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ABSTRACT In recent years, there have beenmany deep learning research projects based on two-dimensional
object detection and three-dimensional point cloud recognition. However, relatively few of these combine the
two, and the number of projects based on a three-dimensional workpiece recognitionmethod for the industrial
field is even fewer. In this paper, to perform the recognition task for polishing workpieces in manufacturing,
we use RGB-D images as input, and propose our designed PolishNet-2d for two-dimensional workpiece
detection and our designed PolishNet-3d for three-dimensional workpiece recognition. The two deep neural
networks are employed together in series to first detect and then recognize polishing workpieces in an
industrial environment. For this paper, a large number of experiments have been carried out on deep learning
datasets of polishing workpieces. These datasets were created by us to contain diverse combinations of real
and simulated workpieces in real and simulated industrial environments. The contributions of this paper are
as follows: (1) A rotation parameter learning network is proposed and a two-dimensional workpiece detection
neural network, named PolishNet-2d, which was constructed by integrating our designed algorithms with the
backbone networks ResNet101 and region proposal network (RPN), is introduced; (2) A hierarchical feature
extraction network is proposed and a three-dimensional workpiece recognition neural network, named
PolishNet-3d, which was constructed by integrating our designed algorithms with the backbone network
PointNet, is introduced; (3) PolishNet-2d and PolishNet-3d are employed in series, with the detection output
of PolishNet-2d being used as the input for PolishNet-3d for its recognition tasks: the workpiece regions
are detected in the RGB image; the workpiece point cloud is segmented in the corresponding regions in the
depth image, and lastly the segmented point cloud is placed into PolishNet-3d to identify the workpiece; (4)
For the experiments in this paper, datasets containing rich and diverse data types of polishing workpieces for
industrial fields have been constructed; (5) Numerous experimental results on polishing workpiece datasets
show that the conjunction of PolishNet-2d and PolishNet-3d can achieve exemplary recognition results on
polishing workpiece datasets.

INDEX TERMS Deep learning, 2d workpiece detection, 3d workpiece recognition.

I. INTRODUCTION
Nowadays, in the manufacturing industrial field, it is
still a frontier topic and a difficult problem to recog-
nize three-dimensional workpieces stably, robustly and
accurately. At present, the more robust method focuses
on using traditional two-dimensional image descriptors or
three-dimensional point cloud descriptors to describe the
features of a workpiece, and then match and recognize
the workpiece using those descriptors. Because the tradi-
tional descriptor is designed by hand, when the shape of
the workpiece is complicated, and there are only small
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differences between different workpieces, the traditional pro-
cessing method can be inadequate. As a consequence, three-
dimensional point cloud recognition methodology based on
deep learning has become a hot and emerging research field;
however, the recognition rate is relatively low, unable to
meet the requirements of high stability and robustness in the
industrial field. Considering the current research situation of
this subject, there are still some problems and difficulties in
the research of three-dimensional workpiece recognition:

1) Traditional two-dimensional image descriptors and
three-dimensional point cloud descriptors cannot well
represent the characteristics of different workpieces
with complicated structures, especially when there are
only minor structural differences between different
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workpieces. Therefore, how to detect and recognize
low-texture three-dimensional workpieces stably and
efficiently is still an unsolved problem.

2) Recognition methods based on deep neural networks
require a high consistency of data distribution between
training data and testing data, which also means that
a deep neural network trained on a dataset generated
from an ideal computer-aided design (CAD) model can
hardly be applied in real scenarios, while collecting
and labeling a large number of real scene data is very
labor-intensive and time-consuming.

3) The accuracy of existing methods based on deep learn-
ing cannot meet the requirements of the manufacturing
industrial field.

4) Directly segmenting and recognizing the three-
dimensional point cloud data in a scene has a very
low accuracy rate. Effectively integrating the mature
two-dimensional deep learning based object detector
into three-dimensional workpiece recognition methods
is very valuable.

Three-dimensional data are mainly divided into a point
cloud ([1]–[3]), voxels ([4], [5]), a multi-view image ([6],[7]),
and an RGB-D image ([8]–[12]). With the three-dimensional
point cloud deep learning based processing methods, there
are some methods to recognize single object point cloud, and
some methods to semantically segment scene point cloud.
However, direct recognition of a single object in the scene
cannot achieve good results.

In order to improve the recognition accuracy of the
three-dimensional workpiece in the industrial field, we use
RGB-D images as input; the proposed two-dimensional
workpiece detection neural network, PolishNet-2d, and the
proposed three-dimensional workpiece recognition neural
network, PolishNet-3d. This papermainly does the following:
1) The two-dimensional workpiece detection neural net-

work, PolishNet-2d consists of the backbone network,
ResNet101; the region proposal network, RPN; and a
sub-network, X-Net, proposed in this paper for learning
the rotation transformation of workpiece objects in the
input images. X-Net can learn the rotation matrix of
the workpiece itself in an unsupervised way according
to the training data. After the transformation of X-Net,
the success rate and accuracy rate of the workpiece
detection are improved compared with those not using
X-Net;

2) A hierarchical feature extraction network is pro-
posed. Combining with the backbone network,
PointNet, a three-dimensional workpiece recognition
network PolishNet-3d is constructed. With the addition
of the hierarchical feature extraction network, the three-
dimensional point cloud deep learning based method
can extract the features of workpieces at different levels,
such that the network can learn more detailed and global
features;

3) A dataset containing abundant image types of polish-
ing workpieces for the industrial field is constructed,

making it possible for the deep neural network to learn
more abundant features;

4) The two-dimensional workpiece detection neural
network, PolishNet-2d, and the three-dimensional
workpiece point cloud recognition neural network,
PolishNet-3d, are combined to detect and recognize the
workpiece images collected in real industrial scenes.
Good recognition results were obtained on the dataset
proposed in this paper.

