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ABSTRACT This paper studies the bipartite consensus problem of multi-agent systems with intermittent
interaction under signed directed graph. It is assumed that each agent receives its states information relative to
its neighbors at the sampling time and updates the control input by using the states information, and the period
of each agent updates control input is equal to a positive integer multiple of its sampling period. Cooperation
and competition between agents are represented by positive and negative weights of edge respectively in
the signed topology. The sufficient condition for achieving bipartite consensus is obtained by Shure-Cohen
stability criterion, which reveals the relationship among sampling period, update control input period and
controller gain of system. Finally, simulation tests show the bipartite consensus performances of agents under
intermittent protocol and signed topology.

INDEX TERMS Multi-agent systems, intermittent interaction, bipartite consensus, positive and negative
weights, Shure-Cohen stability criterion.

I. INTRODUCTION
The problems of cooperative control for multi-agent systems
have been concerned widely by researchers at home and
abroad because of its important significance both in theory
and reality. For example, the consensus [1]–[6] and controlla-
bility [7]–[16] have been widely studied for multi-agent sys-
tem. As a basic problem of cooperative control, the research
on consensus of multi-agent systems is always a hot topic.
At present, the consensus problem has been widely applied in
many fields, such as computer science and system, biology,
physics, and control science. The research direction mainly
focuses on fish swarm, bird swarm coordination, formation
control of UAV system, target tracking of sensor network, etc.

In the study of consensus problem, it is a significant and
fundamental problem to design appropriate control protocols
such that agents of multi-agent systems achieve a consensus
value with their neighbors, that is, the states of all agents
(such as speed, location) converge to a agreement value. For
the second-order multi-agent system, Liu etc first proposed
a consensus algorithm in 2017, in which different agents
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used different absolute velocity damping gains, and necessary
and sufficient conditions for system to achieve consensus
were obtained [17]. For high-order multi-agent, an adaptive
protocol with guaranteed performance constraints was pro-
posed for the first time, which not only adaptively adjusts the
weights among neighboring agents and the state errors among
all agents, but also achieves consensus [18]. When consider-
ing the problem of energy consumption under the condition of
cost budget, a dynamic output feedback consensus protocol
with guaranteed cost constraints was proposed for the first
time in [19].

Most of these studies were involved with complete con-
sensus, in which protocols drove all agents to converge to
the same consensus value. However, with the increase of
system scale and complexity, single equilibrium point can-
not meet the control requirements, so some scholars put
forward the concepts of scaled consensus, group consensus
and bipartite consensus. Scaled consensus refers to the states
of all agents which reach assigned proportions, rather than
a common value. Shang investigated the scaled consensus
of switching topologies with continuous-time and discrete-
time subsystems [20]. Group consensus means that agents
of different subnetworks achieve different consensus value.
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Under the assumptions of degree balance and inter-group
balance, group consensus problem under Markovian switch-
ing topologies and non-linear dynamics have been solved
in [21], [22], respectively. Bipartite consensus, as a special
case of scaled consensus, means that the states of all agents
converge to a consensus value with the same modulus, but
with different sign [23]–[28]. Sign graphs are often used to
represent competitive-cooperative multi-agent systems. The
conditions for achieving bipartite consensus of high-order
multi-agent systems with unknown disturbances were found
[24], [25]. On the rate of achieving consensus, Qu et al.
described how to get the fastest convergence rate under antag-
onistic interaction [26]. However, most of the existing bipar-
tite consensus results were obtained under signed digraphs of
structural balanced. Based on linear matrix inequality(LMI)
approach, Tian et al. proved that the system with structural
unbalance can achieve consensus by choosing appropriate
parameters [28].

All references mentioned above involve isomorphic multi-
agent systems with the same dynamic equation. However,
in reality, there are differences in functions and structures
among individuals due to the limitation of various factors,
which lead to different dynamic equations for each agent.
Therefore, it is necessary to study the hybrid multi-agent sys-
tem [29]–[34]. Zheng, Ma and Wang proved that the hybrid
multi-agent system can achieve the consensus if and only if
the communication network has a directed spanning tree [29].
A game-theoretic approachwas used to analyze the consensus
of hybrid multi-agent systems [30]. Under signed digraphs,
Liu et al. studied the consensus of hybrid multi-agent sys-
tems, and proved that the system has the lowest control cost
under the discovered topology structure [32]. In the recent
work [33], Shang framed a hybrid censoring strategies for
achieving consensus of hybridmulti-agent systemswithmali-
cious nodes. The strategy further resolved resilient consensus.

In a real multi-agent system, agents communicate with
each other through communication networks. Therefore,
limited channel bandwidth will bring great constraints on
multi-agent coordinate control. Considering the problem of
network resource utilization and agent’s own energy, the use
of periodic sampling control can reduce the number of
communications between agents, thus reducing the waste
of resources [35]–[41]. Consensus of first-order multi-agent
systems was considered with and without sampling delays,
respectively, and some necessary and sufficient conditions
were obtained in the case of fixed topology in [36]. Some
necessary and sufficient conditions were provided for the
second-order multi-agent system under periodic sampling
in [37]. Consensus of sampled-data driven by a hybrid event-
time for higher-order multi-agent systems was studied, and
the robustness of the hybrid driven protocol against event-
detection time delays was proved in [38]. For undirected
graphs, Gao found that when the period of the zero-order
holder is a positive integer multiple of the sampling period,
the convergence rate is faster than that in the case when
such two periods are the same [39]. In addition, Gao et al.

considered the consensus problem of multi-agent in directed
graphs under synchronous and asynchronous conditions [40].
It was proved that the consensus can be achieved when the
update time interval is small enough.

