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ABSTRACT Wireless network virtualization (WNV) provides a novel paradigm shift in the fifth-generation
(5G) system, which enables to utilize network resources more efficiently. In this paper, by jointly considering
cache space and time-frequency resource allocation in wireless virtualized networks, we first formulate an
optimization programming to investigate the minimization problem of network overheads while satisfying
the quality of service (QoS) requirements of each virtual network on overflow probability. Then, with diverse
demands of virtual networks for different kinds of resources taken into consideration, an online adaptive
virtual resource allocation algorithm with multiple time-scales based on auto regressive moving average
(ARMA) prediction method is proposed to solve the formulation, which could eliminate the irrationalities
existed in traditional approaches caused by the uncertainty of traffic and information feedback delay. More
specifically, in the proposed resource scheduling mechanism with multiple time-scales, on the one hand,
areservation strategy of cache space is developed according to the ARMA prediction information under long
time-scales. On the other hand, virtual networks are sorted by the overflow probabilities derived by the large-
deviation principle and dynamic time-frequency resource scheduling under short time-scales. Simulation
results reveal that our proposal can provide tangible gains in reducing the bit loss rate and improving the
utilization of physical resources.

INDEX TERMS Wireless virtualized networks, resource allocation, multiple time-scales, ARMA,

large-deviation principle.

I. INTRODUCTION

With the rapid development of intelligent terminals, the flour-
ish of diversified applications which have different demands
for delay, reliability and throughput, has brought great chal-
lenges to the existing network [1]. For 5G system, the wire-
less network virtualization technology has emerged as a
key concept to provide an effective solution to network
sharing [2]-[5]. By leveraging spectrum sharing, infrastruc-
ture virtualization, and hollow virtualization technologies and
so forth, wireless networks can realize the unified manage-
ment of resources, and improve the flexibility of network
deployment and reduce the capital expenditures (CAPEX)
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and operating expenditures (OPEX), meanwhile meeting the
QoS of different application scenarios [6], [7]. The essence
of wireless network virtualization is to virtualize and recon-
stitute into multiple kinds of virtual network resources, such
as virtual spectrum resources, cache resources and so forth.
After virtualization, traditional operators are decoupled into
two separate roles, i.e. infrastructure provider (InP) and ser-
vice provider (SP). The InP is responsible for abstracting and
slicing the physical resources, while the SP provides end-to-
end services to users by leasing virtual resources from the
InP [8]. Appropriate virtual resources should be provided
for SPs based on their respective demands, so as to form
multiple virtual networks which coexist in the same physical
network but are logically independent of each other. This
brings huge benefits of improving resource utilization and
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reducing the CAPEX and OPEX [9], [10]. However, con-
sidering the limitation of physical resources and diversity
of virtual network requirements, it is critical to design an
effective virtual network resource allocation mechanism to
improve network virtualization performance [11].

A lot of efforts have been dedicated to this issue.
Jiang et al. [12] designed priorities for different virtual
networks and service users respectively, and proposed a
heuristic control mechanism to solve access control and
dynamic resource scheduling problem of users in virtual
networks. Later, to achieve efficient allocation of network
resources, in [13], a game mechanism was presented to
investigate buffer-space and wireless bandwidth scheduling
problem in wireless virtualized network. A joint resource
allocation and content caching problem was studied in [14],
which aimed to efficiently utilize the radio and content stor-
age resources in the highly congested backhaul scenario.
Sciancalepore et al. [15] designed a virtual resource allo-
cation algorithm based on service prediction which can sat-
isfy the service level agreement (SLA) of different network
slices and improve the resource utilization. Moreover, in [16],
L.Tang et al. proposed an integrated virtualization framework
with the frequency division duplexing (FDD) self-backhaul
mechanism, and formulated a stochastic optimization model
to investigate the average total utility maximization problem
in the wireless virtualized networks. In [17], a resource man-
agement scheme was proposed by introducing two types of
slices, namely the rate-based slices and the resource-based
slices, which require the minimum data rate and the minimum
network resources, respectively, and the result of [17] had
been extended to multi-cell scenario in [18]. Lu et al. [19]
proposed a multi-step dynamic optimization to achieve effi-
cient resource utilization in the case of limited transmission
power.

The concept of auction game was also applied for the inter-
actions among slices, network operators and users in wireless
virtualized networks. For example, in [20]-[22], the network
operators managed the spectrum resources and each slice was
responsible for its own users with different QoS requirements.
Furthermore, there were some other works focusing on the
combination of wireless network virtualization and other
key technologies to provide better services. For instance,
a resource sharing scheme in C-RAN was proposed in [23].
Later, Ahmadi et al. [24] proposed a virtualization solution
in cloud radio access network (C-RAN) scenarios, and stud-
ied the complementarity and partial substitutability between
spectrum resources and antenna resources based on mas-
sive multiple input and multiple output (MIMO) technology.
Zhou et al. [25] applied the massive MIMO to extend the fea-
sibility condition of wireless virtualized networks. Moreover,
a virtual network isolation scheme in single cellular scenario
was studied in [26], where the system allocates orthogonal
spectral bands for virtual networks to avoid mutual interfer-
ences, and dynamically adjusted the transmission power on
each spectrum block to prevent the data packet accumulation
on the backhaul links with limited capacity. The authors
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in [27] proposed an optimal virtual resource allocation strat-
egy in the information-centric heterogeneous virtualized net-
works, where the gains of not only virtualization but also
caching and computing are taken into consideration.
Although some excellent works have been done on virtual
resource allocation algorithm in wireless virtualization sce-
narios, most of them focused on solving the resource schedul-
ing problem within a single time interval, while neglecting
the network dynamics in time domain. Consider that the
stochasticity of network states and delay caused by infor-
mation feedback may lead to unreasonable virtual resource
allocation in the networks, in this paper, we investigate the
joint cache space and time-frequency resource blocks (RBs)
allocation problem in dynamic wireless virtualized networks
with large-deviation principle and auto regressive moving
average (ARMA) prediction, then propose an adaptive virtual
resource allocation algorithm to solve the formulation. The
main contributions of this paper are summarized as follows:

