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ABSTRACT In this paper, a novel methodology is proposed for low-light image enhancement. The
proposed algorithm contains three stages: image reconstruction, image enhancement and color restoration.
Two-dimensional compact variational mode decomposition (2D-TV-VMD) is employed to covert the
RGB image into gray map through decomposing it on multiple gray eigenfunctions. A binary artifact
indicator function is used to identify and eliminate potential artifact pixels in an image, and then low-light
image enhancement via illumination map estimation (LIME) is used to enhance the reconstructed gray-scale
map. Finally, color restoration is performed in RGB-color space to recover the color information. Subjective
evaluation and objective evaluation of the proposed method, including no-reference image quality metric of
contrast-distorted images based on information maximization (NIQMC), is conducted on different low-light
images. Objective and subjective experimental performance demonstrate the competitive performance of the
proposed algorithm compared with other state-of-art methods.

INDEX TERMS Two-dimensional compact variational mode decomposition, low-light image enhancement,
color restoration, artifact detection.

I. INTRODUCTION
Low-illumination enhancement is an important process to
improve the quality of images. One common issue on object
detection and tracking is how to display clearly the detail
information of low-light images, which might cause severe
interference with object recognition. To solve this issue, it is
of great need to significantly enhance the illumination of the
photos under the premise of preserving the details of the dark
area. However, this enhancement process, which is highly
non-linear, is very challenging to implement. The key points
of the enhancement process lie in estimation of illumination
map, color restoration and preservation of detail information.
Generally, the enhancement methods fall into four categories:
histogram equalization (HE) [1]–[4] based enhancement
methods, dehazing model [4] based enhancement methods,
Retinex theory [6] based enhancement methods and deep
learning based enhancement methods [7]. HE has been
extensively employed due to its efficiency and simplicity of
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implementation. However, there are several drawbacks in HE
such as chromatic aberration and loss of detail information
in the enhanced output image. Although dehazing model
improves visual quality to some extent, the enhanced image
does not always accord with real scenes, since the distortion
is incurred by lack of illumination instead of particles in air.
Deep learning [7] based enhance-ment methodology averts
the parameter adjustment process and makes colors more
coordinated. However, the training set involves images with
different illumination in the same scene, which is hard to
achieve. Retinex method [6] improves image contrast and
brightness, in which color information and details are well
preserved. However, this method still has its drawbacks like
flaring.

Unlike ordinary image enhancement [8], the algorithm
for low illumination images are more complicated. Low-
light image enhancement via illumination map estimation
(LIME) [9] is an enhancement algorithm based on Retinex
method. In this algorithm, the illumination of each pixel is
first estimated individually by finding the maxi-mum value
of the R, G and B channels. The overall structure is preserved
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by the fidelity of the initial illumination map and the fine
illumination map, and the weighting matrix and gradient
are used for keeping the structure smoothness. A general-
ized Lagrangian function is constructed based on the initial
illumination map. The algorithm processes can achieve a
re-markable enhancement on the low illumination image at
a fast speed, but it has a lackluster performance on image
contrast enhancement. Naturalness Preserved En-hancement
Algorithm (NPEA) [10] is proposed to preserve natural-
ness while enhancing details. This algorithm en-hances natu-
ral retention with brightness-order error measurements. The
methodology, which decomposes the image into reflectiv-
ity and illuminance, adopts a dual logarithmic transforma-
tion for the illuminance map to ensure both natural balance
and image detail preservation. This methodology can attain
good enhancement results and visual effect for low-light
pictures, especially in night scenes, but its speed is relatively
slow. The variational-based fusion model (VBFM) [11] can
achieve both global and local contrast enhancement, and the
variation-based fusion model is used to balance the results
of them. Contrast limited adaptive histogram equalization
(CLAHE) [12] limits the contrast of the image by calculat-
ing the local histogram of the image and redistributing the
brightness to change the image contrast. A preset threshold is
used to copy the histogram to limit the magnified amplitude.
The algorithm can improve the local contrast of input image
and enhance the details of the image, especially the details of
low-light images in dark areas.MultiScale Retinex (MSR) [6]
consists of three scales (small, intermediate, and large) that
achieve synchronous dynamic range compression/ color con-
sistency/ brightness reproduction. At the same time, a color
repair method is defined which produces good color repro-
duction at the expense of moderate dilution of color consis-
tency. MSR does not achieve great enhance-ment effect, and
the disadvantages are obvious that sometimes MSR incurs
serious color distortion.