Different from [39], with each agent’s update control input
being a positive integer multiple of the sampling period,
we consider the bipartite consensus of the multi-agent system
with intermittent protocol under signed digraph. In this paper,
intermittent protocol to achieve bipartite consensus is pro-
posed. And Schur-Cohen stability criterion is introduced to
analyze the dynamic characteristics of an equivalent system.
We find out the condition range of sampling period T when
the system realizes bipartite consensus. Finally, the accuracy
of the results is verified through simulation test.

The structure of this paper is as follows: In the second
section, we introduce the concepts of graph theory and con-
vergence protocol. In the third section, the main results and
proofs are stated. In the fourth section, simulation experi-
ments are presented to illustrate the accuracy of obtained
results. In the last section, we summarize the work done in
this paper.

The following notations and concept are used in this paper.
1r,s,t,... ∈ Rn×1 represents a column vector, where the r th,
the sth and tth . . . element is -1, and the rest is 1. 1n is the
n-dimensional column vector where all elements are 1. I =
{1, 2, · · · , n} is an index set. A ∈ Rm×n is a m × n matrix.
Denote a complex number λi ∈ C, which represents the ith
eigenvalue of Laplacian matrix L. Its real part and imaginary
part are, respectively, denoted by Re (λi) and Im (λi).

II. PRELIMINARIES
A. THEORY OF GRAPH
This paper uses the signed directed graph to represent the
network topology formed among agents in a multi-agent
system. We denote the signed directed graph with n vertices
by G= (V,E,A), where V = {v1, v2, · · · , vn} is the set of
vertices, E ⊆ V × V is the set of edges, A =

(
aij
)
∈ Rn×n

is the weighted adjacency matrix of signed digraph G, where
aij 6= 0 for

(
vi, vj

)
∈ E and

(
vi, vj

)
is a directed edge of

the weighted directed graph G from vertex vj to vertex vi.
If the connection from vj to vi is cooperative, then aij > 0;
otherwise, aij < 0 if the connection from vj to vi is antago-
nistic. We assume that (vi, vi) /∈ E and hence aii = 0. In the
following discussion, we refer to G (A) as the corresponding
signed directed graph with the weighted adjacency matrix A.

A directed path P of G (A) is a series of interrelated edges
in E :

P =
{(
vi1 , vi2

)
,
(
vi2 , vi3

)
, . . . ,

(
vip−1 , vip

)}
⊆ E,

where all vertices vi1 , vi2 , · · · , vip are different. The signed
digraph G (A) is strongly connected if any two vertices in the
digraph can be connected by a directed path. The directed
graph G (A) is said to contain a directed spanning tree, if there
exists a root vertex in the directed graph G (A) so that there
exists a directed path from the root vertex to any other vertex.
For a given signed digraph G (A)with the adjacency matrix A,
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the Laplacian matrix used in this paper is L = C − A,
where C is a diagonal matrix, its diagonal elements are cii =∑

j∈Ni

∣∣aij∣∣, and define Ni as the vertex set adjacent to vi in V .
Therefore, the elements of L are

Lik =


∑
j∈Ni

∣∣aij∣∣, k = i

−aik , k 6= i.

Definition 1 (Signum Function): The notation sgn (x) rep-
resents the signum function, and it is defined as follows:

sgn (x) =


1, x > 0
0, x = 0
−1, x < 0.

Definition 2 (Structural Balance): Graph G (A) is struc-
tural balanced if and only if the vertex set V can be divided
into two non-empty sets V1 and V2, and satisfy the following
two conditions:

(1)V1 ∪ V2 = V,V1 ∩ V2 = φ;

(2) aij ≥ 0,∀vi, vj ∈ Vq (q ∈ {1, 2}) ;
aij ≤ 0,∀vi ∈ Vq, vj ∈ Vr , q 6= r (q, r ∈ {1, 2}) .

Otherwise, the structure is unbalanced.
Definitions of degree balance and inter-group balance are

given below.
Degree Balance [21]: Considering a multi-agent system

G = (V, E,A) containing N + M agents, we partition the
node set V = V1 ∪ V2 with V1 = {v1, . . . , vN } and V2 =

{vN+1, . . . , vN+M }. The two induced subnetworks of G on
V1 and V2 will be denoted by G1 and G2, respectively. For
fixed communication topology, in graph G, all nodes in one
subnetwork share the same in-degree originating from the
other subnetwork if

∑N+M
j=N+1 aij = α for all i = 1, . . . ,N ;∑N

j=1 aij = β for all i = N + 1, . . . ,N + M , where α and
β are constants. G1 is said to be in-degree balanced to G2 if
α = 0 for all i = 1, . . . ,N ;G2 is said to be in-degree balanced
to G1 if β = 0 for all i = N + 1, . . . ,N +M .
Inter-Group Balance [22]: In the weighted adjacency

matrix A of G,
∑

j∈Gk′ aij ≡ 0 for all i ∈ Gk and k 6= k ′.
Remark 1: This paper is discussed under the condition

of structural balance. An interesting research direction is
the consensus of multi-agent systems with the intermittent
interaction under the condition of degree balance or inter-
group balance.
Definition 3 (Gauge Transformation): The gauge trans-

formation is a linear transformation Dx for the state variable
x of the multi-agent system by means of the orthogonal
matrix D, where D= diag {σ1, σ2, · · · , σn}, σi ∈ {±1} and
its specific value is selected according to the need when it is
used.