« By jointly considering cache space and time-frequency
RBs in the wireless virtualized network, we formulate
an optimization problem to minimize the network over-
heads while satisfying the QoS requirement of each
virtual network on the overflow probability.

« Leveraging the large-deviation principle and the ARMA
prediction method, we propose an online adaptive virtual
resource allocation algorithm with multiple time-scales
to solve the formulation while taking diverse demands
of virtual networks for different types of resources into
consideration, which could eliminate the unreasonable-
ness existed in traditional approaches.

« In the proposed resource scheduling mechanism with
multiple time-scales, a reservation strategy of caching
space is designed according to the ARMA prediction
information under long time-scales, and virtual net-
works are sorted by the overflow probabilities derived
by the large-deviation principle and dynamic time-
frequency RBs scheduling under short time-scales.

« Both theoretical analyses and simulation results are
given to validate the effectiveness of our proposed algo-
rithm and show that our proposal can provide significant
gains in reducing the bit loss rate and improving the
utilization of physical resources.

The rest of this paper is organized as follows. In section
II, we introduce the system model and problem formulation.
The proposed dynamic virtual resource allocation with mul-
tiple time-scales is elaborated in Section III. In Section IV,
simulation results are given to demonstrate the effectiveness
of our proposed algorithm. Finally the conclusion and future
works are drawn in Section V.

Il. SYSTEM MODEL

A. SYSTEM FRAMEWORK

Fig. 1 shows the architecture of dynamic resource con-
figuration based on virtualization technology, which con-
sisting of wireless virtual network users, virtual network
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FIGURE 1. System framework.

management platform, and physical resource pool. In this
system, the physical resource pool provides multiple kinds
of physical resources, including computing resources, cache,
wireless bandwidth resources and so forth. Virtual network
management platform allocates adequate physical resources
for each virtual network, based on service states, instanta-
neous channel conditions, QoS requirements, etc, of each
virtual network user. In order to allocate physical resources
more effectively, and achieve an efficient utilization of phys-
ical resources, in this section, we design a virtual network
management platform which is comprised of service request
units, load analysis module, resource management entity, net-
work state monitoring entity, and virtual network scheduler.
The service request units are used for caching newly arrived
and failed processed services of virtual network users. The
load analysis module is utilized to analyze the load charac-
teristics of each virtual network, and predict the load state
in next period and estimate the queue overflow probabil-
ity. The resource management entity determines the optimal
physical resources for each virtual network on the basis of
the evaluation of the load analysis module, thus ensuring
the QoS requirements of each virtual network. The network
state monitoring entity is to observe the real-time state of
each kind of physical resources. Moreover the basic function
of the network scheduler is to dispatch the available virtual
resources for each virtual network user.

In this paper, K represents a set of virtual networks in
this system. The main work is to design a dynamic alloca-
tion strategy of cache space and time-frequency RBs for the
resource management entity in the virtual network manage-
ment platform, with the purpose of decreasing the physical
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resource leasing cost and simultaneously guaranteeing the
QoS requirements of each virtual network.

B. PROBLEM STATEMENT

As mentioned above, each virtual network rents a cer-
tain amount of space to cache data of its service users,
and at the same time leases RBs to provide users with
data transmission services. As for virtual network k, k € K,
Ar(t) e K 2 {0, ..., Amax_k} indicates the number of data
packets of service reached within the scheduling period ¢
where Amax x denotes the maximum amount of pack-
ets reached in a single period. Due to randomness of
data generated by non-periodic applications of virtual net-
work users, we assume that the arrival process of data
packet Ai(z) is random independent identical distributed.
Dy(t) e D 2 {0,1,..., Dmax _«} indicates the number of
packets of virtual network k left during scheduling period ¢,
where Dmax_x denotes the maximum amount of packets left
in a single period. In addition, Q(¢) is defined as the queue
length of virtual network k at the beginning of scheduling
period ¢. Therefore, the queue dynamics of virtual network
k can be expressed as:

Or(t + 1) = max{Qx(t) — Di(t) + Ar(2), 0}. 1

Through Little theorem, the relationship between the aver-
age queue length of virtual network and the average queuing
delay of service can be described as:

Oy = MLy, 2
where O, is the average queue length of virtual network k,

Ly is the average queuing delay, Ay is the arrival rate of
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service. In equation (2), if the arrival rate Ay is given, it can
be concluded that the longer the average queuing length
of virtual network in system, the greater the waiting time
of cached data. To this end, the delay performance can be
directly affected by controlling the caching queue of virtual
network. In this work, the objective is to select an appropriate
mechanism of physical resource allocation for each virtual
network to control the growth rate of its caching queue effec-
tively, so as to ensure the delay requirements of each virtual
network. In order to describe the matching degree between
the service request and the allocated cache space, the queue
overflow probability of each virtual network can be defined
as:

