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ABSTRACT Bradycardia and tachycardia reflect abnormalities of the heart that can lead to severe harm to
the cardiovascular system. The pulsatile signal is a useful tool to detect these two kinds of arrhythmias. In this
study, we present a pulsatile synthesis-by-analysis (PSA) modeling based method to detect bradycardia and
tachycardia. A new PSA modeling method was proposed to quantitively describe the changes of pulsatile
waves, and we obtained twelve parameters for constructing a feature vector from the PSA model of each
wave, by which we trained classifiers of probabilistic neural network (PNN) and random forest (RF).
Our experiments were performed on the Fantasia and 2015 PhysioNet/CinC Challenge databases. Some
pathological and physiological changes were extracted from the average models of the subjects in different
groups. The two-sample ks-test results show that all the parameters between different groups are all markedly
different (h = 1, p < 0.05). The classification results show that the performances of RF classifiers are
better than that of PNN. The kappa coefficients (KC) of RF classifiers are all over 97%, and that of the
classifying among bradycardia, tachycardia, and healthy subjects is 98.652 ± 0.217%. Compared with the
performance of some former methods, the obtained results demonstrate that the presented method promotes
the classification performance remarkably and has the potential to diagnose bradycardia and tachycardia in
m-health.

INDEX TERMS Synthesis-by-analysis modeling, pulsatile signal, bradycardia and tachycardia detection,
random forest.

I. INTRODUCTION
Bradycardia and tachycardia, two critical symptoms of some
cardiovascular diseases (CVDs), have caught the attention
of many researchers in recent years. With the continuous
degradation of heart function, these two arrhythmias may
deteriorate into two life-threatening malignant arrhythmias,
the extreme bradycardia (EB) with the heart rate lower than
40 beats per minute (bpm) for 5 consecutive beats, and the
extreme tachycardia (ET) with the heart rate higher than
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approving it for publication was Nuno Garcia.

140 bpm for 17 consecutive beats [1]. They may lead to
acute CVDs, such as sudden cardiac death [2]. However, the
bradycardia and tachycardia outburst and recover within a
short time, thus they are easy to be ignored by patients and
doctors [3]. Since diagnosis in the hospital is limited, it is
important to accurately detect bradycardia and tachycardia in
daily life before they deteriorate into EB and ET.

Electrocardiogram (ECG) plays an important role in the
diagnosis of CVDs, some indexes extracted from its morphol-
ogy (R wave [4], QRS complexes [5], T wave, P wave [6],
U wave [7], approximate entropy [8]) or/and heartbeat inter-
vals (HBIs) (heart rate [9], heart rate variability [10], heart
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rate turbulence [11], deceleration capacity [12]) are effective
in identifying and predicting some life-threatening arrhyth-
mias. Hammad et al. [13] extracted 13 features from ECG to
detect the abnormal heart conditions with the highest aver-
age accuracy of 99%. They also proposed a deep features
extraction framework for arrhythmia detection and biometric
authentication [14], [15]. Li et al. abstracted some nonlinear
features from ECG with wavelet packet decomposition [16]
or kernel independent component analysis [17] for arrhyth-
mia classification and obtained a high accuracy of over 97%.
These ECG-based studies have proven effective in arrhyth-
mias detection. However, the multiple electrode attachments
and cable connections required in ECG recording limit the
portability of ECG-based devices, the long-time attached
electrodes would cause skin allergies, and the data recording
needs the help of a doctor or nurse, which limits the applica-
tion of relevant results in m-health or telemedicine.

Heartbeat creates a change in the voltage difference across
the surface of the skin. This change, recorded by electrode
attachments, is the ECG signal. As the heart beats, blood
vessels fill and blood circulates, relaying information about
hemodynamics and heart rhythm to distal vessels. We can
record this information through pulsatile sensors placed on
the wrist [18], the fingertips [19], the ear [20] and other parts
of the body [21]. Many studies have demonstrated that the
pulse beat intervals (PBIs) extracted from the pulsatile signal,
e.g., photoplethysmogram (PPG) or arterial blood pressure
(ABP), an be a substitute for HBIs to detect CVDs such
as arrhythmia [22], hypertension [23] and coronary heart
disease [24]. Compared to the ECG recording process, the
pulsatile signal recording requires only one sensor with-
out the help of nurses or doctors. As such, it has become
a research hotspot for wearable health monitoring devices
such as smartwatches, bracelets, rings, and earplugs [21].
The pulsatile signal has potential in detecting and predicting
bradycardia and tachycardia in m-health.

PBIs and derived parameters are employed to describe
the rhythm of the cardiovascular system or to detect these
arrhythmias. Hochstadt et al. [25] concluded that the PBIs
have the same function in monitoring atrial fibrillation (AF)
as the HBIs. Gil et al. [26] extracted the pulse rate turbulence
from PBIs to identify ventricular premature. Lee et al. [27]
used the root-mean-square of the successive differences
(RMSSD) and the Shannon entropy (ShE) of PBIs to classify
the obtained PPG signals into AF and normal sinus rhythm
with the highest accuracy of 99.32%. While these studies
focused on PBIs and the pathological role in heartbeat rhythm
and ignored the changes in hemodynamics, they achieved
good results in detecting arrhythmias.