II. RELATED WORK
A. DEEP LEARNING BASED TWO-DIMENSIONAL OBJECT
DETECTION METHOD
The local image descriptor based recognition method had
been the mainstream method for a long time, until the
deep neural network method achieved a breakthrough in
image classification in 2012 [13], when people began to
explore ways to use the deep neural network method for
object recognition [14]. Girshick et al. first proposed a land-
mark convolutional neural network, R-CNN. Since then,
image classification and image recognition competitions have
been held in large numbers (such as ImageNet [15] and
MSCOCO [16]). Many deep learning based image classifi-
cation and image recognition algorithms have been proposed
one after another. Ever enlarging datasets enable deep neural
networks to solve increasingly more complicated real world
problems. DetectorNet [17], OverFeat [18], MultiBox [19],
and R-CNN [20] are several deep neural networks proposed
almost simultaneously for object detection and recognition.
Girshick et al. combined a convolutional neural network,
AlexNet [13], with a selective search method, and proposed a
new convolutional neural network, R-CNN, for object detec-
tion. Recent research results [21] show that the convolution
layer of the convolutional neural network has the strong
ability to locate objects, which is weak in the fully con-
nected layer. Ren Shaoqing and others put forward Faster
R-CNN [22] on this basis, using a region proposal network
instead of a selective search method to generate the recom-
mendation region.

B. DEEP LEARNING BASED THREE-DIMENSIONAL
OBJECT RECOGNITION METHOD
The traditional point cloud processing method mainly
describes the three-dimensional objects by hand-designed
features. This presents a problem: for the three-dimensional
objects with complicated features, it is impossible to extract
abundant three-dimensional information by hand-designed
features, a factor which contributes to making the recognition
process difficult. Therefore, a data driven approach is needed
to understand and process three-dimensional data, that is,
a three-dimensional deep learning method.

Charles et al. proposed a network architecture for learning
the three-dimensional point cloud data directly, PointNet [1].
The network can be used for classification, component seg-
mentation, and scene segmentation of a three-dimensional
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FIGURE 1. Network structure of PolishNet-2d.

point cloud. Song and Xiao [2] and Chen et al. [3] first
made a region proposal in three-dimensional space. Wadim
Kehl et al. proposed a hash method for large-scale three-
dimensional object detection, Hashmod [8]. In the same
year, they also proposed a local RGB-D data deep learn-
ing method for three-dimensional object detection and
six-dimensional pose estimation [9]. Qi et al. [10] pro-
posed a method that combines two-dimensional detection
with three-dimensional point cloud recognition. The typi-
cal framework is Frustum-PointNets. Roman Klokov et al.
proposed a deep neural network for 3-D point cloud model
recognition, Kd-Networks [23]. Jiaxin Li et al. proposed a
self-organizing network, SO-Net [24], for point cloud data
analysis, which has a permutation invariance for disordered
point cloud data. In recent years, three-dimensional work-
piece recognition has attracted much attention. However, due
to the limitations of the development of three-dimensional
shape descriptors and machine learning technology, there has
been little breakthrough in the work of three-dimensional
workpiece recognition heretofore. Wu and Jen [25] proposed
a three-dimensional pyramidal parts classification neural net-
work, for which images were collected from three perspec-
tives of three-dimensional parts, and edge information from
the parts were extracted for the input of a polygon classifier.
Ip et al. [26] and Ip and Regli [27] proposed a classification
method for mechanical CAD parts based on machine learn-
ing. Ip and Regl [28] use a support vector machine (SVM) to
classify prismatic machined parts and post-casting machined
parts by using four types of surface curvatures as input vectors
for a support vector machine.

III. PolishNet-2d
This paper presents a two-dimensional neural network,
PolishNet-2d, for polishing workpiece detection. The net-
work consists of a backbone network, ResNet101; a region
proposal network, RPN; and a transformation network,

X-Net, proposed in this paper for learning the rotation param-
eters of a workpiece in an input image. Fig. 1 shows the archi-
tecture diagram of PolishNet-2d. The input of PolishNet-2d is
an RGB image, and the output of PolishNet-2d is the detected
workpiece location. Because the rotation parameters of differ-
ent workpieces are different in an image, this paper proposes
the sub-network, X-Net, which can learn the rotation matrix
of a workpiece.

A. NETWORK STRUCTURE COMPOSITION
1) ResNet101
He et al. [29] proposed ResNet. ResNet contains Identity
Mapping and Residual Mapping, in which identity mapping
is the input of the module itself, expressed as x, and resid-
ual mapping is the initial output part of the module. The
residual network can obtain a new output module by adding
the two mapping parts. The new output is represented as
y = F(x) + x. The input of a module is added directly to the
output of the module. ResNet is similar to VGG in that the
size of the convolutional core used is mainly 3× 3. Based on
the VGG network, ResNet adds a shortcut connection to form
a residual network module. In this paper, ResNet101 is used
as the backbone network of PolishNet-2d.