P = P(Qk(t) > By), VK, 3)

overflow

where By represents the size of cache space that virtual
network k rents during current scheduling period. Since the
service arrival process in this paper is bit-sized, the size of
cache space is also described as bit-sized storage capability.
It is worth mentioning that equation (3) can also on behalf of
the bit loss of each virtual network. When the transmission
rate or caching capacity of virtual network is insufficient,
queue overflow means that data will be lost. For that rea-
son, the QoS requirements of each virtual network can be
described as the following queue overflow probability con-
strained problem:

P(Qr(t) > By) < &k, Vk, “

If the virtual network management platform allocates
enough time-frequency RBs for virtual network k to obtain
sufficient service rate, or the virtual network k rents plenty
of cache, thus the platform have prominent service caching
capacity and its overflow probability will be lower than the
threshold &y, therefore the QoS requirements of each vir-
tual network will be satisfied. Nevertheless, due to scarcity
of physical resources, physical network will not be capa-
ble to provide infinite resources for each virtual network.
In addition, leasing appropriate rather than excessive physical
resources will provide a certain service assurance for its users,
and bring better economic benefits to the virtual network.
For the sake of guaranteeing the QoS requirements opti-
mally and reducing the total cost of virtual network services,
the dynamic resource allocation problem in this paper can be
established as the following mathematical model:

K N

min o X,

it kZ} |:Pk By + o Z; n,k:|
= n—=

K
Cl:) %=1 V¥n
k=1
C2:P(Q; (t) > Br) <&, Vk

K
C3: ZBk < Bior 5)

k=1
where the overhead of each virtual network leasing resources
consists of two portions, and the first represents the cost of
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cache space, while the second represents the cost of employ-
ing time-frequency RBs. In equation (5), px denotes the
unit price of virtual network k for leasing cache space, and
oy indicates the unit price for RBs. K is the number of virtual
networks and N is the total quantity of RBs. In C1, x,, x is a
binary assignment indication of RBs, which x,, x = 1 denotes
that the RB # is configured for virtual network k, and it is
assumed that a RB can only be configured for one virtual
network. C3 is the constraint for the physical cache space
limit where By, is the upper limit of cache space.

Ill. DYNAMIC SCHEDULING MECHANISM WITH
MULTIPLE TIME-SCALES

On account of the existence of constraint C2 in equation (5),
a strong dependence has been formed between two physical
resources. Moreover, in realistic scenario, the service request
of each virtual network arrives randomly, in addition, the con-
figuration of virtual cache space has a certain delay [29].
Thus, it will be unrealistic and inaccurate to determine the
scheduling strategy of cache space and time-frequency RBs
in the same period. As a consequence, we design a resource
allocation mechanism with multiple time-scales, which allo-
cates cache space for each virtual network in long period and
time-frequency RBs in short period respectively. The specific
process is shown in Fig 2. Ty and Tr denote the running
time of long period and short period severally, and it contains
M (T;/TF) short periods in one long period. For purpose of
simplicity, it is assumed that M is an integer.

Since network states vary dynamically, we allocate cache
space for each virtual network based on load forecasting
during long period, so as to improve the cache utilization
and reduce the bit loss rate. To be specific, on the one hand,
in long period, the load analysis module predicts possible
variations in next long period according to the load variation
characteristics of each virtual network, and configure appro-
priate cache space for each virtual network based on the
predicted results. On the other hand, in short period, each
virtual network achieves user’s caching function of service
in accordance with the determined size of cache space during
long period, moreover, in order to guarantee the service rate
of each virtual network, the resource management entity
schedule time-frequency RBs for each virtual network on the
strength of queue overflow probability evaluation.

A. ARMA PREDICTION OF CACHE SPACE RESERVATION
STRATEGY

The variation characteristics of each network load directly
affect the efficiency of physical resource scheduling, thus,
based on the multiple time-scales resource configuration
framework proposed in this paper, it is critical to design
an effective prediction mechanism to realize the accurate
forecasting of each virtual network load, and assist alloca-
tion of cache space in advance. There are some common
algorithms, such as time series prediction, neural network,
Markov model, gray prediction model, etc., 28]. The neu-
ral network prediction algorithm needs to provide training
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FIGURE 2. Multiple time-scale resource allocation.

samples, which exists problems such as slow convergence
and high complexity. Markov prediction model has low pre-
cision, big error and narrow scope of applications. The pre-
diction accuracy of grey prediction model is related to the
grading regularity of predicted object and the smoothness of
data sequence. Only when the predicted sequence has the
characteristic of exponential growth can it be highlighted.
Considering that ARMA integrates the functions of regres-
sion analysis and time series analysis, the prediction error
variance is smaller [29]. In this paper, the future load state
of each virtual network is predicted by constructing the
ARMA model.

The virtual network management platform adjusts the
cache space configuration in advance by predicting the load
fluctuation of each virtual network. In terms of each virtual
network load and actual needs, the load state is divided
into L levels, which can be described as a finite state space
Bi(t) € {B',B?, ..., B.~!, BL}. In this scenario, we predict
the average load in long period, and the future average load
state of each virtual network based on ARMA model can be
represented as a linear combination of the last p long periods
of historical average load and g long periods of white noise,
which can be expressed as:

Ye®) = oyt — D+ ...+ opyi(t —p) + ()
—01EC -1 —...— 0,6t —¢q), (6)

where yx(t — i)[i = 1, ..., p} denotes the average load state
of virtual network k in past p long periods. £(r — i)|i =
1, ..., g} denotes gaussian white noise with mean zero and
variance o2, moreover, &(t) is unrelated to the historical
observation sequence. {g;|i = 1,...,p}and {6;li=1, ..., q}
are model parameters to be estimated.