In addition, some researchers have noticed that the arrhyth-
mias can cause variations in the pulsatile waveform, and
the variations are related to the change of hemodynamics.
Thus, the PBIs-based and wave-based features were engaged
to detect some arrhythmias. The root-mean-square and
Poincare-plot’ ShE of the PBIs, and the pulse rise and fall
times were exploited to discriminate normal sinus rhythm,

AF, premature ventricular contractions and premature atrial
contraction in [28], and the sensitivity, the specificity, and the
accuracy of the classifications are all over 96%. In [29], ten
statistical parameters of the PBIs and six wave-based features
(adaptive organization index, the variance of the slope of
the phase difference, permutation entropy, spectral entropy,
fractional spectral radius, and spectral purity index) were
used to discriminate between AF and ventricular arrhyth-
mias. The experimental results indicate that the classifying
performance of wave-based features is better than that of
PBIs-based features. The contribution of these studies is to
prove it is feasible to detect arrhythmias using the pulsatile
signal. Studies have achieved good experimental results with
the wave-based and PBIs-based features, while the physio-
logical or pathological implications of these features require
further investigation. Although these methods have not been
used to detect bradycardia and tachycardia, they provide a
framework for related studies.

As the heart contracts, blood is squeezed from the left
ventricle into the aorta and travels down the systemic vas-
cular network. Then, the blood is reflected in the junctures
between the thoracic and abdominal aorta and the junctures
between the abdominal aorta and common iliac arteries, and
reflected again in distal vascular structure because of the
considerable variation in arterial resistance and compliance.
As a result, the pulsatile signal we recorded consists of a
pressure wave and several reflection waves [30]. According
to this physiological process, a method called pulsatile
synthesis-by-analysis (PSA) has been proposed to model the
pulsatile wave, and several kernel functions have been uti-
lized to simulate the pressure and refection waves [31]. So far,
related works focus on the study of the number and types of
kernel functions, and the model expression. The Gaussian,
Lognormal, Rayleigh, Gamma [32], double-exponential [33]
and cosine [34] functions are used as the kernel functions in
past studies. The number of kernel functions used inmodeling
varies from one up to seven [32], [35]. The model can be
synthesized by several single-kernel functions or a mixture
of several kernel functions. One to six Gaussian, Lognormal,
Rayleigh or Gamma functions in [32], seven Gaussian func-
tions in [35], one Lognormal and twoGaussian functions, one
Gamma and two Gaussian functions in [36], one Gamma and
four Gaussian in [37], and two Gaussian and three cosine
functions in [38] and [39]. There is controversy over the
model of the pulsatile wave. Recently, Jiang et al. [33], [40]
suggested that the ABP wave can be accurately synthesized
by three Gaussian or three Lognormal functions.

The PSA method has been used for signal compres-
sion [35], abnormal segments detection and reconstruction
[41], [42] and physiological and pathological information
mining of cardiovascular system [30] since it was proposed.
The pressure and reflection waves carry much information
about the cardiovascular system, so some cardiac function
and hemodynamics related parameters such as augmenta-
tion index, stiffness index, reflection index, crest time, left
ventricular ejection time, pulse pressure and vascular tone,
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are derived using PSA modeling methods. These parameters
have been exploited to detect arterial stiffness [43], coronary
artery disease [44], AF [36], arterial blood pressure [45],
heart failure [46]. These works indicate that the PSA models
can quantitatively describe the changes in pulsatile waveform
and are effective in detecting some cardiovascular diseases.
Potential for bradycardia and tachycardia detection still needs
to be explored.

Bradycardia and tachycardia alter pulse beat rhythm and
hemodynamic parameters of patients, but the existing meth-
ods pay more attention to beat rhythm while ignoring hemo-
dynamics. Thus, a new PSA modeling method is proposed
in this study to detect the bradycardia and tachycardia and
to quantitatively describe the changes of pulsatile signal and
their corresponding implications of beat rhythm and hemo-
dynamics caused by these two arrhythmias. First, the noise
and interference are filtered out, and the abnormal segments
are recognized and removed from the pulsatile signal. Then,
combing the PBIs, the baseline and the shape of the pul-
satile waves, a novel PSA modeling method is proposed,
and the average models of healthy subjects, bradycardia
and tachycardia subjects are obtained from measured data.
Next the physiological and pathological variations caused by
bradycardia and tachycardia are extracted from these models,
and the markedly changed model parameters are employed
as the feature vector to train the classifiers of probabilistic
neural network (PNN) and random forest (RF) for detect-
ing the bradycardia and tachycardia. The data of Fanta-
sia and the PhysioNet/Computing in Cardiology Challenge
2015 database are used to validate our method.

The remainder of the paper is organized as follows. The
database and the proposed method are described in detail in
section II. The main results are presented and discussed in
section III and IV. Finally, the conclusion is given in sectionV.

II. MATERIALS AND METHODS
A. EXPERIMENTAL DATA
The experimental data consists of two sets, both from
the international physiological signal database: PhysioBank.
A set of data is recorded from healthy subjects and the other
set is from the subjects with bradycardia and tachycardia.