Numerous multiscale signal decomposition methods have
been proposed for image enhancement, for instance, wavelet
transform [13], empirical mode decomposition (EMD) [5],
[14], [15], variational mode decomposition (VMD) [16], etc.
The wavelet transform, which has been widely employed,
is used to sparsely decompose a given signal at different
scales according to selected wavelet basis function and
decomposition scale. It captures both frequency information
and time or spatial (in terms of a two-dimensional signal)
information. The empirical mode decomposition is a self-
adaptive decomposition method which recursively decom-
poses a signal into different modes of separate spectral
bands and has been widely used for non-stationary signal
analysis. However, due to its lack of mathematical theory
and its high dependence on extremal point finding methods,
EMD suffers from several obvious limitations such as poor
noise or sampling robustness. VMD is a new non-stationary
signal processing method. It has been proved to be able to
overcome many shortcomings of EMD. It effectively decom-
poses a signal into different band-limited modes according to

different central frequencies, such that the decomposed
modes reproduce the input signal exactly or up to gaussian
noise. The decomposed modes, known as intrinsic mode
function (IMF), are defined as AM-FM signals [16], [17].
Like EMD, VMD is also an adaptive non-recursive decom-
position method and performs well for analysis of both
stationary and non-stationary signals. VMD has a solid theo-
retical background and is more robust to noise and sampling
compared with EMD. 2D-VMD [16], [18], [19] expanded
the 1D-VMD to two or more dimensions. A two-dimensional
analytical signal is introduced to design the 2D decompo-
sition model analogous to the 1D predecessor [20]. The
2D-VMD method has been widely applied in image
processing, including image dehazing [5], image
denoising [21]–[23], image enhancement [24], object detec-
tion [25], etc. 2D-TV-VMD [30] was introduced to take the
disconnection of derivatives of input 2D signal into con-
sideration. A binary support function Ak is introduced to
describe the sudden signal onset and offset, which does not
meet the smoothness of AM-FM modulation. Total varia-
tion (TV) and L1 norm of Ak are utilized to promote spatial
sparsity and the resulting optimization problem is solved
through ADMM [26].

In this paper, a novel VMD based image enhancement
methodology is proposed. First, the conversion from RGB to
HSI is conducted on the input color image and the brightness
map is taken. 2D-TV-VMD processing is then performed
on the extracted map and the reconstructed intensity map is
enhanced by LIME method. The Final step is color recovery,
which is performed in RGB color space. The proposed algo-
rithm can be applied to process many tricky low-light images.
Meanwhile, subjective and objective comparisons with other
state-of-the-art algorithms is made to verify the superiority of
our algorithms.

Compared with other methods, the conventional
Retinex-based low-light image enhancement algorithms
achieve relatively good enhancement results. However, these
methods suffer from a weakness that they cannot handle the
noise pixels and artifacts of images sufficiently. To overcome
this drawback, the proposed methodology de-compose and
reconstruct the input image utilizing 2D-TV-VMD where the
potential noises and artifacts can be adequately eliminated
with the L2 norm and the pre-defined optimization of the
threshold. Since many enhancement algorithms suffer from
the potential drawback of color distortion, a novel color
restoration method is proposed to overcome it. The local
similarities of the processed intensity map are used to restore
the color as well as to keep the smoothness of the processed
image. Such an operation not only preserves the naturalness
of the image, but also removes the potential noise and artifact
pixels.