DenoteD = {D= diag {σ1, σ2, · · · , σn} , σi ∈ {±1}} is the
set of all gauge transformation matrices in Rn×n. The ele-
ments of DAD are non-negative by selecting the appropriate
D ∈ D, and at the same time, the non-diagonal elements of
DLD are non-positive and the sum of rows is zero.

Lemma 1 [6]: For a given matrix B =
(
bij
)
∈ Rn×n

satisfying bii ≥ 0, bij ≤ 0, i 6= j and
∑n

j=1 bij = 0, the matrix
B has at least one zero eigenvalue and all the remaining non-
zero eigenvalues have positive real parts.
Lemma 2 [27]:
(1) L andDLD are isospectral: sp (L) = sp (DLD), in other

words, the eigenvalues are the same.
(2) If a signed digraph G (A) which has a spanning tree is

structurally balanced, then 0 is an eigenvalue of L, and
1r,s,t,... ∈ Rn×1 is the associated right eigenvectors.
Proof: If a signed digraph is structurally balanced, all of

its vertices can be divided into two parts V1, V2, V1 ∪ V2 =

V,V1 ∩ V2 = φ, and aij ≥ 0,∀vi, vj ∈ Vq (q ∈ {1, 2}); aij ≤
0,∀vi ∈ Vq, vj ∈ Vr , q 6= r (q, r ∈ {1, 2}). Firstly, we assume
that V2 only contains one vertex vr , then air ≤ 0, ari ≤
0, i ∈ I. The corresponding elements of Laplacian matrix
L satisfy lir ≥ 0, lri ≥ 0, L1r = 0. Secondly, we assume
that V2 contains two vertices vr , vs, then ar,s ≥ 0, as,r ≥ 0,
L1r,s = 0. Similarly, V2 contains more than two vertices,
L1r,s,t... = 0. So (2) holds.

B. SYSTEM MODEL
Consider a first-order system, which is as follows:

ẋi(t) = ui(t), i = 1, . . . , n, (1)

where xi (t) ∈ Rm represents the position of the ith agent at
time t , ui (t) is a control input designed based on information
acquired by the ith agent at time t . For the sake of conve-
nience, we only consider the case of m = 1.

Next, we consider the control protocol of the system:
1. In the literature [39], each agent can obtain its state

information relative to its neighbors at t=t0 + kT , k =
0, 1, . . ., with

yi(t0 + kT ) =
∑

j∈Ni
aij(xj(t0 + kT )− xi(t0 + kT )).

This paper, however, considers the bipartite consen-
sus of the first-order multi-agent system under signed
digraph. So, in this paper, we give the following
hypothesis:

yi(t0 + kT ) = −
∑

j∈Ni
|aij|(xi(t0 + kT )

− sgn(aij)xj(t0 + kT )).

2. Each agent uses information relative to its neighbors
obtained at [(k − 1)m+ 1]T , . . . , kmT to update con-
trol input u at t = kmT , k = 0, 1, . . . , time, wherem is
a positive integer and T > 0. In the following analysis,
we assume that t0 = 0 for convenience, therefore,
we consider the following control protocol:

ui(t)=a1yi((k − 1)mT + T )+ · · · + amyi(kmT ) (2)

where a1, . . . , am are the parameters to be designed,
and t ∈ [kmT , (k + 1)mT ).

Given ui (t) , i = 1, . . . , n, and any initial state xi (0)
with i, j = 1, . . . , n, system (1) asymptotically achieves the
bipartite consensus if and only if lim

t→∞

(
|xi (t)| −

∣∣xj (t)∣∣) = 0.
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III. CONSENSUS ANALYSIS
Integrating the two sides of system (1) and using the protocol
(2), the following formula holds:

xi(kmT + T ) = xi(kmT )+ Tui(kmT )
xi(kmT + 2T ) = xi(kmT )+ 2Tui(kmT )

...

xi((k + 1)mT ) = xi(kmT )+ mTui(kmT )

Let ξi(k) = [xi((k − 1)mT + T ), . . . , xi(kmT )]T , ξ (k) =[
ξ1(k)T , . . . , ξn(k)T

]T
, we derive

ξi(k + 1) = Bξi (k)− T (Li ⊗ C)ξ (k), k = 0, 1, . . .

where

B =


0 · · · 0 1
0 · · · 0 1
...

...
...

...

0 · · · 0 1

,

C =


a1 · · · am−1 am
2a1 · · · 2am−1 2am
...

...
...

...

ma1 · · · mam−1 mam

,
and Li is the ith row of Laplacian matrix L, B ∈ Rm×m,
C ∈ Rm×m. Hence

ξ (k + 1) = (In ⊗ B− T (L ⊗ C)) ξ (k), k = 0, 1, . . . (3)

Let D= diag {σ1, σ2, · · · , σn}, where σr , σs, σt , . . . is -1,
and the rest is 1, H = D⊗ Im, making gauge transformation
ξ̃ = Hξ for ξ , system (3) can be written as follows:

ξ̃ (k + 1) = (In ⊗ B− T (DLD⊗ C)) ξ̃ (k), k = 0, 1, . . .

(4)

Remark 2: For a strongly connected digraph G (A) which
is structurally balanced, denote Â=A+AT

2 , so that the undi-

rected graph G
(
Â
)
is the induced-graph of the digraph G (A).