The data of healthy subjects are from Fantasia
database [47] which supplies data of 10 healthy young
(21 - 31 years old) and 10 elderly (70 - 85 years old)
rigorously-screened subjects in sinus rhythm. The numbers of
male and female is equal. See Table 1. All subjects underwent
a physical examination, routine blood count and biochemical
test before the experiment, and only healthy, nonsmoking
subjects were engaged. The continuous ECG, respiration and
ABP signals were collected for each subject who remained in
a lay-supine state watching the 1940 Disney movie Fantasia
to help maintain wakefulness. The sampling frequency of
each signal was 250 Hz and its length was 120 minutes. The
names of records are f2y01m - f2y10m and f2o01m - f2o10m
for the young and elderly subjects, respectively.

TABLE 1. The information about the subjects in the fantasia database.

The data of bradycardia and tachycardia subjects are
from the database of 2015 PhysioNet/CinC Challenge [48],
in which the data of five life-threatening arrhythmias (asys-
tole, EB, ET, ventricular tachycardia, and ventricular flutter/
fibrillation) are supplied to encourage the development of
some methods to reduce the incidence of false alarms in the
intensive care unit. The data were recorded in four hospitals in
the USA and Europe using the monitoring equipment of three
major manufacturers. To supply a ‘‘gold standard’’ list of true
and false alarms, a team of experts visually inspected the
waveform record extensively. Each annotator worked inde-
pendently and was assigned a randomized list of patients to
review. In order to ensure the accuracy of annotation, the data
were independently reviewed by at least two annotators,
of whom, a two-thirds majority had to agree that the alarm
was either True or False. Here, the data of the subjects with
EB and ET are engaged in this study. Because some of the
data are corrupted by movement artifact, sensor disconnects,
and other events, the data of seventeen bradycardia subjects
(records name: b268s, b455l, b456s, b494s, b495l, b515l,
b516s, b517l, b560s, b561l, b562s, b578s, b659l, b664s,
b708s, b722s and b757l) and twenty-three tachycardia sub-
jects (records name: t173l, t208s, t214s, t276s, t277l, t333l,
t335l, t406s, t412s, t413l, t417l, t418s, t425l, t594s, t677l,
t680s, t690s, t702s, t707l, t719l, t739l, t760s and t777l) are
chosen. Each record contains two ECG and one ABP signal
with a length of 5 minutes or 5.5 minutes and with the
sampling frequency of 250 Hz.

B. THE THEORY OF PULSATILE SYNTHESIS-BY-ANALYSIS
MODELING METHOD
A cardiac cycle results from systole and diastole of the heart
and corresponds to a cycle in the pulsatile signal, as shown
in Fig. 1. The i-th pulsatile wave is denoted as yi(n), i ∈
[1,M ], M is the number of waves in the pulsatile signal, n
is the n-th samples in yi(n), n ∈ [1,PPI (i)]. PPI (i) is the i-th
pulsatile beat interval (PBI) and can be calculated by:

PPI (i) = PW (i)− PW (i− 1) (1)

where PW (i) and PW (i− 1) are the start and end of yi(n).
Thus, the pulsatile rate (PR) is:

PR(i) = 60× fs/PPI (i) (2)
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FIGURE 1. Composition of pulsatile signal in the time-space domain.

where fs is the sampling frequency. It has been confirmed that
the sequences of PBI or PR contain abundant physiological
and pathological information about the cardiovascular system
and autonomic nervous system [49], [50] and have been
employed to classify some arrhythmias [28], [29], [51].

If the pulsatile signal is denoted as S(j), j ∈ [1,L], L is the
length of a signal. Then:

S(j) = {yi(n)}Mi=1 (3)

which means a pulsatile signal is connected by the M waves
in the time domain in the order of {PW (i)}Mi=1.
In Fig. 1, the amplitudes of the start and end of each pul-

satile wave change slightly, then we can see a baseline of pul-
satile signal (the green curve) after interpolating. We denote
it as B(j). It is unknown whether the baseline contains some
physiological or pathological information, thus, the baseline
is integrated into the PSA model:

ŷi(n) = f (n, θ i)+ B(n,ψ i) n ∈ [1,PPI (i)+ 1] (4)

where, ŷi(n) is the estimated value of n-th sample in i-th
pulsatile wave. The first term on the right side of the equation
is the spatial expression of the pulsatile wave, and the second
term is the expression of the baseline. f (·) represents a com-
bination of one or several kernel functions. θ i and ψ i are the
parameter vectors of the i-th pulsatile model.

For (4), we need to further obtain a detailed expression. For
f (n, θ i), Tigges et al. [52] concluded that the pulsatile wave
can be fitted under an arbitrarily small error by increasing
the number of kernel functions, but it may lead to over-
fitting and result in some physiologically unexplained results.
Additionally, Nosrati and Tavassolian [53] found that the
heartbeat motion of the chest wall is pulsatile rather than a
simple sinusoidal. The research results of [33] suggested that
three positive Gaussian functions can accurately synthesize
the pulsatile wave. For B(n, ψ i), because the baseline in a
cardiac cycle can be approximated as a straight line segment,
here, it is described by a linear function. Thus, (4) is:

ŷi (n) = f (n, θ i)+ B(n,ψ i)

=

3∑
l=1

f li (n, a
l
i, b

l
i, c

l
i)+ kin+ bi

=

3∑
l=1

ali exp[−
(n− bli)

2

(cli)
2

]+ kin+ bi n ∈ [1,PPI (i)]

(5)

where, f li (n, a
l
i, b

l
i, c

l
i) is the l-th kernel function of the i-th

pulsatile wave model, f 1i , f
2
i and f 3i represent the systolic

wave, incisura wave and dicrotic wave of a typical single-
period pulsatile wave, respectively. ali , b

l
i and c

l
i are the height,

the position and the width of the l-th Gaussian function.
kin+ bi is the expression of the baseline, ki is the slope, and
bi is the vertical intercept. Fig. 2 illustrates a pulsatile wave
model.