In summary, the major contributions of this paper are
presented as follows:

1. A novel image enhancement algorithm is proposed
based on 2D-TV-VMD model which decomposes the input
image into several sub-modes.
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2. The proposed method can sufficiently eliminate the
artifact and noise pixels due to the introduction of an artifact
indicator and the filtering properties of 2D-TV-VMD.

3. A novel color restoration method is proposed to avoid
color distortion while keeping the naturalness of output
image.

4. The proposed method achieves higher NIQMC values
than most existing enhancement algorithms.

The organization of this paper is as follows. Section 2
presents a brief review on 2D-TV-VMD and LIME me-
thods. Section 3 describes the proposed image enhancement
methodology in detail. Section 4 demonstrates the experi-
mental results and the evaluations. Finally, con-clusions are
given in Section 5.

II. RELATED WORK
A. LIME METHOD
As mentioned above, LIME [9] is a low-light image enhance-
ment method based on Retinex model. Unlike multiscale
Retinex (MSR) which treats reflectivity as the ultimate
enhanced factor leading to over-enhancement [6], LIME aims
to enhance low-light images by estimating its illumination
map. The basic enhancement model [6], [27] is formulated
as follows:

L = S · T (1)

where the base layer T is a smoothly varying illumination
and can be used to constitute an illuminance map. The detail
layer S contains detail and structural information of the
image, which is the desired recovery.

LIME decomposes the image into reflectance and illumi-
nation components and speeds up the calculation only by esti-
mating the illuminance layer. By slightly transforming (1),
we can get S = L/T. The estimation of the illuminance
map T is the key to the recovery of the desired enhanced
image S. In this way, this problem of how to obtain com-
pletely the detail information of low-light images is converted
into estimating an illumination map T.
The following formula can be used to handle non-uniform

illumination:

T̂ (X)← maxL(X) (2)

where T̂ (X) represents the initial illumination map. The
LIME algorithm first constructs an illumination map by find-
ing the maximum intensity of each pixel in the R, G, and
B channels. The lighting structure is then used to refine
the lighting map and the augmented Lagrange multiplier
method [30] is applied to efficiently solve the refinement
problem.

B. 2D-TV-VMD
The 2D-TV-VMD algorithm [16], [18], [19], [29] decom-
poses an input image f into k discrete modes (sub-signals),
where k is assumed to be priori. Each mode has very limited
bandwidth around its characteristic central frequency ωk , and

the fundamental goal of the algorithm is to obtain the modes
with specific sparse properties while re-producing the input
signal f . The bandwidth of each mode in spectral domain is
used to determine its sparsity prior and is estimated through
the squared L2 norm of the gradient, or the H1 Gaussian
smoothness of the demodulated sub-signal. To deal with the
spatial compactness of the decomposed modes and capture
the sudden onset and offset of the input signal, binary sup-
port functions Ak is introduced for conditional constraint.
Total variation and L1 norm of Ak are considered to suffi-
ciently penalize the support area, i.e., to promote spatial com-
pactness or spatial sparsity of each decomposed sub-signal.
Unlike 1-D analytical signal which is generally obtained
using Hilbert transform, many definitions of n-D analytical
signal have been proposed to properly reveal the properties
of n-D analytical signal. Inspired by the unilateral-spectrum
property of 1-D analytical signal, the n-D Hilbert transform
is defined as follows to obtain a two-dimensional analytical
signal:

f̂AS : Rn
→ C

ω 7→


2f̂ (ω), if 〈ω,ωk 〉 > 0
f̂ (ω), if 〈ω,ωk 〉 = 0
0, if 〈ω,ωk 〉 < 0

(3)

where the n-D Fourier transform is defined as

f̂ (ω) := F {f (·)} (ω) = (2π )−n/2
∫
Rn
f (x)e−j〈ω,x〉dx (4)