In the process of establishing the predicted ARMA model,
it is necessary to start from a stationary data sequence with
mean zero. Therefore, in this scheme, historical data are
first logarithmically processed and mean-subtracted, and then
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predicted depending on equation (6). Considering that each
virtual network may have different load characteristics,
an independent prediction model will be constructed accord-
ing to the historical data of each virtual network. The specific
process is detailed as follows:

Step 1: Estimate {¢;li = 1,...,p}and {6;]i=1, ..., g} of
each virtual network prediction model. The self-covariance
of each virtual network can be obtained by using the
logarithmically processed and mean-subtracted observation
sequence yx':

I1—i
1
@) =+ leyk’a)yk’(i +J),
j:

)

where I denotes the size of observation sequence. We use the
preprocessed observation sequence y;'(¢) to replace yi(¢) in
equation (6), i.e., y¢'(t) = p1y¢'(t = 1) + ... + @pyi'(t —p)
+£() — 6165t — 1) — ... — 0,£(t — ¢). Next, through multi-
plying both sides of it by y;'(¢ — i), then taking mean value of
it, we can obtain the relational expression of auto-covariance:

vi(D) = E{yi’ (i (t — 1)}
= @ E{y'(t — Dye'(t — D} + ..
+ @pE{yi(t — pyi'(t — )
+E{E@Oy (1 — D} — O1E{E(t — Dy (t — 1)}
— = OE(E( — @i (t = D)},

where E [-] represents the expected factor.

As previously mentioned, £(f) is unrelated to the his-
torical observation sequences, i.e., E{y;'(s)é(t)} = 0,s > ¢.
Therefore, when > q, E{E@)y/'(t — i)} —O1E{EE —1)
Wt =D} —... —O0E{EC —@yi'(t — D} =0. In addi-
tion, since yi'(¢) is preprocessed, i.e., logarithmetics and
mean-subtraction, hence it is a stationary data sequence
with mean zero. According to the properties of auto-
convariance of stationary sequence, it is easily obtained that

®)
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E{y'(t = Dyi'(t =D} = wilt =1 — (¢ =] = yx(i — 1). Asa
consequence, equation (8) can be rewritten as:

@D == +ou@-2)+...+ovi—p). )

Based on equation (9), for i=qg+1,9+2,...
the following equations can be obtained:

,q4+Dp,

Y@@+ D=01v(@ +@2v(g—1) ...+ gpmlg+1—p)
Y@+ D=01vi@@+ D+ 0@ ... + opyi(g +2 —p)

Vi(g+p)=o1vi(g+p—D+@2vi(g+p—2) .. .+ 0pvi(q).
(10)

Therefore, by leveraging the extended Yule-Walker equa-

tion, the estimation of ¢;|li = 1,..., p} can be determined
by:
Yq+1 @1
Yaq+2 @2
) =T . |, (11
Yq+p ¥p
where
vk(q) Ye(g —1) Ye(g+1—p)
Ye(g+ 1) vk(q) Ye(g+2—p)
vw@+p—1 w@+p-—2) vk(q)

The next step is to estimate 6;]i =1, ..., g} and noise
variance based on the ¢;|i = 1, ..., p} solved by above equa-
p

tions. Because y;(f) 2 Vi) = D @iy, (t — i) satisfies mov-

i=1
ing average (MA) model, yj(¢) is approximatively regarded
as the observations of MA(q), which is specifically expressed
as:

ye@®) = y @) — [yt = D)+ ...+ @yt — p)l,

t=p+1,...1. (12)

Similarly, in accordance with the approximate observa-
tions, the corresponding auto-convariance function can be
determined:

i@ = E{y;@)ye @ — )}
p p
=E _Z%‘y;c(f—j) (—szyi(t—i—l)>
j=0 1=0

p
=Y gjonli+1—)). (13)

J,1=0

By means of the caculation of equation (13) and the
inverse correlation function of MA model, the estimations of
0;li=1,...,q} and the variance 6§ of white noise £(¢) can
be acquired.

Step 2: Determine the order of prediction model for each
virtual network. The forecasting performance of the model
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which is combined with different p, ¢ has a certain differ-
ence. In order to realize the future load forecasting optimally,
Akaike information criterion (AIC) is adopted to set the
order for each virtual network prediction model. AIC can be
defined as:

AIC (5) = In62 42
(s) =1Ino £t IR
where s is the amount of parameters of the prediction model,
which is the sum of the variance of £(¢), p and ¢, that is
s=p+qg+ 1. The values of AIC(s) with different order
combinations are calculated within a certain range, and the
corresponding combination is the model order when the min-
imum value is reached.