FIGURE 2. Composition of a pulsatile wave model.

Thus, the i-th pulsatile wave can be quantified by the
following parameters:

P i = [PPI (i) ψ i θ i ]

= [PPI (i) ki bi a1i b
1
i c1i a2i b2i c2i a3i b3i c3i ] (6)

where, ψ i = [ ki bi ], θi= [ a1i b1i c1i a2i b2i c2i a3i b3i c3i ].
Then, we can get a vector constructed by all the pulsatile

waves of a pulsatile signal:

P = [PPI ψ θ ]

= [PPI K B A1 B1 C1 A2 B2 C2 A3 B3 C3 ]

(7)

C. PROCESS OF BRADYCARDIA AND TACHYCARDIA
DETECTION
The process of bradycardia and tachycardia detection
includes: 1) pulsatile signal pre-processing, 2) obtaining the
feature vector from the PSAmodel, 3) bradycardia and tachy-
cardia detecting, as shown in Fig. 3. In signal pre-processing,
the noise and interference in pulsatile signals are attenuated,
the abnormal segments are detected and wiped out, and the
start points of pulsatile waves are identified and engaged to
split a signal into a series of waves by pulsatile beat. Then,
the PSA model parameters of each pulsatile wave are calcu-
lated or estimated to generate the feature vector. The features
of different subjects are divided into training and testing sets,
bywhichwe train the classifier and test the classifying results.
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FIGURE 3. Overview of the proposed method.

1) PULSATILE SIGNAL PREPROCESSING
The measured pulsatile signal contains some noise and inter-
ference, i.e., DC component, baseline wanders, power line
interference and muscle contraction. Here, a modified math-
ematical morphology filtering method is employed to elimi-
nate noise and interference [54]. The symmetric structuring
element is a line segment with an amplitude of 20. First,
an alternate-hybrid filter, whose symmetric structuring ele-
ment’s length is 10 samples, is designed to eliminate power
line interference and muscle contraction. The results are
denoted as {Sl(j)}. Next, we increase the symmetric structur-
ing element’s length up to 200 samples for another alternate-
hybrid filter which is employed to estimate the tendency of
DC component and baseline wanders. Results are denoted as
{C(j)}. Then, we obtain the filtering result by {Sl(j)} - {C(j)}.

Some abnormal segments caused by movement artifact,
sensor disconnects or movement, and other events still exist
in pulsatile signal even after denoising. These segments lose
some of or almost all the waveform characteristics and have a
great influence on the accuracy of beat detection. Thus, they
should be detected and wiped out from the pulsatile signal.
Here, we use an ASCD method to detect the abnormal seg-
ments [55]. Then, the clear pulsatile signal {S(j)} is obtained.

For the pulsatile wave segmentation, we find the start
points of each pulsatile wave. Because the peak of systolic
wave is the most prominent feature in a pulsatile wave, and
the start point is the minimum between two adjacent systolic
waves, here, we first compute the PBIs using a sliding win-
dow iterative method [34]. The start point is located in the
minimum of waveform in each PBI. The pulsatile waves are

denoted as {xi(n)}Mi=1, and we can obtain the feature PPI (i)
using the start points {PW (i)}Mi=1 according to (1).

2) OBTAINING FEATURE VECTOR FROM PSA MODEL
After obtaining pulsatile waves, we compute the parameters
of the PSA model. Fig. 3 shows the process. There are four
steps: a) normalization, b) calculate the parameters of base-
line, c) subtract baseline from pulsatile wave, and d) estimate
parameters of the spatial wave.

The pulsatile waves are normalized by:

yi(n) =

xi(n)− 1
PPI (i)

PPI (i)∑
n=1

xi(n)√√√√ 1
PPI (i)

PPI (i)∑
n=1

(
xi(n)− 1

PPI (i)

PPI (i)∑
n=1

xi(n)

)2
(8)

where yi(n) is the result of n-th samples in i-th pulsatile wave.
For the i-th pulsatile wave after normalizing, the parame-

ters of its baseline can be calculated by:

ki =
yi(PPI (i))− yi(1)

PPI (i)− 1
(9)

bi = yi(1)− ki (10)

where yi(1) and yi(PPI (i)) are the start and end of the pulsatile
wave.

In (5), the Gaussian functions in the PSAmodel are limited
by the Dirichlet and Neumann boundary conditions [23]:

lim
n→−∞

f (n) = lim
n→∞

f (n) = 0 (11)

lim
n→−∞

[f (n)− f (n− 1)] = lim
n→∞

[f (n)− f (n− 1)] = 0 (12)
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The normalized pulsatile wave does not satisfy this con-
dition, as shown in Fig. 1. However, we find the waveform
obtained by subtracting the baseline from the pulsatile wave,
whose amplitudes of the start and end points are 0, and
approximate these conditions. The result is denoted as zi(n),
so:

zi(n) = yi(n)− kin− bi (13)

where, zi(n) is the spatial wave and can be used to estimate
the parameters of f (n, θ i) in (5) by curve fitting. The fitting
error is defined as:

Ei(θ i) =
1

PPI (i)

PPI (i)∑
n=1

(zi(n)− f (n, θ i))2 (14)

Then, we can obtain the optimal parameters by:

min
θ i

Ei(θ i)

subject to F{f (n, θ i), θ i} and lb ≤ θ i ≤ ub (15)

where, F{f (n, θ i), θ i} and lb ≤ θ i ≤ ub are the con-
straints and boundary conditions of parameters, respectively.
lb and ub are the lower and upper bounds. Here, the non-
linear least-squares method is engaged to solve (15). The
optimization algorithm, constraints and boundary conditions
we selected are shown in Table 2.