L̂ of an undirected graph G
(
Â
)
is diagonalizable, so L of

a directed graph G (A) is also diagonalizable. Hence, for
matrix L of strongly connected, structurally balanced signed
digraph G (A), there exists an invertible matrix P, in which
the first column is listed as 1r,s,t,..., such that P−1LP =
diag {0, λ2, . . . , λn}, where λi = Re (λi)+ Im (λi) .
Compared with results in [39], differences lie in the pos-

itive and negative elements of the first column of matrix U ,
in which all the elements of the first column in [39] are 1.

However, for matrix LD = DLD, there exists an invertible
matrix U , in which the first column is listed as 1n, such that
U−1LDU = diag {0, λ2, . . . , λn}, where λi = Re (λi) +
Im (λi) .

That system (1) asymptotically achieves bipartite consen-
sus means lim

k→∞

(
|ξi(k)| −

∣∣ξj(k)∣∣) = 0. As can be seen from

the gauge transformation, lim
k→∞

(
|ξi(k)| −

∣∣ξj(k)∣∣) = 0 is

equivalent to lim
k→∞

(
ξ̃i(k)− ξ̃j(k)

)
= 0. So, the following

Lemma 3 holds.
Lemma 3: System (1) asymptotically achieves bipartite

consensus under the protocol (2) if and only if consensus is
asymptotically achieved for system (4).
Theorem 1: The consensus is asymptotically achieved for

system (4) if and only if B − λiTC, i = 2, . . . , n are Schur
stable.

Proof: That system (1) asymptotically achieves bipar-
tite consensus is equivalent to lim

t→∞

(
|xi(t)| −

∣∣xj(t)∣∣) = 0.

We known from Lemma 3 that lim
t→∞

(
|xi(t)| −

∣∣xj(t)∣∣) = 0

holds if and only if lim
k→∞

(
ξ̃i (k)− ξ̃j (k)

)
= 0. Therefore,

the following aim is to prove that lim
k→∞

(
ξ̃i (k)− ξ̃j (k)

)
= 0

holds if and only if B− λiTC, i = 2, . . . , n, are Schur stable.
Sufficiency: Prove that if B−λiTC, i = 2, . . . , n are Schur

stable, then lim
k→∞

(
ξ̃i (k)− ξ̃j (k)

)
= 0, i = 2, . . . , n.

Denote U = [1n,U1] , and

δ (k) =
[
δ1(k)T , δ̃(k)T

]T
=

[
δ1 (k)
δ̃ (k)

]
=

(
U−1 ⊗ Im

)
ξ̃ (k), (5)

where δ1 (k) ∈ Rm×1,U1 ∈ Rn×(n−1).We obtain fromEq. (5)
that

ξ̃ (k) = (U ⊗ Im) δ (k)

= [(1n,U1)⊗ Im]
[
δ1 (k)
δ̃ (k)

]
= 1n ⊗ δ1 (k)+ (U1 ⊗ Im) δ̃ (k). (6)

By Eq. (5), we derive that

δ (k+1) =
[
δ1 (k + 1)
δ̃ (k + 1)

]
=

(
U−1 ⊗ Im

)
ξ̃ (k + 1). (7)

Combining Eq. (4) with Eq. (7), we derive that

δ (k+1)

=

(
U−1 ⊗ Im

)
(In ⊗ B− T (LD ⊗ C)) (U ⊗ Im) δ (k)

=

((
U−1 ⊗ B

)
− T

(
U−1LD ⊗ C

))
(U ⊗ Im) δ (k)

=

(
In ⊗ B− T

(
U−1LDU ⊗ C

))
δ (k). (8)

Noting that

U−1LDU =


0

λ2
. . .

λn

,
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so Eq. (8) is equal to

δ (k+1)

=

[
δ1 (k + 1)
δ̃ (k + 1)

]

=



B

B
. . .

B

−T

0

λ2C
. . .

λnC




×

[
δ1 (k)
δ̃ (k)

]
,

i.e.{
δ1 (k + 1) = Bδ1 (k)
δ̃ (k + 1) = diag {B− Tλ2C, . . . ,B− TλnC} δ̃ (k) .

Hence, if B − λiTC, i = 2, . . . , n are Schur stable, then
limk→∞δ̃ (k) = 0, and Eq. (6) is equivalent to

ξ̃ (k) = 1n ⊗ δ1 (k),

i.e.

lim
k→∞

(
ξ̃i (k)− ξ̃j (k)

)
= 0, i = 2, . . . , n.

Necessary: Prove that if lim
k→∞

(
ξ̃i (k)− ξ̃j (k)

)
= 0, i =

2, . . . , n, then B− λiTC, i = 2, . . . , n are Schur stable.
Denote U−1 =

(
u2,U2

T )T , where U2 ∈ R(n−1)×n. It fol-
lows from U−1U = In that[

u2T

U2

]
[1n,U1] =

[
u2T 1n u2TU1
U21n U2U1

]
= In,

we have

u2T 1n = 1, U21n = 0. (9)

Since lim
k→∞

(
ξ̃i (k)− ξ̃j (k)

)
= 0, i, j = 1, . . . , n, there exists

φ (k) ∈ Rm×1 such that lim
k→∞

(
ξ̃i (k)− φ (k)

)
= 0, i =

1, . . . , n.
Combining Eq. (9) with δ (k)−

(
U−1 ⊗ Im

)
(1n ⊗ φ (k)),

we have

δ (k)−
(
U−1 ⊗ Im

)
(1n ⊗ φ (k))