After establishing the prediction model for each virtual
network, the cache space reservation policy will be imple-
mented according to the prediction results. To avoid a large
number of data loss at the beginning of a new long period,
in this scheme, we adopt a cache space reservation mecha-
nism with combination of static and dynamic. By comparing
the average load state yi(¢) in next long period ¢ predicted
by ARMA model with the load state interval, the reserved
static portion B* of virtual network k can be confirmed, i.e.
B = B! where B' satisfies B'~! < y;(t) < B'. If at the end
of current long period, the instantaneous queue length Oy ()
of virtual network k is much greater than B!, the dynamic
portion B® should be reserved. Let BY = B" — B!, where
B! follows B'~! < Or(t) < Bl,, therefore, the cache space
reserved by virtual network k is By(r) = B + B®. At the
same time, considering detecting the utilization of dynamic
cache space in each long period, 60 short periods are taken
as a detection period. If the utilization of dynamic cache
space is less than 50% in the detection period, half of the
dynamic portion will be released. If the bit loss rate during
the detection period is more than 15%, we consider adding
B*=B'"110o dynamic portion, where B! < Olost < B,
and Qy,,; denotes the average lost data during the detection
period. The specific process is given in Fig. 3.

(14)

B. TIME-FREQUENCY RESOURCE SCHEDULING STRATEGY
WITH QoS CONSTRAINTS

In each short period, we evaluate the queue overflow prob-
ability of each virtual network in terms of the size of cache
space reserved during long period, so as to obtain the schedul-
ing strategy of time-frequency RBs. Since the distribution of
Ok (t) is unknown, the closed-form expression of equation (3)
can not be acquired directly. Therefore, for the sake
of performing the proactive time-frequency RBs schedul-
ing, we leverage the large-deviation principle to estimate
the queue overflow probability in # + 7 period based on
the historical data which is as of short period ¢, where T is
the forecasting period.

1) QUEUE OVERFLOW PROBABILITY ESTIMATION MODEL
Ak (t) = Ak (t) — Dy (¢t) is defined as queue increment in sin-
gle period, where the range of Ax(¢) is Ax(t) € {—Dxg, - -,
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0,1, , Ak} mf = P (Ak (t) = d) is the probability distri-
bution of queue variations of virtual network k. Due to A (¢)
is determined by bit arrival rate and Dy (¢) is the amount of
packets transmitted successfully, the difference Ag(¢) indi-
cates the matching degree between service rate and arrived
data packets of virtual network k. Ax(#) < O indicates that
the service rate of current virtual network k is relatively
high, while A (#) > 0 indicates that the service rate of virtual
network k can not meet the requests in current short period.

In summary, the queue increment of virtual network k from
short period 7 to ¢t + T is given by:

T
AL +T) =) A +i). (15)
i=1

Therefore, in short period ¢ + T, the instantaneous queue
length of virtual network £ is as follows:

Ot +T)=0c M)+ At +T). (16)

In accordance with equation (15) (16), the queue overflow
probability of virtual network k in short period ¢ can be
derived as:

Pﬁverﬂow (t+T)
=PQr t+T) > Bk)

T
=P(Qk<t)+ZAk(r+i>>Bk)

i=1
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T
Ak (t+i
. Z he ’)>Bk—Qk(r>
- T T
T
> Akt +i)
—p| = . sa |, (17)

where a; = (Bx — Oy (1)) / T represents the acceptable aver-
age queue growth rate of virtual network k in next T

T
short periods, and my = E [Z A (t+ i)/T:| indicates the
i=1

expected average queue growth rate of virtual network k in
next T short periods, and E [-] is the expected factor. Since

T
> Ax (t+1i) / T in equation (17) depends on the resource
é:_olnfiguration and bit arrival process, and a; is determined
by the instantaneous queue length of virtual network & in
current short period, equation (17) can be regarded as the ser-
vice capability of the resource configuration mode in current
scheduling period for future service requests. Specifically,
the larger the value of equation (17) is, the queue overflow
will be more likely to occur, meanwhile a higher priority
the corresponding virtual network will have to participate
in the configuration of time-frequency RBs to meet its QoS
requirements.

Ag(¢) is assumed as an independent identically distributed
process, hence Ag(#) is also an independent identically
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distributed random variable, and follows a finite instan-
taneous moment generating function G () = E [e? 2 @],
If E[Ak ()] < ag, the sequence Ag(¢) conforms to the large-
deviation principle in terms of literature [30], [32]. As a
result, it can be given by using Cramer’s theorem [32] when
ap > My

T

> Ak (t+i)
lim — logP = > ag
T—00

T =—f(a), (18)

where f (ax) is the rate function, and is specifically expressed
as:

f (ar) = sup {ax w —log G (w)} . (19)
>0
If it is known that the probability distribution of A,

—Dj, - ,0,1,---,
ie. Ag ~ X Ak A ),logG(a)) can be

jT_Dk’... ’T[l(c)’nk]’“' , T
caculated as:
Ak
log G (w) = log Z mf edo t (20)
d=— Dy

According to equation (18), for sufficiently large T,
the queue overflow can approximately be derived as follows:

P (t+T)~e @ 1)

overflow

Since the estimated queue overflow probability decreases
exponentially with 7', itis necessary to select an appropriate T
to obtain the accurate queue overflow probability. The value
of T will be discussed in the following simulation section.

Although the estimated value of queue overflow probabil-
ity can be obtained according to equation (21), it is impossible
to acquire the moment generating function G(w) because
the probability distribution of Ay is unknown. Therefore,
a sliding window based method is adopted to estimate n,f
online.