TABLE 2. Parameters setting of curve fitting.

3) BRADYCARDIA AND TACHYCARDIA DETECTING
For the data in the Fantasia database, the number of pulsatile
waves obtained is 41770 for young subjects, 38140 for elderly
subjects, and thus 79310 for healthy subjects in total. Then
for the data in the 2015 PhysioNet/CinC Challenge database,
the number of pulsatile waves extracted are 4595 for brady-
cardia and 12089 for tachycardia. A feature vector contains
twelve parameters for each pulsatile wave, and we have a
95994×12 feature vector to train and test classifiers. Then,
we train the classifiers to detect which groups the pulsatile
waves come from. The numbers of training and testing sets
are shown in Table 3, and the data from different groups are
labeled with different numbers for classification. In addition,
we do not do cross-validation in training classifiers.

TABLE 3. The training set and testing set of different classifications.

The classifiers designed methods we used in this study
are PNN and RF. The neural network toolbox in MATLAB
2016a is employed to construct the PNN classifier. PNN is a
kind of radial basis network suitable for classification. Here,
the function ‘newpnn(P, T , spread)’ in the toolbox is utilized
to create a two-layer network, P is the input vectors, T is
the target class vectors, spread is the spread of radial basis
functions (RBF). The first layer consists of RBF neurons and
their weighted inputs are computed with Euclidean distance
weight function. The second layer has competitive transfer
function neurons and their weighted inputs are calculated
with Dot product weight function. The spread speed we used
is 0.02.

RF is a machine learning method which adds an addi-
tional layer of randomness to bagging on the basis of the
decision tree method. The Gini index is used to generate the
thresholds. The function ‘classRF_train(P, T , ntree, mtry,
extra_options)’ in the open-source toolbox ‘randomforest-
matlab’ [56] (available at https://code.google.com/archive/p/
randomforest-matlab/) is engaged to train RF classifiers.
P and T are the input vectors and the target class vectors,
ntree is the number of trees grown and is set to 10,mtry is the
number of predictors sampled for splitting at each node and
can be calculated by the number of features (here we use 3),
extra_options is other options to control RF and their initial
values are the default.

III. RESULTS
In this study, the specificity (Sp), sensitivity (Se) and accu-
racy (Ac) are defined to assess the classifying results:

Sp =
TN

FP+ TN
× 100% (16)

Se =
TP

TP+ FN
× 100% (17)

Ac =
TP+ TN

TP+ FP+ FN + TN
× 100% (18)

where, TP (True Positive) means the pulsatile wave belongs
to A and is classified as A. FP (False Positive) means the
pulsatile wave belongs to B and is classified as A. FN (False
Negative) means the pulsatile wave belongs to A and is
classified as B. TN (True Negative) means the pulsatile wave
belongs to B and is classified as B. Here, A and B represent
which category the pulsatile wave belongs to. For the classifi-
cation of the young and elderly subjects, B is the elderly sub-
ject and A is the young subject. For the classification between
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healthy subjects and unhealthy subjects, A is the subject with
bradycardia or tachycardia, and B is healthy subject consist
of young and older. For classification of unhealthy subjects,
A is the bradycardia subject and B is the tachycardia subject.

The three indexes we defined above can only assess part of
the performance of classifiers, so to complement, the kappa
coefficient (KC) is exploited to measure their average perfor-
mance [57], [58]:

KC =
p0 − pe
1− pe

(19)

p0 =

∑r
t=1 qtt
m

(20)

pe =

∑r
t=1 (qt+ × q+t )

m2 (21)

where, the p0 and pe can be derived from the contingency
matrix of the classification results. qtt is the element on the
diagonal of the contingency matrix, qt+ is the sum of the
elements on the line t , and q+t is the sum of the elements
on the column t . m is the number of pulsatile waves that need
to be classified, r is the number of the rows or columns of
contingency matrix. KC ∈ [−1, 1], and the closer the value
of KC is up to 1, the better the classification result. Then, the
assessment indicator for each category is defined as:

KCt =
ptt−pt+p+t
p+t−pt+p+t

(22)

ptt =
qtt
m

(23)

pt+ =
qt+
m

(24)

p+t =
q+t
m

(25)

The simulated software used is MATLAB 2016a which is
installed at a laptop with an Intel(R) Core (TM) i7-6700HQ
CPU @ 2.6 GHz, windows-7 64-bit operating system and
installed memory of 16 GB.

A. ARESULTS OF PSA MODELING
The pulsatile waveforms of healthy and unhealthy sub-
jects are utilized to estimate the parameters of PSA models
by curve fitting. The results are shown in Table 4. Then,
the means of these parameters are substituted into (5), and
the average PSA models of different groups are obtained,
as shown in Fig. 4 and Fig. 5.

