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ABSTRACT There is an inherent need to track and catalog space debris (objects) in geosynchronous earth
orbits (GEO) based on space-based surveillance networks and a large amount of observation data. However,
for objects in GEO, angle-only measurements containing noises have been regarded as difficult for short-
arc orbit determination (OD) when pursuing high accuracy. In this paper, from a data-driven perspective,
we propose a novel method for space-based OD based on distribution regression (DR), which is called
the weighting distribution-regression OD (WDR-OD) method. The OD is treated as a regression process,
which is learned from abundant observation data and the corresponding orbits of known objects. First,
we propose the structure of space-based OD samples, wherein the feature variables with a weighting
matrix are introduced to enhance prediction accuracy. Second, a two-stage sampled learning theory is
employed to learn the mapping from measurements to objects’ orbit through kernel mean embedding.
The proposed method is experimentally compared with the improved Laplace method and shows greater
robustness in measurements with white Gaussian noise (WGN) and colored noise. The positional RMSE
reaches 0.8793 km with WGN and 1.6972 km with colored noise, which are significantly smaller than the
corresponding Laplace method’s 5.0804 km and 14.8132 km. Furthermore, we propose a RIP-based ROMP
algorithm to provide the theoretical bound of sparsity and then to pursue a sparse solution. Although the
positional RMSE increases to 1.6554 km in the sparse method, it shrinks the 90% to 93% nonzero elements
of the coefficients matrix to zero, which is helpful in reducing the computing load, and it meaningfully
extends the application domain of the WDR-OD method.

INDEX TERMS Space situation awareness, orbit determination, machine learning, distribution regression,
kernel mean embedding, sparse representation.

I. INTRODUCTION
For the purposes of space debris avoidance and due to the
requirements of space situation awareness (SSA), scientific
explorations, missions, etc., there is an inherent need to track
and catalog space objects, especially space debris in the
increasingly crowded belt of geosynchronous (GEO) orbits.
Compared with ground-based space surveillance systems,
space-based space surveillance (SBSS) systems perform
with more flexible observation conditions, better observa-
tion geometry and a large amount of observation data. Orbit
determination (OD) is a nonlinear problem that estimates
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the orbital elements from observations in one or more seg-
ments of the trajectory with Newton’s laws and perturbations.
Star sensors mounted on satellites can be utilized to per-
form OD [1] through angular measurements (right ascension
and declination) of the large number of captured objects.
Since these observations are ‘‘unintentional’’, there will be
a mass of short-arc measurements swarming into the data
processing center. However, for objects in GEO, classical
initial orbit determination (IOD) methods (e.g., Laplace [1]
and Gooding [2]) have been regarded as problematic for
evaluating hundreds of meters or pursuing higher accuracy
in short-arc (no more than 18 minutes in this paper) OD
with angle-only measurements that are polluted with noise
(noise of 1-3 seconds of arc). The results of these methods are
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sensitive to noise and can easily converge to trivial solutions.
An idiomatic method is to hypothesize the form of noise [3],
but it is hard to conjecture it precisely in practice. Most preci-
sion orbit determination (POD) methods, such as the Kalman
filter, rely on a prior initial state and dense observations of an
arc period over a long time span.

Before reviewing the existing techniques in the literature,
let us start with an exposition of the core idea of this paper.
We solve the OD problem without establishing the dynamical
and geometrical model used in classical ODmethods; instead,
from a data-driven perspective, we treat it as a regression
problem, taking measurements as the input values and taking
the object’s orbit as the output values. Thus, in this way,
the framework of the distribution regression (DR) technique
from machine learning (ML) can be adopted. In a stan-
dard regression process, we need to predict a real-valued
response variable Y from a vector valued feature variable
X ∈ Rd . Recently, there has been interest in extending the
standard regression from finite dimensional Euclidean spaces
to functional spaces. DR is a typical representation of that
and focuses on the regression from a probability measure P
to real-valued responses. DR differs from standard regres-
sion in two crucial ways. First, P ∈ Rk is a probability
measure instead of a determinate value in X corresponding
to Y . Second, practically, we cannot observe the probability
measure P directly; instead, we observe the samples from P
with an unknown probability measure. Similarly, the orbit of
a space object is estimated through the angle-only measure-
ments derived from one or multiple sensors over a period of
time. Position vectors of observers and their angular measure-
ments together constitute the observations. There are multiple
combinations of observing sensors in space over one object,
but different sensors measuring the same object must output
the same orbital elements at a given moment. Thus, the con-
version of these observations to orbital elements constitutes a
many-to-one relationship. The observations can be regarded
as being sampled from an unknown distribution P, and in
this way, this approach provides a novel method to estimate
the orbit of an object through DR. In this paper, we propose
a weighting distribution-regression OD (WDR-OD) method
for the space-based OD problem.

II. RELATED WORK
In this section, according to the proposed framework,
we briefly review the related work in terms of OD and dis-
tribution regression.