2) REGION PROPOSAL NETWORK
The region proposal network, RPN, consists of a convolution
layer and a fullly connected layer. The convolutional layer
is responsible for outputting classification results. For each
position in the input feature map, it outputs 2k confidence
scores, where 2 represents the foreground or background, and
k represents the number of anchor boxes at each location
in the feature map. The fully connected layer is responsible
for outputting the coordinate information of bounding box
regression. For each position in the input feature map, it out-
puts 4k coordinate values, where 4 represents the upper-left
coordinates of the bounding box, x and y, as well as the width
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FIGURE 2. Flow chart of X-Net.

and height of the bounding box, w and h, and k represents the
number of anchor boxes at each position in the feature map,
as shown in Fig. 1.

3) X-Net
The uncertain angle of the workpiece in the image is a large
factor in the workpiece detection. In this paper, the sub-
network, X-Net, can learn the rotation angle information of
the workpiece in an unsupervised way, in such a way that
the rotation angle information of different workpieces can be
normalized automatically, so as to improve the accuracy of
the detection. Fig. 2 shows the flow chart that uses X-Net to
transform the image bounding box area obtained by the region
proposal network.

The matrix to be trained by X-Net is:

X =

 cosθ −sinθ 0
sinθ cosθ 0
0 0 1

 (1)

To optimize the transformation matrix X generated by X-Net,
and in order to make the feature transformation matrix to be
an orthogonal matrix, a regularization term is added after the
training loss function of softmax:

H ′y′ (y) = −
1
N

∑
i

[y′ilog(yi)+ (1− y′i)log(1− yi)]+ αLreg

(2)

Hy′ (y) = −
1
N

∑
i

[y′ilog(yi)+ (1− y′i)log(1− yi)] (3)

Lreg = ||I − XXT ||2F (4)

yi = softmax(y)i =
exp(yi)∑
j exp(yj)

(5)

Among them, H ′y′(y) increases the cross-entropy loss
value of the regular constraint items, Hy′(y) is the original
cross-entropy loss value, α is the coefficient of the regular
penalty term, Lreg is the regular constraint in the 2-norm form,
X is the transformation matrix, yi is the prediction label of
the neural network output after the softmax function, and y′i
is the ground truth label. The softmax function is used to
normalize the classification score into the range from 0.0
to 1.0. By adding regular terms, the optimization process
becomes more stable, and the network can achieve better
results.

Fig. 3 shows the comparison of the training results of the
PolishNet-2d network using X-Net and of the PolishNet-
2d network without using X-Net. It can be seen from the
figure that the network loss value converges faster after using
X-Net, and the final minimum loss value converges to the
smaller value than that of PolishNet-2d without using X-Net.

FIGURE 3. Results comparison between the network with and without
X-Net.

B. EXPERIMENTAL RESULT AND ANALYSIS
1) EXPERIMENTAL NETWORK INITIAL PARAMETERS
In the training process, the optimization strategy of a weight
decay is adopted, with the parameter of the weight decay
being 0.0001. In the region proposal network, the length-
width ratios of the anchor boxes are 0.5, 1 and 2. The
sizes of the anchor boxes are 32, 64, 128, 256 and 512
pixels. The intersection over union (IoU) threshold value of
non-maximum suppression is 0.7. During the training pro-
cess, the number of region of interest (ROI) in each image
is 200.

2) DATASET
In this paper, a set of industrial datasets is constructed for
polishing workpieces, consisting of eight different kinds of
datasets:
1) single simulated workpiece with no background dataset
2) single simulated workpiece with real environmental

background composite dataset
3) single real workpiece with real environmental back-

ground composite dataset
4) single real workpiece with a real environmental back-

ground non-composite dataset
5) multiple simulated workpieces with no background

image dataset
6) multiple simulated workpieces with real environmental

background composite dataset
7) multiple real workpieces with real environmental back-

ground composite dataset
8) multiple real workpieces with real environmental back-

ground non-composite dataset.
The above datasets are shown in Fig. 4, in which each row

represents a kind of dataset.

3) INTERMEDIATE PROCESSING RESULTS
In this paper, we randomly select one of the images from
one of the datasets described above, and then demonstrate the
intermediate results of the detection process, including input
image, region proposal network, filtered out low confidence
detection results, bounding box refinement, non-maximum
suppression, final detection results, and the feature map
obtained by the region proposal network.
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FIGURE 4. Proposed eight kinds of datasets.

FIGURE 5. Intermediate results of multiple real workpieces with real
scene background composite dataset. (a) Input image. (b) Region
proposal. (c) Filtered out test results with low confidence. (d) Bounding
box refinement. (e) Non maximum suppression. (f) Final detection results.
(g) Intermediate feature map of RPN.

Fig. 5 shows the intermediate results of the multiple real
workpieces with real scene background composite dataset.