For the models of the young and elderly subjects, we con-
clude that:

a) The heart rate slows down with aging. In Table 4,
the average PPI increases from 0.928 s to 1.024 s, which
corresponds to the widening of the model in Fig. 4.

b) The contractility of the heart weakens with aging.
In Table 4, the average of A1 decreases from 3.105 to 2.241,
which corresponds to the amplitude’s changing of f 1 in
Fig. 4. f 1 is the systolic wave generated by contracting of
the heart. The higher the wave peak, the stronger the heart’s
ability to contract.

FIGURE 4. The average PSA models for young (A) and older (B). The
overline above the variables indicates their average.

FIGURE 5. The average PSA models for healthy subjects (A), subjects with
bradycardia (B) and tachycardia (C).

c) The arterial elasticity decreases with aging. In Table 4,
the average of B2 reduces from 0.348 s to 0.258 s, and that
of B3 reduces from 0.644 s to 0.450 s, which corresponds to
the narrowing of f 2 and f 3, respectively. These two reflected
waves are generated from vasoconstriction, which causes
blood to flow back. The closer f 2 and f 3 are to f 1, the faster
the blood reflux speed, and the smaller the blood vessel defor-
mation; that is, the degree of arterial stiffness increases and
the elasticity decreases. Moreover, the values of A2 and A3

increase with aging, which indicates that the volume of the
blood flowing back decreases, by which we can also infer that
the elasticity of the blood vessel reduces.
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For comparing the models between the healthy subjects
and the unhealthy subjects, here, the pulsatile waves of the
young and elderly subjects are mixed to generate the health
PSA model by (5). Then, we can obtain some conclusions
from the PSA models of healthy subjects and unhealthy
subjects with bradycardia and tachycardia as follow:

a) The heart rate of healthy subjects is higher than that
of bradycardia subjects and lower than that of tachycardia
subjects. In Table 4, the average PPI for healthy subjects is
0.974 s, while that of bradycardia and tachycardia subjects are
1.064 s and 0.542 s, respectively. Their corresponding heart
rates are 61.457 bpm, 56.391 bpm, and 110.701 bpm.

TABLE 4. The parameters of PSA models for different subjects. Data are
expressed as mean ±SD.

b) The cardiac contractility of healthy subjects is stronger
than that of unhealthy subjects. From Fig. 5, the amplitude of
f 1 for healthy subjects is 2.689, which is obviously higher
than that of unhealthy subjects (bradycardia: 1.492, tachy-
cardia: 1.774). This indicates that the cardiac contractility of
the healthy subjects is strongest, followed by the tachycardia
subjects, and the weakest for the bradycardia subjects.

c) The arterial contractility of healthy subjects is stronger
than that of unhealthy subjects. The relative positions of f 2

to f 1 for bradycardia and tachycardia subjects are 0.097 s
and 0.080 s, while that of healthy subjects is 0.168 s. Thus,
the arterial contractility of the healthy subjects is strongest,
followed by the bradycardia subjects, and weakest for the
tachycardia subjects.

d) The cardiac contraction speed is noticeably accelerated
for tachycardia subjects. In Fig. 5, the relative position of the
second reflected wave is obviously delayed, which indicates
the dysfunction of heartbeat, e.g., a new cardiac contraction
starts during the last diastole period.

B. CLASSIFICATION RESULTS
The two-sample Kolmogorov-Smirnov test (ks-test) is
employed to select the parameters of PSA models between
subjects in two different groups for classifying. The results
are shown in Table 5. Here, the null hypothesis is that the
samples of two different sets obey the same probability dis-
tribution. The result h is 1 if the test rejects the null hypoth-
esis at the 5% significance level, and 0 otherwise. Thus,

TABLE 5. The results of ks-test for different subjects. ‘h’ and ‘p’ are the
hypothesis and probability of ks-test.

the two-sample ks-test results demonstrate that the parameters
obtained are all markedly different (h = 1, p < 0.05). Then,
these parameters are employed to train the different classifiers
for classifying pulsatile waves of different groups.

The PNN and RF methods are exploited to classify the
pulsatile waves by their PSA model parameters for the sub-
jects in different groups. In order to eliminate the influence
of the different input samples on classifying results, we ran-
domly change the samples in the training set and testing set
while keeping their number unchanged, and run the program
100 times. Results are shown in Table 6 and Table 7.

For the classifying methods, the results of RF are better
than that of PNN; all the indexes of RF results are over
96%. For example, the KCs of RF are 99.401 ± 0.121%,
97.491 ± 0.614%, 98.848 ± 0.251%, 98.315 ± 0.445%
and 98.652 ± 0.217% for the classifying of elderly subjects
vs young subjects, bradycardia subjects vs healthy subjects,
tachycardia subjects vs healthy subjects, bradycardia subjects
vs tachycardia subjects, and bradycardia subjects vs tachy-
cardia subjects vs healthy subjects, while that of PNN are
just 95.953 ± 0.357%, 89.688 ± 1.125%, 91.161 ± 0.699%,
75.572 ± 1.449% and 90.218 ± 0.586%. Particularly for
the classification result of bradycardia subjects vs tachycar-
dia subjects using PPN, the KC is only 75.572 ± 1.449%
while that of RF is 98.315 ± 0.445%. The KC2 of PNN is
62.061 ± 1.879%, which means the classifying result for
tachycardia subjects is not so good. Meanwhile, the results
of TP, FP, FN, and TN indicate that the FP and FN of PNN
are obviously higher than that of RF.

