance by adapting to a memory map.

Fourth, various image sizes and memory maps for a given
superpage size are experimented. Fig. 18 shows the results of

the rotated preview scenario for various image sizes. Similar
to the previous experiment, the performance is significantly
affected by a memory map. It is noted that a performance
is affected by traffic interferences from multiple masters.
In a particular configuration, the address patterns match well
with [2] and [3]. In these cases, the memory maps in [2]
and [3] provide well interleaved bank access patterns. When
an image size is 2048 x 1080 and a superpage size is 8 kB,
our design performs 39% worse than [2]. When an image
size is 1080 x 1920 and a superpage size is 8 kB, our design
performs 15% worse than [3]. In overall, however, our design
performs well by adapting to a givenmemorymap. In Fig. 18,
our design performs on average 7%, 9%, 29%, 33% better

129614 VOLUME 7, 2019

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

than [1]–[4], respectively. The results indicate that the pro-
posed design can improve performance by adapting to both
image sizes and memory maps.

TABLE 6. Allocated memory size.

Fifth, the allocated memory size is measured to compare
the memory footprint with [1]. In [1], when the bank flipping
is conducted, an image horizontal size is assumed to be
aligned with a superpage size. In BFAM, there is no addi-
tionally required memory space compared to LIAM. Table 6
shows the results when BFAM is selected. 1 indicates the
improvement of our design in percentage compared to [1].
Our design occupies up to 47% less memory space than [1].

VI. CONCLUSION
The adaptive bank-interleaved linear address map to reduce
bank conflicts is presented. The presented address map is
rearranged in a master to explicitly control bank access pat-
terns. To achieve the adaptivity, the configurable scheme that
selects LIAM or BFAM is devised. A main advantage is
the increased performance. The experimental results indi-
cate that the proposed method performs on average 21%
better than the reference designs. Additionally, the presented
BFAM occupies the same memory space as LIAM. No extra
memory space is required. The presented scheme adapts to
an application when the application is invoked. No off-line
trace analysis is required to configure the address map.
A disadvantage is the increased complexity of the address
map. BFAM requires more area than LIAM. The area over-
head can be reasonable in that the address map occupies a
small portion of the entire device.

REFERENCES
[1] J. Y. Hur, S. W. Rhim, and B. H. Lee, ‘‘Method and apparatus for per-

forming adaptive memory bank addressing,’’ U.S. Patent 9 390 007 B2,
Jul. 12, 2016.

[2] Z. Zhang, Z. Zhu, and X. Zhang, ‘‘Breaking address mapping symmetry at
multi-levels of memory hierarchy to reduce DRAM row-buffer conflicts,’’
J. Instruct.-Level Parallelism, vol. 3, pp. 1–35, Oct. 2001.

[3] D. Kaseridis, J. Stuecheli, and L. K. John, ‘‘Minimalist open-page:
A DRAM page-mode scheduling policy for the many-core era,’’ in Proc.
44th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO), Porto Alegre,
Brazil, Dec. 2011, pp. 24–35.

[4] M. S. Smith, ‘‘Multiple class memory systems,’’ U.S. Patent 8 930 647,
Jan. 6, 2015.

[5] J. Shao and B. T. Davis, ‘‘The bit-reversal SDRAM address mapping,’’
in Proc. Workshop Softw. Compil. Embedded Syst., Dallas, TX, USA,
Sep./Oct. 2005, pp. 62–71.

[6] W. Jang, ‘‘Screen orientation aware DRAM architecture for mobile video
and graphic applications,’’ IEEE Trans. Circuits Syst. Video Technol.,
vol. 28, no. 12, pp. 3527–3538, Dec. 2018.

[7] M. Jung, D. M. Mathew, C. Weis, N. Wehn, I. Heinrich, M. V. Natale, and
S. O. Krumke, ‘‘Congen: An application specific dram memory controller
generator,’’ in Proc. 2nd Int. Symp. Memory Syst., Alexandria, VA, USA,
Oct. 2016, pp. 257–267.

[8] M. Jung, C. Weis, and N. Wehn, ‘‘DRAMSys: A flexible dram subsys-
tem design space exploration framework,’’ IPSJ Trans. Syst. LSI Des.
Methodol., vol. 8, pp. 63–74, Aug. 2015.

[9] M. Ghasempour, J. D. Garside, A. Jaleel, and M. Luján, ‘‘DReAM:
Dynamic re-arrangement of address mapping to improve the performance
of DRAMs,’’ in Proc. 2nd Int. Symp. Memory Syst., Alexandria, VA, USA,
Oct. 2016, pp. 362–373.

[10] M. K. Jeong, D. H. Yoon, D. Sunwoo, M. Sullivan, I. Lee, and
M. Erez, ‘‘Balancing DRAM locality and parallelism in shared memory
CMP systems,’’ in Proc. IEEE 18th Int. Symp. High Perform. Comput.
Archit. (HPCA), New Orleans, LA, USA, Feb. 2012, pp. 1–12.

[11] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, ‘‘PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore plat-
forms,’’ in Proc. IEEE 19th Real-Time Embedded Technol. Appl. Symp.
(RTAS), Berlin, Germany, Apr. 2014, pp. 155–166.

[12] T. A. Alawneh and A. Elhossini, ‘‘A prefetch-aware memory system for
data access patterns in multimedia applications,’’ in Proc. 15th ACM Int.
Conf. Comput. Frontiers, Ischia, Italy, May 2018, pp. 78–87.

[13] S. Khan, M. Rashid, and F. Javaid, ‘‘A high performance processor archi-
tecture for multimedia applications,’’ Comput. Electr. Eng., vol. 66, no. C,
pp. 14–29, Feb. 2018.