4) TRAINING AND TESTING RESULT
Following is a comparison result between Faster R-CNN and
PolishNet-2d, including the training loss curve, testing set
accuracy, receiver operating characteristic (ROC) curve, and
area under curve (AUC) value.

a: TRAINING LOSS VALUE CURVE
The loss value curve of PolishNet-2d in the training process is
shown in Fig. 6 and Fig. 7. Fig. 6 shows the loss value curve
on the four datasets with only one workpiece in the image.
The Fig. 7 shows the loss value curve on the four datasets with
multiple workpieces in the image. In the training set, there are
66, 000 images corresponding to the above 8 datasets, each of
which has 8, 250 images.
Among them, dataset 1 in Fig. 6 and Fig. 7 represents the

simulated workpiece(s) with no background dataset, dataset 2
represents the simulated workpiece(s) with real environmen-
tal background composite dataset, dataset 3 represents the
real workpiece(s) with real environmental background com-
posite dataset, and dataset 4 represents the real workpiece(s)
with a real environmental background non-composite dataset.
It can be seen that the training loss values of the single

FIGURE 6. Training statistics data for four single workpiece datasets.

FIGURE 7. Training testing statistics data for four multiple workpiece
datasets.

workpiece datasets and of the multi-workpiece datasets con-
verge well for PolishNet-2d.

b: PRECISION, ROC CURVE AND AUC VALUE
Precision is defined as the proportion of true positive samples
to all positive samples. The ROC curve is called the receiver
operating characteristic curve. The abscissa of the ROC curve
is the false positive rate and the ordinate is the true positive
rate. AUC is an abbreviation for area under the curve, which
is the area under the ROC curve. In this paper, we use Faster
R-CNN, the current mainstream object detection network,
and PolishNet-2d to test the test set of 2, 500 single workpiece
images and 2, 500 multiple workpiece images. The number
of workpieces in the test set images is 84. In the multiple
workpiece test set, the number of possible workpieces in each
image is at least 1 and at most 15. Table 1 shows the detection
accuracy of Faster R-CNN and of Polishnet-2d trained on the
polishing workpiece dataset constructed in this paper. Fig. 8
shows the ROC curves for Faster R-CNN and for PolishNet-
2d on the test set. Table 2 shows the correspondingAUC value
of Faster R-CNN and of PolishNet-2d.

c: ANALYSIS OF TRAINING AND TESTING RESULTS
According to the results in Table 1, Fig. 8 and Table 2, it can
be seen that PolishNet-2d achieves higher accuracy and AUC
values than Faster R-CNN, both in the case of where there is
a single workpiece in the image and in the case of where there
are multiple workpieces in the image. Faster R-CNN achieves
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TABLE 1. Precision statistical data of workpiece detection experiments.

FIGURE 8. ROC curve of Faster R-CNN and PolishNet-2d on testing
dataset.

TABLE 2. AUC statistical data on testing dataset.

an accuracy value of 94.33% and PolishNet-2d achieves an
accuracy value of 96.25% in the case of where there is a
single workpiece in the image. Faster R-CNN achieves an
accuracy value of 92.85%, and PolishNet-2d achieves an
accuracy value of 95.40% in the case of where there are
multiple workpieces in the image. PolishNet-2d has an AUC
value of 0.9165 and Faster R-CNN has an AUC value of
0.865 on the test set. Since PolishNet-2D and Faster R-CNN
have the same backbone network, the difference between the
two detection networks is that PolishNet-2d introduces the
transformation network X-Net, which enables unsupervised
learning of the workpiece transformation in the proposed
regions obtained by the region proposal network, thus making
PolishNet-2d robust for workpiece rotation. The robustness of
the system is better than Faster R-CNN in the same dataset,
and the accuracy of the system is 96.25% and 95.40% for the
single workpiece dataset and the multiple workpiece dataset,
respectively.

d: PolishNet-2d NETWORK PERFORMANCE ANALYSIS
PolishNet-2d can achieve an inference time of 287 ms per
image (including the CPU time of 30 ms to change the output
resolution to the original resolution) on NVIDIA Geforce

1080 GPU. Under such running time, it can also ensure high
detection accuracy. Although PolishNet-2d has reached a
relatively fast inference speed, in order to ensure the detection
accuracy, this paper does not optimize its computation further,
for in the industrial workpiece detection area, the requirement
for detection accuracy is higher than the requirement for
running time. There are also some methods to optimize the
running time, for example, changing the size of the input
image and the number of proposed regions in the region pro-
posal network. The training of PolishNet-2d on the datasets
proposed by this paper can achieve a better result of training
46 per hour on NVIDIA Geforce 1080 GPU.

e: PolishNet-2d STRUCTURAL RATIONALITY ANALYSIS
PolishNet-2d primarily corresponds to the current main-
stream two-stage network Faster R-CNN. ResNet101 extracts
the features of two-dimensional images. The feature map is
then input into the region proposal network to extract the
proposed regions. Finally, the proposed regions extracted
from the region proposal network are processed by the trans-
formation network X-Net. A large number of experiments
show that the pipeline structure of the network has a very
good effect on two-dimensional object detection with high
accuracy and robustness. At the same time, the introduction
of the transformation network X-Net does not interfere with
the overall structure of the two-stage network, and X-Net
is integrated into the backbone network as a plug-and-play
module. In conclusion, the network structure of PolishNet-
2d is reasonable, which can guarantee detection accuracy and
better robustness for workpiece transformation.