For the classifying results between the different groups,
it can be inferred from Table 6 that the best performance of
RF is the classification between young and elderly subjects.
Its KC is 99.401 ± 0.121%, and the values of KC1 and KC2
show little difference, which means the performances for the
young and the elderly subjects detection are the same. Even
for the worst performance of RF, its KC is 97.491 ± 0.614%
for the classification of the bradycardia and healthy subjects
and is still over 95%, while its KC2 is 95.880 ± 1.024%,
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TABLE 6. The results of classification for different sets.

TABLE 7. The results of classification for healthy, bradycardia and tachycardia subjects.

so the performance of bradycardia detection needs to be
improved.We can also obtain the same conclusion from its Se
(96.096 ± 0.973%). For the classification among bradycar-
dia, tachycardia and healthy subjects, the good performance
of RF is still maintained. KC is 98.652 ± 0.217%.

IV. DISCUSSION
In this study, the change of pulsatile wave with aging and
arrhythmias is quantitatively described by a PSA modeling
method we proposed, by which twelve parameters obtained
from each pulsatile wave are employed as a feature vector
to classify the pulsatile waves from different groups. The
two-sample ks-test results in Table 4 indicate that there are
noticeable differences for all the parameters among different
groups. For the 95994 pulsatile waves from Fantasia and
2015 PhysioNet/CinC databases, we extract a 95994×12 fea-
ture vector as the data set to train and test classifiers of PNN
and RF. From the classifying results in Table 6 and Table 7,
the performance of RF is better than that of PNN. For the
results of RF, the KCs are over 97% for all classifiers.

However, during training classifiers, we have found the
features may be redundant; some features contribute little to
the classification results. In addition, the more features we
use, the more time we need to spend on training and testing
the classifiers. Thus, we explored the relationship between
the number of features and the performance of the classifier.
For the twelve parameters, we defined 78 combinations of
different parameters, and the combination is numbered as
Nu, Nu = 1, 2, 3, . . ., and 78. As shown in Table 8, com-
bination 1 means the feature vector only contains parameter
A1, . . ., combination 12 means the feature vector contains all
twelve parameters, . . ., and combination 78 corresponds to
the feature vector with the parameter PPI. Here, we design
the classifiers with RF under these different feature vectors.
The samples in training and testing sets still randomly change
100 times when training the classifiers for dropping the influ-
ence of the different input samples.

TABLE 8. Different combinations of the model parameters. ’-’ means null,
‘∗’ means the parameter in this row is selected.

Table 9 shows the classifying results between the young
and the elderly subjects of the 78 feature vectors. There are
38 feature combinations whose KCs is over 95% (4 - 12,
16 - 23, 27 - 33, 37 - 42, 47 - 50, 56 – 57, and 62 – 63).
Among them, the combinations of 4, 16, 27 and 37 all have
four features and own the least feature number, their cor-
responding KCs are 95.626 ± 0.326%, 96.971 ± 0.194%,
95.652 ± 0.274% and 95.847 ± 0.279%. The combination
16 has the best performance and consists of B1, C1, A2,

and B2. Among the combinations consisting of five features
(5, 17, 28, 38, 47, and 62), the combination 17 contains B1,
C1, A2, B2, and C2 and has the best performance with the
KC of 98.504 ± 0.134%. Then, with the increase of feature
numbers, the performance of classifiers gets better and better.
The KCs of combinations 6 - 12 and 18 - 23 are higher than
others, while that of 9 to 12 and 20 to 23 show little growth.
The combination 20 has the better performance with the KC
of 99.473 ± 0.096% and only consists of eight features (B1,
C1,A2,B2,C2,A3,B3, andC3). The combination 12 with all
features has the best performance. KC is 99.543 ± 0.093%.

Moreover, we analyzed the performance of the classi-
fiers for bradycardia, tachycardia and healthy subjects under
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TABLE 9. The results of classification for young and old subjects under different feature vectors.

TABLE 10. The results of classification for health, bradycardia, and tachycardia subjects under different feature vectors.

78 feature vectors. The results are shown in Table 10. There
are 33 feature combinations with the KCs over 95%, which
are shown in bold in Table 10. Among these feature combi-
nations, 46 and 54 only have four features while their KCs
are 95.135 ± 0.430% and 95.667 ± 0.539%, respectively.
The combination 54 has the features of C2, A3, B3 and C3.
Similar to the results of the classifying between the young
and elderly subjects, the performances of the classifiers are
still getting better and better with the increasing of feature
numbers. The KCs of combinations 9 - 12 are higher than
others but show little growth. The combination 9 has a good
performance with the KC of 98.429± 0.272% and consists of
A2,B1,C1,A2,B2,C2,A3,B3, andC3. The best performance
still is combination 12 who owns all the features.