As mentioned previously, the decomposed sub-modes are
first converted to their corresponding analytical signals,
which can be easily achieved with (3). Mathematically,
the resulting constraint problem can be formulated as:

min
uk :Rn→R,Ak :Rn→{0,1},ωk∈Rn

{

∑
k

αk

×

∥∥∥∇[uAS,k (X)e-j<ωk ,X>]∥∥∥2
2

+βk ‖Ak‖1 + γKTV (Ak )}

s.t. ∀X ∈ Rn
:

∑
k

Ak (X)uk (X) = f (X) (5)

C. COLOR RESTORATION
There are two main types of commonly used color image
decomposition methods. One is to separately decompose
image pixels on the R, G, and B channels. However, this
method results in the color information to be highly mixed
in the base layer and the detail layer, and the image color is
severely distorted. The other is to extract the intensity image
by YUV or HSI color conversion, decompose the intensity
map, and perform specific operations for the base layer and
the detail layer. Despite this method will weaken the color
edges and textures, it is much better than the first method.
In most cases, the second method is adopted. Color channels
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FIGURE 1. Flowchart of the proposed algorithm.

are usually reproduced as follows:

L̂k = (
Lk
L
)cL0 (6)

where Lk , k ∈ {R,G,B} is the color channel of the
input image, L is the intensity image, and c is the scalar
parameter [35].

III. THE PROPOSED 2D-TV-VMD BASED LOW-LIGHT
IMAGE ENHANCEMENT METHOD
The proposed method contains three parts. The input image
is first decomposed into several sub-modes to detect and
remove image artifacts. LIME method is then applied for the
low-light map enhancement. The last part is to restore the
color information and obtain the enhanced color image.
The flowchart of the proposed method is shown in Fig.1

A. IMAGE DECOMPOSITION AND ARTIFACT DETEC-TION
The 2D-TV-VMD algorithm converts the pixel matrix of a
color image into the dimension of the HSI space, i.e., the
luminance information. To eliminate the potential influence

of artifacts, an artifact indicator function is introduced,

χ : Rn
→ {0, 1} (7)

where χ (X) = 1 indicates an image artifact at X. Since there
do not exist a concise definition about artifact, an artifact is
defined as what it fails to achieve, that is, the band-limited
properties of the extracted modes. Hence a certain pixel is
defined as an artifact where the incurred data-fidelity cost is
too large. The new constraint problem can now be modified
as

min
uk :Rn→R,Ak :Rn→{0,1},ωk∈Rn

{

∑
k

αk

×

∥∥∥∇ [uAS,k (X)e-j<ωk ,X>]∥∥∥2
2

+βk ‖Ak‖1 + γKTV (Ak )+ δ ‖χ‖1}

s.t. ∀X ∈ Rn
:

∑
k

(1− χ (X))Ak (X)uk (X)

= (1− χ (X))f (X) (8)
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FIGURE 2. Test image (Monarch butterfly) for 2D-TV-VMD.

FIGURE 3. Two processed low-light pictures after color restoration. The
color information of the initial low-light images are well recovered with
our restoration method.

where the total variation is defined as

TV (Ak ) := sup
|φ|≤1

< Ak , divφ >, for φ : Rn
→ Rn

The corresponding unconstrained optimization problem is
formulated as follows:

`({uk}, {vk}, {Ak}, χ, {λk}) :

= {

∑
k

αk

∥∥∥∇[uAS,k (X)e-j<ωk ,X>]∥∥∥2
2
+βk ‖Ak‖1+γKTV (Ak )

+ δ ‖χ‖1+ρ

∥∥∥(1− χ (X))(f (X)−∑Ak (X)vk (X)
∥∥∥2
2

+

∑
k

ρk ‖uk (X)−vk (X)‖22+< λk (X), uk (X)− vk (X) >}

(9)

Fig.2 demonstrates the decomposition and reconstruction
result of 2D-TV-VMD with artifact detection. The first color
picture is the original picture, the last picture in the bottom
right is the reconstructed picture after 2D-TV-VMD process-
ing, and the middle five pictures are five modes decom-
posed by 2D-TV-VMD. The first decomposed mode, which

are often utilized as means of image smoothing or filter-
ing, captures mostly the low-frequency information of the
original image and preserves most the detail infor-mation,
while the other four decomposed modes captures the high-
frequency information, i.e. the edge of the image. Due to
the filtering and artifact detecting properties of 2D-TV-VMD,
the reconstructed intensity map looks slightly different from
the original picture.