Supposing that the size of sliding window is T),, the obser-
vation vector of virtual network k in current period ¢ can
be represented as: Wi (1) = [Ax (t — 1), -+, A (t — Tw)]-
Hence, the estimation of my is:

1—1
> Ak(d)
A d=t —Tw
my = ——. 22
k T (22)
Rf is defined as the number of times Ay (j) = d occurs in
the sliding window, and the probability of its occurrence can
be calculated by ftf = Rf / Ty. If ﬁz is employed directly
as the estimation of n,f , it might cause large fluctuation
of nf in different short periods. To this end, in the light of
literature [33], exponential smoothing method is introduced
to soft the estimation, which is specifically described as:

A =nmic—-D+A-nalo., @3
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where n € [0, 1] is to measure the impact of both current esti-
mations and previous information on parameter estimations.

As n approaches 0, it means that 77 (r) prefers the current

e . ~d .
estimation n[,f (). As n approaches 1, it means that 7, (¢) is
largely affected by previous estimations.

2) DYNAMIC TIME-FREQUENCY RESOURCE SCHEDULING
STRATEGY

Concerning the estimation model of the queue overflow prob-
ability above, we allocate appropriate time-frequency RBs for
each virtual network according to its priority, so as to meet
QoS requirements.

As my > ai, it means that the expected average queue
growth rate of virtual network k in next 7 short periods is
higher than the acceptable one. If the current service rate
is kept constant, the virtual network k is highly likely to
encounter queue overflow after 7' short periods. As my < a,
despite the expected average queue growth rate is lower
than the receivable one, it is still unable to conclude that
queue overflow will not happen in virtual network k during
short period from ¢ to ¢t + 7. However, the virtual network
in my > ay is more urgent than that in 7, < ag, therefore,
priority should be given to the former time-frequency RBs
scheduling problem. For any of virtual networks, we will
calculate the overflow residual time 7j in my > a; and
the queue overflow probability P];V erflow (t+T)in my < ag
respectively. The overflow residual time T; of virtual net-
work k can be approximated as:

Bk =0k (1)

T EDeO T

(24)
The smaller the value of equation (24), the higher the pri-
ority of virtual network k, and the smaller the difference
between the queue overflow probability and the threshold
Pﬁvwﬂuw (t + T) — &k, thus the lower the priority of virtual
network k.

To this end, the scheduling scheme of time-frequency RBs

based on the determined priorities of virtual networks is listed
as follows:

1. Construct a set K; for virtual networks in the case of

my > ai, and select the virtual network k = arg min {7%}
keK
during short period ¢.

2. Allocate time-frequency RBs for virtual network k. r rep-
resents the service rate provided by a single time-
frequency RB, and it is assumed to be same. Hence the
service rate of virtual network k can be calculated as:

Ck (t) = mr. (25)

By increasing the number of time-frequency RBs m until
meet Ay (f) < Cx (¢) in virtual network k, accordingly in
order to ensure that the queue of virtual network k£ no
longer augments at least in current short period to alleviate
the pressure on queue growth in future.
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3. Supposingthat K1 = K1 \ {k} and N = N — m, then select

next virtual network k' = argmin {7} }, and repeat step 1
k'eK1
and step 2 till K1 = @.

4. Construct a set K for virtual networks which is
in the case of my < ag, and select virtual network
k* = arg max [ t+T)— & }, then repeat step 2

k*€Kp
to configure the time-frequency RBs, while update the

number of virtual network sets and the RBs by analogy
to step 3 up to meet K» = .

5. If K1 =0, K> =@ and N # 0, then construct a set K3 for
virtual networks which satisfies C (f) < Oy (t) + Ak (¢).

And select a virtual network k" = argmin
k" €K3
{Qpr(t) + Apr(t) — Cyr ()} in this set to allocate the time-

frequency RBs m, till meet Oy (1) + Ay (1) — Cpr (1) <
Cyr (0).

6. Supposing that K3 = K3\ {k”} and N =N —m, then
repeat step Supto N = 0 or K3 = #.

overflow

The overall process is presented in Algorithm 1. The com-
plexity of scheduling time-frequency RBs in short period
mainly derives from estimating the queue overflow probabil-
ity P];v erflow (t 4+ T) of each virtual network. Since log G (w)
is a convex function, the approximation of the queue over-
flow probability of each virtual network can be obtained by
adjusting parameters w to maximize the rate function f (ay).
In order to accelerate convergence of this algorithm, we adopt
the golden section search algorithm to acquire the optimal
f (ax). Supposing that J represents the maximum number of
iterations of the search algorithm, the complexity of equa-
tion (21) is O (T, J). Assuming that K = |K| is the amount
of virtual networks in this system, therefore, the algorithm
complexity mentioned in this paper is O (T, JK) in the worst
case.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we demonstrate the performance improve-
ments of our proposed algorithm virtual resource alloca-
tion based on load forecasting (RALF). In the simulation,
the settings of specific simulation parameters are as shown
in Table 1. Since RALF proposed in this paper is composed of
cache space reservation strategy and time-frequency resource
scheduling strategy, thus in order to better reflect the per-
formance of RALF, we respectively compare with two basic
strategies.