IV. PolishNet-3d
In this paper, a convolutional neural network, PolishNet-3d,
is proposed for the three-dimensional industrial workpiece
point cloud recognition. The backbone network is PointNet.
In order to extract the features of the workpiece with different
scales from the three-dimensional point cloud based deep
neural network, a hierarchical feature extraction network is
proposed, which can extract the corresponding features in
different layers for different scales of the workpiece point
cloud. R-Net is proposed to learn the rotation parameters
of the point cloud. Experiments show that PolishNet-3d can
extract feature information with different scales in the point
cloud, and it can achieve high recognition accuracy for actual
collected point cloud data.

A. NETWORK STRUCTURE
PolishNet-3d, a point cloud recognition network for
three-dimensional polishing workpiece, is proposed in this
paper. The network consists of the backbone network,
PointNet; a hierarchical feature extraction network; and
the sub-network, R-Net. Fig. 9 is a data flow diagram
for PolishNet-3d to process three-dimensional point cloud
data. The original input data is a collection of n × 3
point clouds. After being transformed by R-Net, a trans-
formation matrix with a shape of 3 × 3 is generated.
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FIGURE 9. Network structure of PolishNet-3d.

Through applying the transformation matrix to the ini-
tial input point clouds, a new set of point clouds can be
obtained. The new set of point clouds is processed by a
multilayer perceptron, and the original three-dimensional
point coordinates are transformed into the 64-dimensional
high-dimensional feature space to obtain the intermediate
data with a shape of n × 64. The 64-dimensional feature
vectors are transformed continuously by R-Net, and more
normalized 64-dimensional feature vectors are obtained.
The multilayer perceptron is used repeatedly to transform
64-dimensional feature vectors into 128-dimensional fea-
ture vectors, and then into 1024-dimensional feature vec-
tors. The 1024-dimension feature vectors are symmetrically
operated by using a maximum pooling operation, and a
1024-dimension global feature is obtained. The global feature
with the shape of 1024-dimension is taken as input, and k
output values are obtained through a fully connected network.
PolishNet-3d is used to solve the recognition task of the
three-dimensional workpiece’s point cloud.

1) PointNet
PointNet [1] is a network architecture for direct end-to-end
learning on irregular data such as a point cloud. It is used to
handle different three-dimensional vision tasks with a unified
framework, including object classification, object segmen-
tation, and semantic scene understanding. This paper takes
PointNet as the backbone network.

2) HIERARCHICAL FEATURE EXTRACTION NETWORK
In practical engineering application scenarios, it is possi-
ble to have both large and small workpieces. In order to

recognize workpieces with different scales, a hierarchical
feature extraction network is proposed based on the idea
of a feature pyramid network for three-dimensional work-
piece point cloud recognition. In this paper, the farthest point
sampling algorithm is used to divide the point cloud into
different regions. PointNet is used to extract the features
of a point cloud in each local area, and a new point set is
generated. In the new point set, PointNet is used iteratively to
generate a new and smaller point set. In the learning process,
the invariance of translation can be achieved by using a local
coordinate system, and the invariance of permutation can be
guaranteed by using PointNet in the local area. After the point
cloud feature extraction of several layers, the density of the
point cloud decreases gradually, and the features of the point
cloud extracted from each layer are preserved to form the
feature vector of the point cloud layer. In high resolution
point cloud features, more accurate position information of
the workpiece can be detected, but the semantics information
identified is not rich enough. Low-resolution point cloud
features can recognize higher-level semantic information,
but the detected location information is not very accurate.
Therefore, single-scale point cloud features may not be able
to identify smaller-scale workpieces. Point cloud features on
hierarchical features are sampled to obtain higher resolution
point cloud features. Fig. 9 shows the network structure of the
hierarchical feature extraction network in PolishNet-3d.

3) R-Net
In order to ensure that the three-dimensional point cloud
recognition system can identify the type of point cloud stably
and robustly, regardless of the pose in which the workpieces

127048 VOLUME 7, 2019



F. Liu, Z. Wang: PolishNet-2D and PolishNet-3D: Deep Learning-Based Workpiece Recognition

FIGURE 10. Initial feature vector data flow diagram of R-Net.

are located, the rotation transformation sub-network, R-Net
is used. R-Net can learn the rotation transformation of point
cloud data through training data. For point cloud data, it can
rotate around three axes in space:

Rx(α) =


1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1

 (6)

Ry(β) =


cosβ 0 sinβ 0
0 1 0 0
−sinβ 0 cosβ 0

0 0 0 1

 (7)

Rz(γ ) =


cosγ −sinγ 0 0
sinγ cosγ 0 0
0 0 1 0
0 0 0 1

 (8)

Therefore the total rotation matrix is:

Rxyz(α, β, γ ) = Rx(α)× Ry(β)× Rz(γ ) (9)

In order to ensure the orthogonality of the rotation matrix,
a regular term is added after the softmax loss function when
R-Net is used to optimize the rotation matrix.

H ′y′ (y) = −
1
N

∑
i

[y′ilog(yi)+ (1− y′i)log(1− yi)]+ αLreg

(10)

Hy′ (y) = −
1
N

∑
i

[y′ilog(yi)+ (1− y′i)log(1− yi)] (11)

Lreg = ||I − RRT ||2F (12)

yi = softmax(y)i =
exp(yi)∑
j exp(yj)

(13)

Among them, H ′y′(y) increases the cross-entropy loss
value of the regular constraints, Hy′(y) is the original
cross-entropy loss value, α is the coefficient of the regu-
lar penalty term, Lreg is the regular constraint term in the
form of 2-norm, R is the rotation matrix, yi is the predic-
tive label after the softmax function, and y′i is the ground
truth label. Fig. 10 shows a data flow diagram of R-Net.
The network structure detail of R-Net is shown in Fig. 9,
and the detailed network parameters of R-Net are listed
in Table 3.
R-Net cannot only transform the original point cloud, but

also process the feature vectors from the middle layer of the
network. If the dimension of the feature vector in the middle
layer is K , then R-Net can generate a transformation matrix
with a dimension of size K × K , as shown in Fig. 11.