B. LOW-LIGHT IMAGE ENHANCEMENT
A color image signal forms a three-dimensional matrix.
2D-TV-VMD merely deals with the luminance information
(a two-dimensional matrix) to obtain different mode, which
can be formulated as

L(X) =
∑
k

(1− χ (X))Ak (X)uk (X) (10)

Mathematically, Retinex model can be formulated as a
product of the restored image S and the illumination map T.
Based on (1), (7) can be rewritten as

S(X) =
L(X)

T̂ (X)+ ε
(11)

where ε is a very small constant to avoid the appearance of
the zero dominator when calculating the recovered image S
from the illumination map T. L2 norm of the difference of
the original illumination map and the estimated illumination
map are utilized to keep the overall structure, and L1 norm
of the gradient of estimated illumination map to preserve the
smoothness of textural details. The following optimization
problem can be depicted as:

min
T,G
{

∥∥∥T̂− T
∥∥∥2
2
+ α ‖W ·G‖1}, s.t.∇T = G (12)

where α is the optimization coefficient which balances L1

norm and L2 norm. W is the weight matrix, and G is an
auxiliary variable to replace ∇T. The augmented Lagrangian
equation of the above formula (10) is expressed as

ℵ(T,G,Z)=
∥∥∥T̂− T

∥∥∥2
2
+α ‖W ·G‖1+

µ

2
‖∇T−G‖22

+ < Z,∇T−G > (13)

where Z is the Lagrangian multiplier. The restored image S
is thus given as

S =

∑
k
(1− χ (X))Ak (X)uk (X)

T
(14)

C. COLOR RESTORATION VIA RATIO INFORMATION OF
COLOR CHANNELS
When an image contains both severe color distortion and
dark appearance, the visual effect of images processed in
the RGB space will be better than that in the HSV-color
space [30], [31], [37]. The artifacts and noise problems exist-
ing in low-light pictures are handled by the 2D-TV-VMD
in the luminance space of the image, which reduces the
imbalance of the R, G, and B primary colors caused by the
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FIGURE 4. Six initial low-light images for compared methods. The images are labeled as follows
from left to right: Vennes, Robot, Room, Castle, Street and Community.

RGB spatial processing, resulting in distortion of recovered
color image. In order to brighten the dark area of the image
as much as possible, in addition to magnifying the brightness
value of the image, the pixel values of the R, G, and B chan-
nels need to be adjusted separately, and the subsequent image
enhancement and color restoration need to be conducted in
the RGB space. After simply using the traditional algorithm
to perform color recovery on the enhanced intensity map, it is
found that the effect is not satisfactory. For our algorithm,
we designed a new set of color recovery algorithms. The
fundamental idea of the algorithm is to take into account the
ratio information between the R, G and B channels, and this
ratio is applied to obtain the enhanced color image. To be
specific, since the original low-light image might contain
potential color distortion, the color restoration algorithm first
uses the LIME algorithm to process the original low-light
image. The ratio between the channels is extracted from this
color image and is applied to the enhanced intensity map
to properly restore the color information. The overall color
restoration process is formulated as follows:

S0 =
∑
i

ηiSi, (i = 1, 2, 3) (15)

where S0 represents the intensity of input image directly
processed by LIME. S1, S2 and S3 represent image pixels
in the R, G and B channels respectively. The ratio between
different channels is given as

λi =
Si
S1
, (i = 1, 2, 3) (16)