= δ (k)−
(
U−11n ⊗ φk

)
= δ (k)−

[
u2T 1n
U21n

]
⊗ φ (k)

= δ (k)−
[
1
0

]
⊗ φ (k)

=

[
δ1 (k)− φ (k)
δ̃ (k)

]
. (10)

Combining Eq. (5) with δ (k)−
(
U−1 ⊗ Im

)
(1n ⊗ φ (k)), we

have

δ (k)−
(
U−1 ⊗ Im

)
(1n ⊗ φ (k))

=

(
U−1 ⊗ Im

) (
ξ̃ (k)− 1n ⊗ φ (k)

)
=

[
u2T ⊗ Im
U2 ⊗ Im

] (
ξ̃ (k)− 1n ⊗ φ (k)

)
. (11)

Combining Eq. (10) with Eq. (11), we obtain lim
k→∞

δ̃ (k) =

(U2 ⊗ Im) lim
k→∞

(
ξ̃ (k)− 1n ⊗ φ (k)

)
. Because

lim
k→∞

(
ξ̃i (k)− φ (k)

)
= 0, i = 1, . . . , n

so lim
k→∞

δ̃ (k) = (U2 ⊗ Im) lim
k→∞

(
ξ̃ (k)− 1n ⊗ φ (k)

)
= 0,

which means that system

δ̃ (k + 1) = diag {B− λ2TC, . . . ,B− λnTC} δ̃ (k),

k = 0, 1, . . . is asymptotically stable, namely B − λiTC,
i = 2, . . . , n are all Schur stable.
Therefore, the consensus is asymptotically achieved for

system (4) if and only if B − λiTC, i = 2, . . . , n are Schur
stable.
Remark 3: Amatrix is schur stable if all of its eigenvalues

lie inside the unit disk centered at the origin.
Remark 4 (Schur-Cohen Stability Criterion): The charac-

teristic equation of linear discrete system is

D (s) = ansn + an−1sn−1 + · · · + a1s+ a0 = 0

The number of closed-loop characteristic roots in the unit
disk is equal to the number of symbolic changes of sequence
{1,11,12, · · · ,1n}. The necessary and sufficient condition
for the stability of discrete systems is that the sign of sequence
{1,11,12, · · · ,1n} changes n times, which is equivalent to
the following formula:{

1j < 0, j = 1, 3, 5, · · ·
1j > 0, j = 2, 4, 6, · · ·

Define determinant 1j as follows:

1j

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 · · · 0 an an−1 · · · an−j+1
a1 a0 · · · 0 0 an · · · an−j+2
...

...
. . .

...
...

...
. . .

...

aj−1 aj−2 · · · a0 0 0 · · · an
ān 0 · · · 0 ā0 ā1 · · · āj−1
ān−1 ān · · · 0 0 ā0 · · · āj−2
...

...
. . .

...
...

...
. . .

...

ān−j+1 ān−j+2 · · · ān 0 0 · · · ā0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2j×2j

where ā is the conjugate complex of a.
Theorem 2: Under the assumption of strong connectivity,

if signed digraph G (A) is structurally balanced, the multi-
agent system (1) with protocol (2) achieves bipartite consen-
sus asymptotically with

m∑
j=1

maj =
m∑
j=1

jaj > 0,

0 < T < min
i=2,3,...,n

 2Re (λi)

|λi|
2
( m∑
j=1

maj
)
 (12)
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Di =


− (βi1 + jβi2) a1 · · · − (βi1 + jβi2) am−1 1− (βi1 + jβi2) am
− (βi1 + jβi2) 2a1 · · · − (βi1 + jβi2) 2am−1 1− (βi1 + jβi2) 2am

...
...

...
...

− (βi1 + jβi2)ma1 · · · − (βi1 + jβi2)mam−1 1− (βi1 + jβi2)mam



Di→


− (βi1 + jβi2) a1 · · · − (βi1 + jβi2) am−1 1− (βi1 + jβi2) am

0 · · · 0 −1
...

...
...

...

0 · · · 0 0



or
m∑
j=1

maj = 2
m∑
j=1

jaj > 0,

0 < T < min
i=2,3,...,n

(
min

i=2,3,...,n

( 2 (|λi|−| Im(λi)|)

|λi|Re (λi)
( m∑
j=1

maj
)),

×
2

max |λi|
( m∑
j=1

maj
)
)
, (13)

where λi is the eigenvalue of matrix L which needs to be
calculated in advance.

Proof: Let Di = B − λiTC, i = 2, . . . , n, where λi =
pi + jqi, βi1 = piT , βi2 = qiT , then Di = B− βi1C − jβi2C ,
and matrix Di can be expanded to the following form, Di, as
shown at the top of this page.

Through elementary row transformations, Di can be writ-
ten as the following matrix, Di, as shown at the top of this
page. Therefore, the characteristic polynomial of Di is

sm + βi,m−1sm−1 + βi,m−2sm−2 = 0,

where

βi,m−1 = (βi1 + jβi2) (a1 + 2a2 + · · · + mam)− 1,

βi,m−2 = (βi1 + jβi2)
[
(m− 1) a1 + (m− 2) a2 + · · ·

+ am−1
]
.