TABLE 3. Network structural design parameters of R-Net.

FIGURE 11. Intermediate feature vector data flow diagram of R-Net.

FIGURE 12. Flow chart for automatically constructing 3d workpiece
dataset.

4) DATASET
Until now, there are very few public datasets of three-
dimensional workpiece CAD models for the manufacturing
field. For this paper, polishing workpiece datasets have been
constructed, including theoretical CAD models and a large
number of RGB-D images of real workpieces collected in
actual industrial scenes. After point cloud data format con-
versions and point cloud augmentation, a three-dimensional
polishing workpiece point cloud dataset is generated. Fig. 12
shows the flow chart for automatically constructing 3d work-
piece dataset. Fig. 13 shows the original three-dimensional
model of the workpiece. Fig. 14 and Fig. 15 show the point
cloud data transformed from the theoretical model of the
three-dimensional workpiece and the actual collected point
cloud data of the workpiece, respectively.

B. ANALYSIS OF EXPERIMENTAL RESULTS
In this paper, the results of original PointNet, of PolishNet-3d
added with the hierarchical feature extraction network, and of
PolishNet-3d added with the hierarchical feature extraction
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FIGURE 13. Original 3d workpiece model.

FIGURE 14. Typical samples of theoretical point cloud dataset.

FIGURE 15. Typical samples of real workpieces point cloud dataset.

TABLE 4. Test results of proposed network.

network and with R-Net are listed. The test accuracy and
error data of 84 polishing workpieces in different networks
are shown in Table 4 and Fig. 16. Among them, the formula
for calculating the average error value is as follows:

AE =

∑
loss

Nbatch
(14)

The formula for calculating the accuracy value is as follows:

A =
NTotalCorrect
NTotalSeen

(15)

The formula for calculating the average classification accu-
racy value is as follows:

ACE =

∑ NTotalCorrectClass
TotalSeenClass

Nbatch
(16)

Fig. 16 shows the test accuracy of each workpiece in
different networks. Due to the length of this article, only the
test results of the first 15 types of workpieces are shown here.
Table 4 shows that with the addition of the hierarchical feature
extraction network and of R-Net, the average error of the
PolishNet-3d test decreases rapidly, and the average classi-
fication accuracy of the PolishNet-3d test increases rapidly.

The hierarchical feature extraction network enables
PolishNet-3d to learn the point cloud features at different
resolutions, while the transformation network R-Net can
learn the corresponding rotation parameters of point cloud

FIGURE 16. Test accuracy and error data of PolishNet-3d.

data through unsupervised learning, which makes point cloud
recognition under different positions and poses more robust,
thus gradually achieving a higher point cloud recognition
rate. Fig. 16 shows the test accuracy of the first 15 types
of workpieces. Among them, the blue data represent the
recognition rate of different workpieces trained with the orig-
inal PointNet network, the red data represent the recognition
rate of different workpieces trained with the PolishNet-3d
network combined with the hierarchical feature extraction
network; and the green data represent the recognition rate of
different workpieces trained with the PolishNet-3d network,
which is combined with the hierarchical feature extraction
network and with R-Net. Consistent with the data in Table 4,
PolishNet-3d achieves the highest point cloud recognition
rate.

I. Train with theoretical point cloud data and test with real
point cloud data

The three-dimensional polishing workpiece CAD model
is used to create the sampled point cloud data. After 5 aug-
mentation methods have been performed on the point cloud
data, the total number of samples in the dataset is 25, 200,
all of which are used as training set data. The point cloud
data collected in the real environment are used as the testing
dataset. The initial number of samples in the testing dataset is
1, 500. The number of samples is expanded to 7, 500 through
the same 5 augmentation methods. The results of training
with the theoretical point cloud data and testing with the real
point cloud are shown in Table 5.

II. Train with theoretical point cloud data and real collected
point cloud data and test with real point cloud data

Among them, there are 25, 200 samples of theoretical point
cloud data and 1, 500 samples of real collected point cloud
data. After 5 augmentation methods are applied on the point
cloud data, the number of samples is expanded to 37, 500.
Of this, 20, 000 point cloud data are mixed with theoretical
point cloud data for training, and the remaining 17, 500 point
cloud data are used as the testing set.

Table 5 shows the accuracy value of the test set under
different training methods. From the results in the table, it can
be seen that the average classification accuracy can reach
0.9726 while using the theoretical point cloud data for train-
ing and testing on the actual collected point cloud data. This
correct rate basically meets the requirements in the actual
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TABLE 5. Point cloud recognition result on the testing dataset under
different training modes.

industrial field. The reason why the network trained with
only the theoretical point cloud data can achieve such good
testing results on real point cloud data is that: (1) Unlike RGB
image data, point cloud data only contains the coordinate
information of the workpieces, and coordinate information
will not change according to the change of external light,
or the different surface materials; (2) In this paper, the point
cloud data obtained from the theoretical CAD model is aug-
mented with 5 methods, so that PolishNet-3d can be robust to
noise; differences in scale, translation, and rotation; and other
changes in the actual point cloud data.