Sci =
λiS0∑
i
ηiSi

, (i = 1, 2, 3) (17)

where S0 represents the intensity of input color image pro-
cessed with our model. the enhanced image pixels by our
algorithm is represented as Sci . The restored color image is
given as

Sc = =(Sc1, S
c
2, S

c
3) (18)

where = represents a function that converts three two-
dimensional matrices into a three-dimensional matrix. To fur-
ther improve the performance of our restorationmethodology,
a data-adaptive threshold is introduced to achieve greater
image naturalness while removing potential artifacts and
noise pixels to enhance lowlight images suffi-ciently. This
threshold is used to determine whether a certain pixel should
be replaced by the corresponding pixel in images processed

directly through LIME or not. Inspired by [33] and by several
window function-based techniques, the data-adaptive thresh-
old is chosen to be based on mean absolute different value
of pixels in the current window. To be specific, this pixel-
replacement strategy can be formulated as

δ =
1
N 2

∑
(xn,yn)∈�k

∣∣∣S0(xn, yn)− S0(xn, yn)∣∣∣ (19)

S0(xn, yn) =

{
S0(xn, yn), δ > δ0

S0(xn, yn), δ ≤ δ0
(20)

where�k represents aN×N window and δ0 stands for a data-
adaptive threshold. Here the threshold is chosen to be 0.05 the
average intensity value of pixels by LIME in the window.

D. PROBLEM SOLVING
The core of our model’s solution is the algorithm for
two saddle point problems. After the luminance map is
extracted for the input image, the saddle point problem of the
formula (6) is processed by the ADMM [26], and the loops,
utk , v

t
k , and ω

t
k are alternately cycled in such a manner that

the remaining variables are fixed and the other variables are
updated. The binary updated values of χ∗ will affect the
update of vtk and Atk , but will not affect the update of utk
andωtk . The obtained luminance map is subjected to low-light
image enhancement, that is, the above result is calculated
by the formula (11), which can be well processed by the
ALM [9], [26], [38]. The minimum value problem in
equation (10) is coupled with the constraint through a dual
variable µ to form an augmented Lagrangian function (11).
By optimizing alternatelyT,G,Z, the parameterµ is updated
according to the gradient and iterate to the optimal solution.
The specific implementation of the proposed methodology is
listed in Algorithm 1.

IV. EXPERIMENTS AND RESULTS ANALYSIS
In this section, the performance of our proposed metho-
dology is compared with several state-of-art methods, includ-
ing MSR, VBFM, LIME, NPEA, guided filter (GF) [34] and
rolling guidance filter (RGF) [35]. More than twenty test
images are selected and the experiment is implemented in
MATLAB with author’s support. Fig.4-Fig.5 demonstrates
the experimental results and characteristics of each method.
VBFM restrains halo effects to some extent at the cost of
loss of detail information. Besides, the output images pos-
sess relatively good visual effect, and the color information
is also preserved well. NPEA highlights details obviously,
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FIGURE 5. Image enhancement results of the compared methods. Figure 5 (a)-(f) are the enhancement results corresponding to six
low-illuminance images in Fig. 4 processed by different methods. Figure (a) LIME, (b) NPEA, (c) MSR, (d) VBFM, (e) CLAHE, (f) RGF,
(g) GF, (h) Proposed Method.

FIGURE 6. NIQMC value test results for compared methods.

but most output images look unnatural due to imbalanced
enhancement. Although CLAHE and MSR also preserve the
detail information of input images well, the enhanced images

lose their original ambience which is important to represent
the scene, and the color distortion of output images is severe
compared with other enhancement methods. Besides, many
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Algorithm 1 2D-TV-VMD Based Low-Light Image Enhancement

Input: signal f (x), number of modes K, parameters α, αk , βk , γk , ρ, ρk ,H, τ, τk , ε, the initial illumination map T̂ ∈ Rm×n.
Output: Optimal solution T∗ = T (t).
Initialize {ωk} ,