1) Cache space comparison scheme: As previously elabo-
rated in Section III.A, we proposed an ARMA predic-
tion of cache space reservation, which has a capability
to dynamically adjust cache space reservation according
to the prediction results under long time-scales. That is
to say, it is a dynamic reservation scheme. Therefore,
we utilize two static cache space reservation schemes
as comparisons, i.e., static conservative cache allocation
(SCCA) and static abundant cache allocation (SACA),
which reserve relatively few and abundant cache space
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Algorithm 1 The Online Dynamic Time-Frequency RBs
Scheduling Algorithm
1: Observe the current state Oy (¢) of each virtual network
queue and the size of reserved cache space By in short
period;
2. fork=1;k<K;k++do
3:  Calculate ag,and estimate /7y according to equation
(22);

4:  if my > a; then

5: Add to the set of virtual network K, and estimate
the overflow residual time T} according to equation
(24);

6: else

7: Add to the set of virtual network K, and exe-
cute golden section search algorithm to estimate
P]{()verﬂow (t+T);

8: endif

9: end for

10: while K7 # ( do
11:  Supposing that m = 1, then select a virtual network
k = argmin {Ty};

keK
12:  while A (1) > Ci (¢) do
13: m<«<—m+1,Cr(t) < mr,N < N —1;

14:  end while

15 K1 =Ki\{k}

16: end while

17: while K> # ¥ do

18:  Supposing that m = 1, then select a virtual network

k™ = arg max {Pﬁze;ﬂaw +T)— e };
k*€Ka

19:  Repeat step 12-14;

200 K2 =K\ {k*};

21: end while

22: if N # 0 then

23: fork=1;k<K;k++ do

24: if Cr (1) < Oy (t) + Ak (¢) then

25: Add to the set of virtual network K3;
26: end if

27:  end for

28:  while K3 # @ and N # 0 do

29: Supposing that m = 1, then select a virtual network
k" = argmin {Qg (1) + Ay (1) — Crr(t)};
k" €K3 B
30: while O, (1) + Ay (1) > Cpr (t) + Cyr (t) do
31: m<—m+1,Ck//(t)<—mr,N<—N—1;
32: end while
33: K3 =K3\{k"}.
34:  end while
35: end if

for each virtual network respectively. And neither scheme
vary with the service and simulation time.

2) Time-frequency resource comparison scheme: As des-
cribed earlier in Section III.B, a time-frequency resource
scheduling strategy with QoS constrains is proposed.
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TABLE 1. Simulation parameters.

Simulation Parameters Value
Virtual network numbers 2,3,4,5,6
System bandwidth 10MHz(50RBs)
Short period 1ms
Long period 300ms

Poisson distribution
X = 58.7kbit/ms
1.2,2.1,1.5 unit/RB

Load arrival process

Bit arrival rate

Price per unit of RB «

Price per unit of cache space p 8,6,4 unit/kbit
Queue overflow probability e 0.13,0.05,0.12
The service rate of single RB r = 3024bit/ms

The size of sliding window T, 60ms

Smoothness index n 0.7
Simulation time 6600ms

In this scheme, we set priorities of virtual networks based
on queue overflow probability estimation model instead of
just based on queue length. Then we dynamically allocate
appropriate time-frequency RBs for each virtual network
according to its priority. Hence, hard slice (HS) and slice
with fixed prioritization (SFP) are compared. The HS
scheme provides a fixed number of time-frequency RBs
for each virtual network, that is allocating RBs equally for
each network. While SFP scheme is similar to the litera-
ture [6], which dynamically allocates time-frequency RBs
for each virtual network in terms of a fixed prioritization,
i.e., the longer the queue length is, the more RBs for the
virtual network.

Then the algorithms presented above are evaluated from
three aspects: total overheads of leasing resources, average
utilization and bit loss rate. Fig.4 depicts a comparison of
total resource leasing cost of different scenarios and different
virtual networks. As can be seen, it illustrates that the cost
of RALF grows slowly when the number of virtual networks
is small, and increases significantly only in the case of the
augmentation of virtual networks. However, the other four
schemes consistently maintain similar growth rates. It is
mainly because that the RALF algorithm mentioned adopts
the cache space reservation mechanism based on load pre-
diction. To be more specific, on the one hand, compared
with SACA which always allocates abundant cache space
for each virtual network, the average cost of RALF is much
lower. On the other hand, the average cost of RALF is near
to SCCA if the number of virtual networks is smaller than 4.
It is because when the number of virtual networks is small,
according to the reservation policy based on ARMA pre-
diction, the cache space needs to be reserved is relatively
fewer just like SCCA. However, with the number of virtual
networks increasing, the cache space needs to be reserved will
be larger, while SCCA still reserve the fixed few cache space
for each virtual network, so the average cost of RALF will
be larger than the SCCA. Although the cost of RALF is not
the smallest, large number of data overflows occur because

VOLUME 7, 2019

x10*

—*—SACA w. HS
—~—SACA w. SFP
—%-SCCAw. HS
-4 -SCCAw. SFP
——RALF

10

Average cost

Number of virtual networks

FIGURE 4. The cache space reservation policy based on ARMA prediction
in long period.

of insufficient cache space in SCCA, thus the bit loss rate of
RALF is much lower than SCCA as shown in Fig 6. As a
consequence, the proposed algorithm predicts the possible
load variations of each virtual network by leveraging the load
information in historical periods, then executes cache space
configuration in advance to avoid resource wastes, while the
other four resource allocation schemes ignore the dynamics
of service, which may cause mismatch between resource
allocation and actual needs to some extent.