V. EXPERIMENTS AND RESULTS
A. NETWORK WORKFLOW DIAGRAM
For the workpiece in the industrial environment, it is dif-
ficult to extract rich key points and descriptors because
of the low texture features of the workpiece surfaces,
thus contour information gathering is an important task.
We extract the contour in the workpiece image, and then
use the contour information to detect the workpiece. Com-
bining the previous two-dimensional workpiece detection
network, PolishNet-2d; the three-dimensional workpiece
point cloud recognition network, PolishNet-3d; the ran-
dom sample consensus (RANSAC) based spatial point
cloud segmentation method; and a new gray contour image
and depth contour image fusion algorithm, the workpiece
images captured in the actual industrial scenes are pro-
cessed to obtain the two-dimensional workpiece detection
and the three-dimensional workpiece point cloud recognition.
Fig. 17 shows the algorithm structure of low texture
three-dimensional workpiece detection and recognition based
on the spatial plane segmentation method.

1) RANSAC BASED SPATIAL POINT CLOUD SEGMENTATION
ALGORITHM

a The spatial plane equation is as follows:

Ax + By+ Cz+ D = 0 (17)

b Randomly select three points from the point cloud,
P1{x1, y1, z1}, P2{x2, y2, z2} and P3{x3, y3, z3}. The
spatial plane parameters can be calculated using these

FIGURE 17. Structure diagram of low texture three-dimensional
workpiece detection and recognition system based on spatial plane
segmentation.

FIGURE 18. Schema of the fusion algorithm between color image and
depth image.

three point coordinates.
A = y1(z2 − z3)+ y2(z3 − z1)+ y3(z1 − z2)
B = z1(x2 − x3)+ z2(x3 − x1)+ z3(x1 − x2)
C = x1(y2 − y3)+ x2(y3 − y1)+ x3(y1 − y2)
D = −[x1(y2z3 − y3z2)
+x2(y3z1 − y1z3)+ x3(y1z2 − y2z1)]

(18)

c Iterate k times. When the number of the points whose
distances to the spatial plane are less than the threshold
value reach to the maximum value, record the spatial
plane parameters. Those parameters are the best ones.

d Segment all the points beyond the spatial plane. For
every spatial point Pi{xi, yi, zi}, the distance between
this point and the spatial plane is:

di =
|Axi + Byi + Czi + D|
√
A2 + B2 + C2

(19)

e If di is larger than dthresh, then insert the i′th point into
the vector; if di is less than dthresh, then discard this
point.

f Return the final point cloud set after the segmentation
process.

For the low texture workpieces, the most important local
feature is contour information, whereby the shape of the
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FIGURE 19. Multiple workpiece contour image dataset.

workpiece can be ascertained. In this paper, based on contour
features, a method of RGB image and depth image fusion
is proposed. Firstly, the contours in the RGB image and
in the depth image of the three-dimensional workpiece are
extracted separately. The contour images obtained from the
RGB image and from the depth image are fused. Secondly,
the fused contour image is input into PolishNet-2d for work-
piece detection. Experiments show that the fusionmethod can
effectively solve the problem that the features in the RGB
image are vague, due to the low texture characteristics of
the workpiece. It can also eliminate the impact of different
illumination conditions and different object surface reflective
intensities. Fig. 18 shows an example of the fusion of the RGB
contour image and the depth contour image.

B. DATASET
PolishNet-2d is trained and tested with the single workpiece
contour dataset and with the multiple workpiece contour
dataset. Fig. 19 shows the typical images in the multiple
workpiece contour dataset. The tangent vector based iterative
contour completion algorithm is used to fuse the information
of the RGB and of the depth contour images, so as to achieve
a higher detection rate.

C. EXPERIMENTAL RESULTS AND ANALYSIS
I. Experimental results and analysis of two-dimensional
workpiece contour image detection

In this paper, the experiment of two-dimensional work-
piece contour image detection is performed. The experimen-
tal results between PolishNet-2d and Faster R-CNN are listed
in Table 6. There are two cases: one in which there is only
one single workpiece in the image and another in which there
are multiple workpieces in the image. In the case where there
are multiple workpieces in the scene, the accuracy statistics
data are obtained in three cases: no occlusion between the
workpieces; no motion blur in the workpiece images; mutual
occlusion between the workpieces and motion blur in the
workpiece images. An image from the multiple workpiece
contour dataset is chosen. The intermediate results of the
detection process are shown in Fig. 20.
In this experiment, the total number of workpieces is 84.

In the single workpiece dataset, the number of workpieces in
each image is 1. There are 66, 000 images in the training set
and 2, 500 images in the testing set. In the multiple workpiece
dataset, the number of workpieces in each image is between 1

FIGURE 20. Training statistics data of a multiple workpiece contour image
dataset.

TABLE 6. Accuracy statistical data of workpiece detection experiments.

to 15. There are 66, 000 images in the training set and 2, 500
images in the testing set.