{
u0k
}
← 0,

{
v0k
}
← 0,

{
A0k
}
← 1,

{
λ0k

}
← 0, λ0 ← 0, n ← 0,T (0)

= 0 ∈ Rm×n,G(0)
= Z(0) = 0 ∈

R2 m×n, t = 0, µ(0) > 0, ρL > 1
repeat.
n← n+ 1
for k = 1→ K do

Create 2 D mask for analytic signal Fourier multiplier:
Ht+1
k ← 1+ sgn

(
< ωtk , ω >

)
Update ûAS,k :

ût+1AS,k (ω)← Ht+1
k (ω)

[
ρk v̂tk (ω)−λ̂

t
k (ω)

ρk+2αk |ω−ωt |2

]
Retrieve uk :

ut+1k (x)← R
(
F−1

{
ût+1AS,k (ω)

})
Optimal artitact indicator function X :

X ∗(x)←
{
0 ifρ

(
f (x)−

∑
Ak (x)vk (x)

)2
≤ δ

1 othersise
if X ∗(x) = 0 then

Update vk :

vt+1k (x)←
ρAtk

(
f (x)−

∑
i<k A

t
i (x)v

t+1
i (x)−

∑
i>k A

t
i (x)v

t
i (x)+

λt (x)
ρ

)
+ρkv

t+1
k (x)+λtk (x)

ρAtk (x)
2+ρk

Update Ak through moditied MBO:

A
t+ 1

3
k (x)←

Atk (x)+ H
(
−βk + 2ρvt+1k (x)

(
f (x)−

∑
i<k A

t+1
i (x)vt+1i (x)−

∑
i>k A

t
i (x)v

t
i (x)

λt (x)
ρ

))
1+ 2 Hρ

(
vt+1k (x)

)2
Â
t+ 2

3
k (w)←

Ât+1k (w)
1+ Hγk |ω|2

At+1k (x)←

0 ifA
t+ 1

3
k (x) ≤ 1

2

1 ifA
t+ 1

3
k (x) > 1

2
else
Update vk
vt+1k (x)← uk (x)+

λk (x)
ρk

Update Ak through modifide MBO:

A
t+ 1

3
k (x)←

Atk (x)+ H
(
−βk + 2ρ

(
1− X ∗(x)2vt+1k (x)

) (
f (x)−

∑
i<k A

t+1
i (x)vt+1i (x)+ λt (x)

ρ(1−X ∗(x))2
)

1+ 2 Tρ (1− X ∗(x))2
(
vt+1k (x)

)2
A
t+ 2

3
k (w)←

Ât+1k (w)
1+ Hγk |ω|2

At+1k (x)←

{
0 ifAt+3k (x) ≤ 1

2

1 ifA
t+ 2

3
k (x) > 1

2
end if
Update ωk :

ωt+1k ←

∫
R2 ω

∣∣∣ût+1AS,k (ω)
∣∣∣2dω∫

R2
∣∣∣ût+1AS,k (ω)

∣∣∣2dω
Dual ascent u-v cacpling:

λt+1k (x)← λtk (x)+ τk
(
ut+1k (x)− vt+1k (x)

)
end for
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Algorithm 1 (Continued.) 2D-TV-VMD Based Low-Light Image Enhancement
Dual ascent data fidelity:

λt+1k (x)← λtk (x)+ τ
(
f (x)−

∑
k A

t+1
k (x)vt+1k (x)

)
until convergence
while not converged do
Update T (j+1):

T (j+1)
← F−1

 F
(
2T+µ(j)DT

(
G− Z(j)

µ(j)

))
2+µ(j)

∑
d∈[h,v] F(Dd )

]
F(Dd )


Update G(j+1)

G(j+1)
← S αW

µ(j)

[
∇T (j+1)

+
Z(j)

µ(j)

]
Update Z(j+1) and µ(j+1):

Z(j+1)← Z(j) + µ(j)
(
∇T (j+1)