Fig.5 and Fig.6 reveal the evaluations of resource utiliza-
tion and bit loss rate respectively of different schemes with
different number of virtual networks. When the number of
virtual networks is small, the time-frequency RBs in system
can cope leisurely with the transmission demand, hence the
bit loss rate of each scheme is at an ideal level. But with
the number of virtual networks increasing, they begin to
compete with the limited time-frequency RBs, meanwhile the
average utilization rate rises continuously, however the lack
of resources might cause more serious bit loss. Although the
bit loss rate of SACA scheme is lower, it can be seen from
Fig.5 that it has the worst performance in average utilization.
The average utilization rate of SCCA is comparatively high,
but because of insufficient cache space configuration, a large
number of data overflows occur, and the performance on bit
loss rate as presented in Fig.6 is dissatisfactory. Moreover,
compared to SACA scheme, the average bit loss rate of RALF
is slightly larger after the number of virtual networks is not
smaller than 4, it is because we also take the resource leasing
cost into consideration. With the number of virtual networks
increasing, the things we do are not only allocating more
cache space and RBs, but also trying to minimize the cost. Just
as depicted in Fig.4, the average cost of SACA is significantly
larger than RALF. In addition, we can also see from Fig.6 that
HS and SFP have relatively similar bit loss rate under the
circumstance of fewer virtual networks, but as depicted
in Fig.5 the average utilization rate of HS is lower than that
of SFP. It is because that HS sets a fixed number of time-
frequency RBs for each virtual network but ignores the real
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FIGURE 5. Comparison of average utilization of different schemes.
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FIGURE 6. Comparison of average bit loss rate of different schemes.

needs, which finally results in some physical resources being
idle. Compared with other strategies, the RALF algorithm
proposed in this paper has an ideal comprehensive effect on
average cost, average utilization rate as well as bit loss rate.
To put it simply, the advantage of RALF algorithm lies in
its adaptive adjustment ability. Cache space can be reserved
in advance for future load variations, simultaneously priority
of each virtual network is dynamically adjusted according to
the queue overflow probability, and the transmission service
of virtual network with high overflow probability is given
a priority and dynamic adjustment is employed in both long
and short periods. On the contrary, the other four schemes are
trapped by their fixed periodic allocation mechanism, which
leads to excessive or insufficient resource allocation.
Furthermore, in this section, we design a simulation exper-
iment to study the effect of the forecasting period 7" on system
performance in short period. Simulation parameters are set
as: the number of virtual networks is K = 3, 4, 5, and value
of the estimated period is 7 = 20, 30, 40, 50, 60, 70, 80.
Regardless of the number of virtual networks, the average
utilization rate in Fig.7 and average bit loss rate of the cache
space and time-frequency RBs in Fig.8 both decrease to
some extent with the increasing of forecasting period 7.
And especially in the cases of K =3 and K =4, the two
curves are very close. But as illustrated in Fig.7, if K =5,
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the average utilization rate rises prominently, and the average
bit loss rate as displayed in Fig.8 also increases as well.
Obviously the results of different K as shown in Fig.7 and
Fig.8 are consistent with the results of comparison of average
utilization rate and average bit loss rate of different schemes
as shown in Fig.5 and Fig.6. Also equation (21) implies that
the larger the forecasting period is, the more accurate the
estimation of queue overflow probability will be. Therefore in
order to optimally guarantee the queue overflow probability
constraint of each virtual network, the larger 7 should be
selected in theory. Nevertheless, as presented in Fig.7, as the
forecasting period T increases from 10 to 80, the average
utilization of system obviously decreases. Accordingly so as
to ensure that all aspects of the system performance are in
good condition, it is critical to select a reasonable value of
forecasting period T'.

Finally, we need to validate the forecasting ability of the
average load state of the proposed strategy. In this case,
the number of virtual networks is set as 3, and the x-axis is
the time index of long period, and the y-axis is the average
load value after the smooth processing. Since as with ARMA,
both the Markov prediction model and grey-prediction model
do not require a large number of labeled data, we adopt the
Grey-Markov (GM) prediction model [34] as a comparison.
It combines the grey model and Markov model so as to get
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FIGURE 9. Comparison between the actual and the predicted values of
average load based on ARMA prediction in three different virtual
networks during 22 consecutive long periods.
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FIGURE 10. Comparison between the actual and the predicted values of
average load based on GM prediction in three different virtual networks
during 22 consecutive long periods.

more accurate prediction than using these two models sepa-
rately to some extent. Fig.9 and Fig.10 show the comparison
of the ARMA predicted value with the true value of average
load state and the GM predicted value with the true value.
Fig.9(a), 9(b) and 9(c) respectively depict the imitative effect
of the actual average load value and the predicted value in
three different virtual networks during 22 consecutive long
periods. It can be observed that the actual average load states
of each virtual network are basically consistent with the
predicted average load fluctuations in 22 long periods. Fur-
thermore, by comparing Fig.9 with Fig.10, although the GM
model can overcome some shortcomings in grey model and
Markov model as previously mentioned, the ARMA model
still has a better performance on prediction accuracy than the
GM model.

V. CONCLUSION

A dynamic virtual resource allocation algorithm based on
load forecasting was proposed to solve the problem of unrea-
sonable allocation of virtual resources which caused by the
service uncertainty and the feedback delay in wireless vir-
tualized network. Considering the differentiating features of
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different resources, cache space and time-frequency RBs are
deemed as virtualized carriers, and a multiple time-scales
hybrid scheduling mechanism is proposed. Aiming at mini-
mizing the cost of resources leasing, the dynamic scheduling
strategy of cache space and time-frequency RBs is executed
in long and short period respectively. Simulation results indi-
cate that in our proposed algorithm the overhead of leasing
resources can effectively be reduced and meanwhile the uti-
lization rate of physical resources can be improved. How-
ever, the cache space reservation policy designed is relatively
simple. In order to better adapt to the caching requirements
of different virtualized application scenarios, in the future,
we need to further study more precise model for cache space
scheduling.
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