[14] K.-F. Xia, B.Wu, T. Xiong, and T.-C. Ye, ‘‘Amemory-based FFT processor
design with generalized efficient conflict-free address schemes,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 6, pp. 1919–1929,
Jun. 2017.

[15] V. Schwambach, S. Cleyet-Merle, A. Issard, and S. Mancini, ‘‘Image
tiling for embedded applications with non-linear constraints,’’ in Proc.
Conf. Design Archit. Signal Image Process. (DASIP), Krakow, Poland,
Sep. 2015, pp. 1–8.

[16] S. Hettiaratchi and P. Y. K. Cheung, ‘‘A novel implementation of tile-based
address mapping,’’ in Proc. Design, Automat. Test Eur. Conf. Exhib., Paris,
France, Feb. 2004, pp. 306–310.

[17] B. Wang, Y. Fukazawa, T. Kondo, and T. Sasaki, ‘‘Tile/line access cache
memory based on a multi-level Z-order tiling data layout,’’ Concurrency
Comput., Pract. Exper., vol. 30, no. 9, May 2018, Art. no. e4375.

[18] H.-K. Chang and Y.-L. Lin, ‘‘Array allocation taking into account SDRAM
characteristics,’’ in Proc. Asia South Pacific Design Automat. Conf.,
Yokohama, Japan, Jan. 2000, pp. 497–502.

[19] G.-J. van den Braak, J. Gómez-Luna, J. M. González-Linares,
H. Corporaal, and N. Guil, ‘‘Configurable XOR hash functions for
banked scratchpad memories in GPUs,’’ IEEE Trans. Comput., vol. 65,
no. 7, pp. 2045–2058, Jul. 2016.

[20] J. Y. Hur, ‘‘Contiguity representation in page table for memory manage-
ment units,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 27,
no. 1, pp. 147–158, Jan. 2019.

[21] ARM. ARM Architecture Reference Manual, ARMv7-A Edition. Accessed:
May 20, 2014. [Online]. Available: http://www.arm.com

[22] Micron. 1Gb DDR3-800 SDRAM Specification. Accessed: Nov. 18, 2018.
[Online]. Available: http://www.micron.com

[23] B. Akesson and K. G. W. Goossens, Memory Controllers for Real-Time
Embedded Systems: Predictable and Composable Real-Time Systems.
New York, NY, USA: Springer-Verlag, 2012, ch. 3.

JAE YOUNG HUR received the B.S. degree in
electronics engineering from Cheju National Uni-
versity, Cheju, South Korea, in 1995, the M.S.
degrees in electronics engineering from Sogang
University, Seoul, South Korea, in 1998, and
also from the Munich University of Technology,
Munich, Germany, in 2002, and the Ph.D. degree
in computer engineering from the Delft University
of Technology, Delft, The Netherlands, in 2011.
He was an Engineer, from 1999 to 2000 and a

Senior Engineer, from 2008 to 2016 with the Semiconductor Division,
Samsung Electronics Ltd., South Korea. He is currently a Researcher with
Vietnamese-German University, Binh Duong, Vietnam. His research inter-
ests include embedded system architectures, VLSI design, and reconfig-
urable computing.

VOLUME 7, 2019 129615

J. Y. Hur et al.: Adaptive Linear Address Map for Bank Interleaving in DRAMs

SANG WOO RHIM received the B.S. degree in
electronics engineering from Hongik University,
Seoul, South Korea, in 1998, and the M.S. degree
in electrical engineering from the University of
Florida, USA, in 2002. From 2002 to 2008, he was
a Researcher with the Samsung Advanced Institute
of Technology (SAIT), South Korea. From 2009 to
2013, he was a Senior Engineer with the Semicon-
ductor Division, Samsung Electronics Ltd., South
Korea. He is currently an Adjunct Researcher with

Vietnamese-German University, Binh Duong, Vietnam. His research inter-
ests include embedded system design, memory system architectures, and
networks-on-chip.

BEOM HAK LEE received the B.S. and M.S.
degrees in electronics engineering from Hongik
University, Seoul, South Korea, in 1997 and 2000,
respectively. From 2001 to 2008, he was a Senior
Researcher with the Samsung Advanced Insti-
tute of Technology (SAIT), South Korea. From
2009 to 2015, he was a Senior Engineer with
the Semiconductor Division, Samsung Electronics
Ltd., South Korea. He is currently an Adjunct
Researcher with Vietnamese-German University,

Binh Duong, Vietnam. His research interests include computer architectures
and networks-on-chip.

WOOYOUNG JANG (S’08–M’11) received the
B.E. degree in radio science and technology
from Kyunghee University, South Korea, in 1998,
the M.S. degree in electrical and computer engi-
neering from Yonsei University, South Korea,
in 2000, and the Ph.D. degree in electrical and
computer engineering from The University of
Texas at Austin, USA, in 2011.

From 2000 to 2013, he was with the System
LSI Division, Samsung Electronics, as a Senior

Engineer. He is currently an Associate Professor with the Department of
Electronics and Electrical Engineering, Dankook University. He has pub-
lished more than 37 papers in highly referred conferences and journals, and
holds four U.S. patents. His current research interests include interconnec-
tion networks, computer architecture, low-power SoC design, and machine
learning.

He has served in the Technical Program Committee for the IEEE Inter-
national Conference on Computer-Aided Design (ICCAD), the Techni-
cal Program Committee of IEEE International Conference on Computer
Design (ICCD), the International Symposium on VLSI Design, Automation
and Test (VLSI-DAT), and the International Program Committee of Inter-
national Conference on Computer-Aided Design and Computer Graphics
(CAD/Graphics).

129616 VOLUME 7, 2019