− G(j+1)
)

µ(j+1)
← µ(j)ρL , ρL > 1

j = j+ 1
end while

TABLE 1. NIQMC value [8] for different methods.

real-scene low-light images hide intensive noises in the dark
area. After performing LIME, the details of the scene get
enhanced, but the noises also come out, which is far from
satisfactory for practical usage. This is an inevitable problem
encountered by almost all the existing low-light enhancement
algorithms. The structure of images processed with RGF and
GF are well preserved due to the edge-preserving properties
of the two algorithms. However, these two algorithms also
loss much detail information of the input images and the
overall low-light environments are not sufficiently enhanced,
which results in some relatively low NIQMC values. Com-
paratively, the proposed algorithm achieves a good balance
between the detail enhancement and the structure preserva-
tion, and the output NIQMC values also demonstrate the
algorithm’s effective-ness. Besides, due to the noise-filtering
and artifact-detecting properties of 2D-TV-VMD, the amount
of noise and halo can be greatly reduced.

A. OBJECTIVE ASSESSMENT
Considering that there is no ‘true’ image in low-light
enhancement, the widely adopted no-reference image
quality metric for contrast distortion (NIQMC) [36] is

considered to quantitatively evaluate the performance of
aforementioned algorithms. To clearly address the difference
of NIQMC scores between these methods, the histogram is
drawn in Fig.6, while Table.1 shows the evaluate results of
NIQMC and the highest NIQMC value is highlighted in bold.
Our proposed method achieves four of the highest value out
of the six test images, indicating the effectiveness of our
method.

Fig. 7 shows the average NIQMC value of six differ-
ent images in our experiments for compare. The proposed
method achieves 5.6971, which is the highest NIQMC value
among all the compared methods and outperforms the other
methods like LIME and NPEA obviously.

B. SUBJECTIVE ASSESSMENT
A subjective evaluation [27], [32] is introduced in addi-
tion to objective NIQMC evaluation. To further evaluate
the proposed image enhancement method, we adopted the
subjective evaluation [33], which is conducted in an indoor
room with stable illuminations. In this test, the enhancement
results of 15 low-light images processed with aforementioned
six enhancement methods are shown and 20 volunteers are
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FIGURE 7. Average NIQMC value test results for compared methods.

FIGURE 8. Subjective results for compared methods.

invited to give rate for each enhanced image with a score
from 1 to 10. The mean rating of each method is shown
in Fig.8. It is obvious that LIME, VBFM and the proposed
method achieve better average rating value and our method
achieve 9.1, which is the highest of all tested methods.
Besides, MSR and CLAHE achieve relatively low scores,
which agrees with the previous analysis.

It is shown clearly from the objective and subjective results
that the proposed method achieves good results from the per-
spective of both low-light enhancement and contrast enhance-
ment in comparison with other state-of-the-art algorithms.
Besides, the subjective assessment reveals the good color-
restoration property of the proposed method, which benefits
much from the modified restoration methodology. However,
the proposed method also suffers from some drawbacks like
algorithm complexity, and the proposed algorithm does not
always achieve better enhancement results. Yet, from a global
view, the proposed method still demonstrates its superiority
over other methods.

V. CONCLUSION
In this paper, a 2D-TV-VMD based methodology has been
proposed for low-illumination color image enhance-ment,

which processes the input image while sufficiently remov-
ing artifact and noise pixels. We employed 2D-TV-VMD
algorithm to decompose and reconstruct the input image,
which converts color map to intensity map and removes halo
and noise from the input image. The reconstructed image
was then processed with the low-light enhancement method.
A modified color restoration method was applied to turn
the enhanced intensity map to color map. The experiments
demonstrated the advance of our proposed methodology in
comparison with other state-of-the-art algorithms. The pro-
posed low-light image enhancement technology can satisfy
many vision-based applications such as edge detection, fea-
ture matching, object recognition and tracking, with high
visibility outputs to improve their performance.
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