In Table 6, the detection rates of Faster R-CNN and
PolishNet-2d for the single workpiece dataset and for the
multiple workpiece dataset are calculated. The detection rate
of Faster R-CNN and PolishNet-2d is 96.25% and 97.50%,
respectively, when there is only a single workpiece in the
image. On the same dataset, the detection rate of PolishNet-
2d is higher than that of Faster R-CNN, which shows that
R-Net can learn the transformation parameters of the work-
pieces, making it robust to different transformation parame-
ters of the workpiece in the actual scene. In the case where
there are multiple workpieces in the image, both networks
can achieve high detection rates when there are no occlusions
between the workpieces and nomotion blurs of the workpiece
images. Among them, the detection rate of Faster R-CNN
is 96.33%, and that of PolishNet-2d is 97.25%. When the
workpieces are occluded from each other, the detection rate
of both networks decrease to a great extent. The detection
rates of Faster R-CNN and PolishNet-2d are 84.50% and
88.68%, respectively. This result shows that when there are
occlusions between multiple workpieces, the contours of the
workpieces will be interlaced, which affects the detection rate
of the workpiece by the convolutional neural network. When
there is motion blurring in the image, the detection rates of
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TABLE 7. Accuracy statistical data of the three-dimensional workpiece
point cloud recognition experiment.

Faster R-CNN and PolishNet-2d are 91.25% and 95.25%,
respectively. In the case of motion blurring, although the
contours of RGB images are blurred and cannot be extracted
accurately and steadily, for the depth image, contour features
mainly come from structural changes, so motion blurring
will not occur in the depth image. Therefore, the proposed
RGB contour image and the depth contour image fusion
algorithm can preserve the contour information in the depth
contour image well, so the two networks still maintain a high
detection rate in the case of motion blurring.

II. RANSAC based three-dimensional workpiece point
cloud recognition experimental results and analysis

This paper compares PolishNet-3d with PointNet and
PointNet++ respectively. The point cloud data transformed
by 25, 200 theoretical CAD models are used for train-
ing PolishNet-3d, PointNet and PointNet++. There were
1, 500workpiece point clouds collected from actual industrial
scenes. In the test set, 250 RGB-D images are used to test the
case of where there is only one workpiece in the image, and
150 RGB-D images are used to test the case of where there
are multiple workpieces in the image, and the test results are
shown in Table 7.

In Table 7, the recognition rates of PointNet, PointNet++,
and PolishNet-3d in the cases ofwhere there is only onework-
piece in the image and where there are multiple workpieces in
the image are calculated. When there is only one workpiece
in the image, the recognition rates of PointNet is 90.20%;
PointNet++ is 95.85%; and PolishNet-3d is 97.45%. On the
same dataset, the recognition rates of PointNet, PointNet++,
and PolishNet-3d increase in turn, which shows that the
hierarchical feature extraction network and R-Net can learn
the point cloud features with different resolutions and poses
of the workpieces, so that they can adapt to different transfor-
mations of workpieces in actual industrial scenes.When there
are multiple workpieces in the image, the recognition rate of
PointNet, PointNet++ and PolishNet-3d decrease compared
with that of when there is only one workpiece in the image.
The reason is that when there are multiple workpieces in the
image, the segmentation accuracy of the workpieces from
the point cloud data will decrease accordingly, thus affecting
the recognition accuracy of the three-dimensional workpiece
point cloud. PolishNet-3d doesn’t directly recognize all of

the point cloud data in the scene. It uses PolishNet-2d to
detect two-dimensional workpieces in the contour image, and
then it segments, preprocesses, normalizes and recognizes
the point cloud data in the detected regions provided by
PolishNet-2d. This allows the convolutional neural network
to get a higher recognition rate. When PointNet, PointNet++
and PolishNet-3d process the image with multiple work-
pieces, the recognition rate decreases slightly compared with
the case where there is only one workpiece in the image.
Among them, the recognition rate of PointNet is 88.33%;
that of PointNet++ is 92.25%; and that of PolishNet-3d is
94.50%.

VI. CONCLUSION AND FUTURE WORK
In this paper, PolishNet-2d and PolishNet-3d are proposed
to detect and recognize three-dimensional workpieces in
actual industrial scenes. In the workpiece regions detected
by PolishNet-2d, the point cloud data transformed from
depth images are segmented by the RANSAC algorithm.
Finally, the pre-processed point cloud data are processed by
PolishNet-3d, and the ID of the workpiece is then obtained.
In the comprehensive experiments of three-dimensional

workpiece recognition, different experimental datasets are
introduced, including single workpiece contour image
datasets and multiple workpiece contour image datasets,
as well as point cloud datasets generated by theoretical CAD
models and RGB-D images collected in actual industrial
scenes. In this paper, Faster R-CNN and PolishNet-2d are
used to test the polishing workpiece contour image dataset.
PointNet, PointNet++, and the PolishNet-3d are trained with
the polishing workpiece dataset, and the testing results are
analyzed in this paper. Experiments show that PolishNet-2d
and PolishNet-3d proposed in this paper have achieved rel-
atively ideal detection and recognition rates in the exper-
iments of two-dimensional workpiece detection task and
three-dimensional workpiece point cloud recognition.
In the future, we will collect multi-view images of the

workpieces in the pre-processing stage, and add the function
of three-dimensional point cloud reconstruction. Through
using the mainstream RGB-D three-dimensional reconstruc-
tion framework, the workpieces can be represented more
precisely, which will further improve the accuracy of the
PolishNet-3d point cloud recognition result.
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