Now, the key point is to find the condition that all the eigen-
values of matrix Di are in the unit disk centered at the origin,
which is the same objective as finding the condition that all
the eigenvalues of matrix Hi are in the unit disk, where the
characteristic polynomial of Hi is s2+βi,m−1s+βi,m−2 = 0.
By Schur-Cohen stability criterion, s2+βi,m−1s+βi,m−2 = 0
is Schur stable if and only if

11 =

∣∣∣∣ βi,m−2 1
1 β̄i,m−2

∣∣∣∣ < 0,

12 =

∣∣∣∣∣∣∣∣
βi,m−2 0 1 βi,m−1
βi,m−1 βi,m−2 0 1

1 0 β̄i,m−2 β̄i,m−1
β̄i,m−1 1 0 β̄i,m−2

∣∣∣∣∣∣∣∣ > 0.

By 11 < 0, the following formula holds:

(
β2i1 + β

2
i2

) m∑
j=1

(m− j) aj

2

− 1 < 0.

Hence, the effective range of T is

0 < T <
1

max |λi|

∣∣∣∣∣ m∑j=1 (m− j) aj
∣∣∣∣∣

(14)

By 12 > 0, 12=
(
c2 + d2

)2
−
(
2+ a2 + b2

) (
c2 + d2

)
+

1 −
(
a2 + b2

)
+ 2c

(
a2 − b2

)
+ 4abd > 0, where a =

Re
(
βi,m−1

)
, b = Im

(
βi,m−1

)
, c = Re

(
βi,m−2

)
, d =

Im
(
βi,m−2

)
.(

c2 + d2
)2

=

(
T 2
|λi|

2
( m∑
j=1

maj −
m∑
j=1

jaj
)2)2

= T 4
|λi|

4
(( m∑

j=1

maj
)2
− 2

m∑
j=1

maj
m∑
j=1

jaj +
( m∑
j=1

jaj
)2)2

= T 4
|λi|

4
(( m∑

j=1

maj
)4
+

( m∑
j=1

jaj
)4

+ 6
( m∑
j=1

maj
)2( m∑

j=1

jaj
)2
− 4

( m∑
j=1

maj
)3 m∑

j=1

jaj

− 4
( m∑
j=1

jaj
)3 m∑

j=1

maj
)
;

−

(
2+ a2 + b2

)(
c2 + d2

)
= −

(
T 2
|λi|

2
( m∑
j=1

jaj
)2
− 2βi1

m∑
j=1

jaj + 3
)

×

(
T 2
|λi|

2
( m∑
j=1

maj −
m∑
j=1

jaj
)2)
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= −

(
T 2
|λi|

2
( m∑
j=1

jaj
)2
− 2βi1

m∑
j=1

jaj + 3
)(
T 2
|λi|

2
)

×

(( m∑
j=1

maj
)2
+

( m∑
j=1

jaj
)2
− 2

m∑
j=1

maj
m∑
j=1

jaj
)
;

2c
(
a2 − b2

)
=

(
2βi1

m∑
j=1

maj − 2βi1
m∑
j=1

jaj
)(
β2i1

( m∑
j=1

jaj
)2

−β2i2

( m∑
j=1

jaj
)2
− 2βi1

m∑
j=1

jaj + 1
)

= 2β3i1

m∑
j=1

maj
( m∑
j=1

jaj
)2
− 2βi1β2i2

m∑
j=1

maj
( m∑
j=1

jaj
)2

− 4β2i1

m∑
j=1

jaj
m∑
j=1

maj + 2βi1
m∑
j=1

maj − 2β3i1
( m∑
j=1

jaj
)3

+ 2βi1β2i2
( m∑
j=1

jaj
)3
+ 4β2i1

( m∑
j=1

jaj
)2
− 2βi1

m∑
j=1

jaj;

4abd

= 4
(
βi1

m∑
j=1

jaj − 1
)
β2i2

m∑
j=1

jaj
( m∑
j=1

maj −
m∑
j=1

jaj
)

= 4βi1β2i2
( m∑
j=1

jaj
)2 m∑

j=1

maj − 4β2i2

m∑
j=1

jaj
m∑
j=1

maj

− 4βi1β2i2
( m∑
j=1

jaj
)3
+ 4β2i2

( m∑
j=1

jaj
)2
;

2c
(
a2 − b2

)
+ 4abd

= 2T 2
|λi|

2βi1

m∑
j=1

maj
( m∑
j=1

jaj
)2

− 4T 2
|λi|

2
m∑
j=1

jaj
m∑
j=1

maj − 2T 2
|λi|

2βi1

( m∑
j=1

jaj
)3

+ 4T 2
|λi|

2
( m∑
j=1

jaj
)2
+ 2βi1

m∑
j=1

maj − 2βi1
m∑
j=1

jaj;

−

(
a2 + b2

)
= −

((
βi1

m∑
j=1

jaj − 1
)2
+

(
βi2

m∑
j=1

jaj
)2)

= −

(
T 2
|λi|

2
( m∑
j=1

jaj
)2
− 2βi1

m∑
j=1

jaj + 1
)
;

Then

12 = T 4
|λi|

4
(( m∑

j=1

maj
)4
+5
( m∑
j=1

maj
)2( m∑

j=1

jaj
)2

− 4
( m∑
j=1

maj
)3( m∑

j=1

jaj
)
− 2

( m∑
j=1

maj
)

×

( m∑
j=1

jaj
)3)
+ T 2
|λi|

2
(
2βi1

( m∑
j=1

maj
)2

×

( m∑
j=1

jaj
)
− 3

( m∑
j=1

maj
)2
− 2βi1

( m∑
j=1

maj
)

×

( m∑
j=1

jaj
)2
+ 2

( m∑
j=1

maj
)( m∑

j=1

jaj
))