The aim of the 2015 physioNet/CinC Challenge was to
develop the methods to reduce the incidence of false alarms
in intensive care unit. These false alarms are attributed to the
abnormal segments generated from the movement artifact,
sensor disconnects, and other events. So far, many algorithms
are proposed to distinguish between these abnormal segments
and pathological signal segments and to detect the episodes
of these life-threatening arrhythmias. In [59] authors trained

classification model with SVM to detect the five kinds of
arrhythmias. The results of the training set for EB were Se=
100% and Sp = 93%, and that of for ET were Se = 100%
and Sp = 89%. Bonomi et al. [60] extracted PR from PPG
signal to detect the episodes of bradycardia (Se = 85.0%,
Sp = 99.4%) and tachycardia (Se = 89.1%, Sp = 99.9%).
Zong et al. [61] proposed using PBIs, pulse waveform ampli-
tude and maximum slope, pulse signal quality, and the pulse
rhythm to reduce false alarms. The results show that the
algorithm retains all (100%) of the true alarms and markedly
reduces the false alarms. Lameski et al. [62] performed an
automated feature engineering and machine learning algo-
rithms to suppress the false alarms using ABP signals. The
best results of EB are Se = 83.60% and Sp = 98.77%, that
of ET are 99.43% and 89.86%. These methods are efficient
in detecting the episodes of the life-threaten arrhythmias,
and most of them just rely on PR can achieve their purpose.
As shown in Fig.6, the green line is the standard of the
PR to detect EB and ET. The segments of Bc(1), Bc(2) and
Tc(1) are the processes of arrhythmia outbursts, the PR in
this duration is rapidly changed and then recovered to the
normal range, thus, it is easy to capture the episodes of these
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FIGURE 6. Two ABP signals and their pulsatile rates for one subject with extreme bradycardia (A) and one with extreme tachycardia (B).

TABLE 11. The classification performance of the proposed method and comparison with former studies.

two arrhythmias by PR. However, it is more important to
confirm bradycardia and tachycardia before they deteriorate
into the life-threatening malignant arrhythmias. According
to their definitions in introduction, we detected them by
the PR. Results are shown in Table 10, where the KC of
combination 78 corresponding to the feature of PR is just
73.304± 0.753%. Fig. 6 illustrates the reasons the PRs in un-
outburst segments are within the normal range. Thus, we need
to derive more information from pulsatile signal to improve
the detection results.

Recently, some studies have tried to extract information
from PBIs and its derivatives for detecting some arrhythmias,
e.g. AF, premature atrial contraction, and premature ventric-
ular contraction. Although they are not engaged to directly
detect bradycardia and tachycardia, we try their method in
our works. We chose four methods to classify the pulsatile
waves from our experimental dataset. Here, the classifiers are
trained by RF. The results are in Table 11. The performance of
our proposed method is the best, where the KCs of different

classifiers are higher than that of other methods. In [63],
the features they used are RMSSD, turning point ratio (TPR)
and ShE from PBIs. The features in [27] are RMSSD and
ShE. In [29], the PBIs features are mean, standard deviation,
interquartile range, minimum, maximum and RMSSD. The
ShE, RMSSD, normalized RMSSD, PNN40, PNN70, sample
entropy (SampE) and coefficient of sample entropy (CosEn)
of PBIs are used in [58]. The features they used are all from
PBIs of pulsatile waves, while the features we extracted are
the PBIs and the parameters of PSAmodels which are used to
describe the change ofwaveform. The PBIs and its derivatives
can reflect the change of heartbeat rhythm, and some param-
eters of PSA contain the information about hemodynamics.
Therefore, our proposed method has better performance.

We can infer from the experimental results that the PSA
modeling method is effective in quantitative describing the
changes of pulsatile wave, and we can obtain some valu-
able physiological and pathological information from the
models of the different subjects. All the model parameters
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are markedly different among the different groups and are
useful for bradycardia and tachycardia detection with high
performance even if we do not do cross-validation in train-
ing classifiers. However, we found some of the features
may be redundant in detecting bradycardia and tachycardia.
Although we obtained some efficient feature combinations,
they vary with the different classification and are limited
in generalization. Thus, future works are needed in select-
ing the optimal PSA model or using a more cost-effective
classification method (e.g., deep learning) in bradycardia and
tachycardia detection. In addition, there are three other
arrhythmias (asystole, ventricular tachycardia, and ventricu-
lar flutter/fibrillation) in the database of the 2015 PhysioNet/
CinC Challenge. We will improve our proposed method to
detect these arrhythmias in the future.

V. CONCLUSION
In this study, a bradycardia and tachycardia detection method
with PSA modeling is presented. We used the PSA modeling
method to quantitatively describe the change of pulsatile
waves, and twelve parameters about the heartbeat rhythm and
homodynamic were extracted from the model of each pul-
satile wave. The proposed method was employed to analyze
the ABP signals of the healthy subjects from the Fantasia
database and of the bradycardia and tachycardia subjects from
the 2015 PhysioNet/CinC Challenge database. We obtain the
models of the young, elderly, healthy, bradycardia and tachy-
cardia subjects and extract some physiological and patho-
logical information from these models. Then, the models’
parameters were engaged to train the classifiers with PNN
and RF. The results show that the performance of classifiers
based on RF is better than that based on PNN. The KCs of
all classifier are over 97% which is better than the perfor-
mance of the former studies. It suggests that the proposed
method is efficient to detect bradycardia and tachycardia
and has the potential to diagnose these two arrhythmias in
m-health. In the future, we will continue to improve the
proposed method and try to use it to diagnose other cardiac
arrhythmias.
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