+ 2βi1
( m∑
j=1

maj
)

= T 4
|λi|

4
(( m∑

j=1

maj
)2
− 2

( m∑
j=1

maj
)( m∑

j=1

jaj
))

×

( m∑
j=1

(
m− j

)
aj
)2
+ 2T 2

|λi|
2
( m∑
j=1

maj
)

×

(
βi1

( m∑
j=1

jaj
)
− 1

)( m∑
j=1

(
m− j

)
aj
)

−T 2
|λi|

2
( m∑
j=1

maj
)2
+ 2βi1

( m∑
j=1

maj
)
;

Simplifying the above formula, we obtain

12 = |λi|
4
(( m∑

j=1

maj
)2
− 2

( m∑
j=1

maj
)( m∑

j=1

jaj
))

×

( m∑
j=1

(
m− j

)
aj
)2
T 4
+ 2|λi|2Re (λi)

( m∑
j=1

maj
)

×

( m∑
j=1

jaj
)( m∑

j=1

(
m− j

)
aj
)
T 3

− |λi|
2
(
3
( m∑
j=1

maj
)2
− 2

( m∑
j=1

maj
)( m∑

j=1

jaj
))
T 2

+ 2Re (λi)
( m∑
j=1

maj
)
T ;

For the convenience of calculation, we consider two cases:∑m
j=1 maj =

∑m
j=1 jaj and

∑m
j=1 maj = 2

∑m
j=1 jaj.

(a) if
∑m

j=1 maj =
∑m

j=1 jaj, then

12=− |λi|
2
( m∑
j=1

maj
)2
T 2
+ 2Re (λi)

( m∑
j=1

maj
)
T .

Since 4Re(λ)2
(∑m

j=1 maj
)2

> 0, let 12 = 0, then

T1 = 0, T2 =
2Re(λi)

|λi|
2
(∑m

j=1 maj

) holds. We consider the

following two cases:
(i) if

∑m
j=1 maj =

∑m
j=1 jaj > 0,11 < 0 holds, then

by 12 > 0, the range of T is

0 < T < min
i=2,3,...,n

 2Re (λi)

|λi|
2
(∑m

j=1 maj
)
,

which means that (12) holds.
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(ii) if
∑m

j=1 maj =
∑m

j=1 jaj < 0,11 < 0 holds, then
by 12 > 0, the range of T is

max
i=2,3,...,n

 2Re (λi)

|λi|
2
( m∑
j=1

maj
)
 < T < 0.

In this case, the conditions are not satisfied.
(b) if

∑m
j=1 maj = 2

∑m
j=1 jaj, then

12=
1
2
|λi|

2Re (λi)
( m∑
j=1

maj
)3
T 3

− 2|λi|2
( m∑
j=1

maj
)2
T 2
+2Re (λi)

( m∑
j=1

maj
)
T

is a cubic equation of one variable. Let 12 = 0, then
T1 = 0, T2,3 =

2(|λi|±|Im(λi)|)

|λi|Re(λi)

(
m∑
j=1

maj

) . We consider the

following two cases:
(i) if

∑m
j=1 maj = 2

∑m
j=1 jaj > 0, then by 12 > 0,

the range of T is

0 < T < min
i=2,3,...,n

 2 (|λi| − |Im (λi)|)

|λi|Re (λi)
( m∑
j=1

maj
)
,

T > max
i=2,3,...,n

 2 (|λi| + |Im (λi)|)

|λi|Re (λi)
( m∑
j=1

maj
)


Comparing T with that in formula (14) and taking
the common part of T , we get

0 < T < min
i=2,3,...,n

×

(
min

i=2,3,...,n

( 2 (|λi| − | Im(λi)|)

|λi|Re (λi)
( m∑
j=1

maj
)),

×
2

max |λi|
( m∑
j=1

maj
)
)
,

hence (13) holds.
(ii) if

∑m
j=1 maj = 2

∑m
j=1 jaj < 0, then by 12 > 0,

the range of T is

T < min
i=2,3,...,n

 2 (|λi| + |Im (λi)|)

|λi|Re (λi)
( m∑
j=1

maj
)
 ,

max
i=2,3,...,n

 2 (|λi| − |Im (λi)|)

|λi|Re (λi)
( m∑
j=1

maj
)
 < T < 0.

In this case, the conditions are not satisfied.

By Lemma 3 and Schur-Cohen stability criterion, system
(1) asymptotically achieves bipartite consensus under the
protocol (2) if and only if (12) and (13) hold.

Now our task is to design a1, . . . am to ensure
∑m

j=1 aj > 0,
and select T to satisfy (12) and (13). In the following analysis,
we assume that ai > 0.
Theorem 3: Under the assumption of strong connectivity,

if signed digraph G (A) is structurally balanced, the multi-
agent system (1) with protocol (2) can achieve bipartite
consensus. Moreover, if

∑m
j=1 maj =

∑m
j=1 jaj > 0,m =

1, a1 > 0, we take the range of sampling period as

0 < T < min
i=2,3,...,n

(
2Re (λi)

|λi|
2a1

)
,

or
if
∑m

j=1 maj = 2
∑m

j=1 jaj > 0, m ≥ 3, aj > 0
(j = 1, 2, . . .m), we take the range of sampling period as

0 < T < min
i=2,3,...,n

(
min

i=2,3,...,n

( 2 (|λi| − | Im(λi)|)

|λi|Re (λi)
( m∑
j=1

maj
)),

2

max |λi|
( m∑
j=1

maj
)
)
,

then the bipartite consensus can be achieved.
Proof: In the case of

∑m
j=1 maj =

∑m
j=1 jaj > 0,

this is equivalent to m (a1 + a2 + . . .+ am) = a1 + 2a2 +
. . . + mam > 0, i.e. (m− 1) a1 + (m− 2) a2 + . . . +

(m− (m− 1)) am−1 = 0. Since ai > 0, only m = 1 satisfies
the situation. At this point,

12= −|λi|
2a12T 2

+ 2Re (λ) a1T .

The range of T from 12 > 0 is

0 < T < min
i=2,3,...,n

(
2Re (λi)

|λi|
2a1

)
.

In the case of
∑m

j=1 maj = 2
∑m

j=1 jaj > 0, this is equiva-
lent tom (a1 + a2 + . . .+ am) = 2a1+4a2+. . .+2mam > 0,
i.e. (m− 2) a1 + (m− 4) a2 + . . . + (m− 2m) am = 0,
where (m− 2) > (m− 4) > . . . > (m− 2m). Because
aj > 0 (j = 1, 2, . . .m), so (m− 2) > 0, m ≥ 3. At this
point,

12 =
1
2
|λi|

2Re (λi)
( m∑
j=1

maj
)3
T 3
− 2|λi|2

( m∑
j=1

maj
)2

×T 2
+ 2Re (λi)

( m∑
j=1

maj
)
T .

By 12 > 0, the range of T is

0 < T < min
i=2,3,...,n

 2 (|λi| − |Im (λi)|)

|λi|Re (λi)
( m∑
j=1

maj
)
,
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T > max
i=2,3,...,n

 2 (|λi| + |Im (λi)|)

|λi|Re (λi)
( m∑
j=1

maj
)
.

Comparing with T in formula (14) and taking the common
part of T to get

0 < T < min
i=2,3,...,n

(
min

i=2,3,...,n

( 2 (|λi| − | Im(λi)|)

|λi|Re (λi)
( m∑
j=1

maj
)),

2

max |λi|
( m∑
j=1

maj
)
)
.

Theorem 15 shows that system (1) asymptotically achieves
bipartite consensus if

∑m
j=1 maj =

∑m
j=1 jaj > 0 and m =

1 or
∑m

j=1 maj = 2
∑m

j=1 jaj > 0 and m ≥ 3.

FIGURE 1. Communication topology.

FIGURE 2. The positions of each agents of (1) using (2) when
T = 0.05, m = 1.

IV. SIMULATIONS
Let us consider five agents. The interaction topology is shown
in Figure 1 below. The cooperative relationship among agents
is represented by solid lines between vertices, and the cor-
responding weight is 1. The competition relationship among
agents is represented by dotted lines between vertices, and

FIGURE 3. The positions of each agents of (1) using (2) when
T = 0.1, m = 1.

FIGURE 4. The positions of each agents of (1) using (2) when
T = 0.2, m = 1.

FIGURE 5. The positions of each agents of (1) using (2) when
T = 0.3, m = 1.

the corresponding weight is -1. Let a1 = 4, a2 = 1, a3 = 1,
initial states x (0) =

[
1 2.2 3 3.8 5

]T .
From Theorem 3, system (1) asymptotically achieves

bipartite consensus if m = 1, T < 0.25 or m = 3,
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FIGURE 6. The positions of each agents of (1) using (2) when
T = 0.35, m = 1.

FIGURE 7. The positions of each agents of (1) using (2) when
T = 0.005, m = 3.

FIGURE 8. The positions of each agents of (1) using (2) when
T = 0.01, m = 3.

T < 0.0325. Figure 2 to Figure 6 show, respectively, the state
trajectories of the five agents when T varies from 0.05 to
0.35 with m = 1. Obviously, the multi-agent system can
achieve bipartite consensus in the case of T < 0.25, while
in the case of T > 0.25, the system cannot achieve bipartite
consensus. Figures 7 to Figure 11 show, respectively, the state

FIGURE 9. The positions of each agents of (1) using (2) when
T = 0.02, m = 3.

FIGURE 10. The positions of each agents of (1) using (2) when
T = 0.04, m = 3.

FIGURE 11. The positions of each agents of (1) using (2) when
T = 0.05, m = 3.

trajectories of the five agents when T varies from 0.005 to
0.05 with m = 3. In the case of T < 0.0325, the multi-agent
system can achieve bipartite consensus, while in the case of
T > 0.0325, the system cannot achieve bipartite consensus,
which validates the accuracy of Theorem 3.
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V. CONCLUSION
In this paper, the bipartite consensus problem of the first-
order multi-agent system with intermittent interaction under
the signed digraph in continuous-time has been studied. It is
assumed that each agent can only obtain states information
related to its neighbor at the sampling time, and the sampling
period is different from the period of updating control input.
Analysing the characteristic polynomials of the equivalent
system by Schur-Cohen stability criterion and matrix theory,
the sufficient conditions for the bipartite consensus of the
system are obtained. The correctness of the conclusion is
verified by simulation experiments. It is shown that when the
period of the agent’s update control input is a positive integer
multiple of the sampling period, the smaller the sampling
period is, the faster the convergence rate is.

In addition to solving the necessary and sufficient con-
ditions for multi-agent systems to achieve bipartite con-
sensus under signed directed graphs, the research direction
in the future includes considering the consensus of multi-
agent systemwith intermittent protocol under degree balance,
inter-group balance, structural unbalance or designing new
consensus protocol with time-varying delays.
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