A. ORBIT DETERMINATION
OD is an old problem with hundreds of years of his-
tory that existed throughout the development of astronomy.
G. F. Gronchi [4] proposed an OD method for modern aster-
oid surveys using several different short arcs collected in dif-
ferent nights, based on the first integrals of Kepler’s motion.
However, in satellite OD problem, many differences from
astronomy exist. OD can be divided into IOD and POD.Much
literature is devoted to improving the classical ODmethods to

fit different missions [5], to compute with high accuracy [2],
to solve the problem with shorter angle-only observation
arc [6], [7], to consume less time [8], and so on. However,
in practice, with its weak observation geometry, which is
different from that of low earth orbit (LEO), the results
of objects in GEO can easily converge to trivial solutions.
In short-arc IOD, especially for the angle-only problem,
many of the state-of-the-art methods show low robustness
to noise. Meanwhile, short-arc and fragmentary observations
make it difficult to perform POD through a Kalman filter.
In [9], F. M. Fadrique compared three different IOD algo-
rithms: Gauss, Baker-Jacoby and Gooding algorithm to illus-
trate their different performances on wide variety of orbital
scenarios. In recent years, D. P. Lubey et al. [10] proposed
a new IOD method based on Polynomial Chaos algorithm
without an initial guess of the object’s state. Instead, users
need to provide bounds on the size of the object’s possi-
ble orbit and some parameters. Additionally, [11] generally
introduced the development and contributions of the first
Space-Based Visible (SBV) program. T. Flohrer et al. [12]
discussed the surveillance performance of a single small
space-based optical instrumentation and illustrated the rela-
tionship between OD results and astrometric accuracy. Since
the pinch point regions in GEO belt proposed by the US
Lincoln Laboratory are becoming more and more widely,
Y.P Hu et al. [13] proposed a pseudo-fixed latitude observa-
tion mode. With more and more observations obtained from
space assets, it is feasible to estimate orbital elements from
a data-driven perspective. In these cases, the proposed OD
method in this paper fills the gap between IOD and POD.
It performs much more robustly and accurately than classical
IOD methods. Compared with POD, this method does not
need an initial value and performs well in the short-arc prob-
lem. [14] also made contributions to explore the applications
of kernel mean embedding in OD, but our work is different
from their contributions in three main aspects. First, we put
forward the structure of angle-only OD samples and show the
effectiveness of the proposed weighting matrix in improving
the accuracy of OD. Second, and more importantly, to save
computing cost, we propose a RIP-based ROMP algorithm
to pursue a sparse solution. This is valuable since it extends
the application domain of the WDR-OD method. Finally,
the proposed method is experimentally compared with the
improved Laplace method with different noises.

B. DISTRIBUTION REGRESSION
Embedding the distribution to a Hilbert space is an efficient
approach to perform DR, which introduces kernels between
the mapping, and utilizes a kernel machine to solve the
regression or classification problem. These methods can be
divided into two parts, parametric and nonparametric. Para-
metric methods usually assume a probabilistic density and
fit the data with a parametric family (a family of objects
depending on a set of parameters to define), such as the
Weibull translation model, the finite Gaussian mixture model
and the exponential model [15]–[17], and generalization will
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occur by introducing some new family, such as in [18].
However, when the true probability distribution does not
belong to the assumed parametric family, biases are unavoid-
able. In contrast, nonparametric methods do not rely on the
data belonging to any specific parametric family. Exten-
sively used nonparametric methods include the support vec-
tor machines (SVMs), the decision tree method, neural net-
works, etc. Recently, a popular method referring to DR is
mapping the distribution to a reproducing kernel Hilbert
space (RKHS) through kernel mean embedding, proposed by
Smola et al. [19]. The kernel approach has indicated success-
ful in many ML applications. The idea behind kernel mean
embedding is to extend the feature map to the probability
distribution space. In this way, the kernel mean captures all
features about the distribution P, and also, a defined metric
over the probability distribution space will be introduced.
In this framework, [20] generalized the regularization the-
orem to the probability distribution space. [21] developed a
distribution-free method for DR through the kernel- kernel
estimator and proved the upper bound on the risk of the
estimator. However, this approach is restricted to com-
pact domains of finite dimensional Euclidean spaces. More
recently, Szabó Zoltán et al. [22] proposed a two-stage sam-
pled theory with the following two contributions. First, this
theory generalized the regression in any probability mea-
sure defined on a separable, topological domain endowed
with kernels, where the probability measure is unobservable,
instead, we can only observe samples from the probability
measure. In other words, it regresses a real-valued response
variable yi from samples xi,j, j = 1, . . . ,Ni, where the sam-
ples are not random, but governed by an unknown probability
measurePi. Second, it worked directly on distribution embed-
ding rather than estimating the probability density in high
dimensional spaces. This theory lays a theoretical foundation
for the following research in this study.

III. OUTLINE
In this study, we solve the space-based OD problem with a
distribution regression technique. First, we propose the struc-
ture of space-based orbital samples with a weighting matrix.
Second, the regression is performed in two-step mapping:
the samples from distribution are first mapped to a RKHS H
through kernel mean embeddingµ, and then they are mapped
to the response variables through the linear kernel K . Third,
to reduce the computing load, we propose a RIP-based ROMP
algorithm to pursue a sparse solution. Finally, to demonstrate
the efficiency of this technique in OD, experiments are per-
formed with simulated space objects in the GEO belt, and
surveillance sensors in LEO orbits. For a better comparison,
we introduce the improved Laplace method to show the
different features with measurements in WGN and colored
noise.

IV. ASSUMPTIONS
In this section, we detail the notations and assumptions
on the existing distribution regression work. We define the

following: (X, τ ) is a topological space, B(X) := B(τ ) is
the Borel σ -algebra induced by the topology τ .M+1 (X) is the
set of Borel probability measures defined on (X,B(X)), and
τw = τw(X, τ ) is a weak topology defined on M+1 (X). Let
H = H (k) be a reproducing kernel Hilbert space (RKHS)
with nonlinear kernel k : X × X → R, and let H = H(K )
be the other RKHS with linear kernel K : X × X → R. Let
X denote a subset of H , which is constructed with the kernel
mean embedding of the distributions,

X = µ(M+1 (X)) =
{
µx : x ∈M+1 (X)

}
⊆ H (1)

where µx denotes the mean embedding of the distribution
x ∈M+1 (X) to the RKHS H = H (k) determined by kernel k .

The detailed assumptions are described as follows:
(1) (X, τ ) is a separable topological space.
(2) kernel k : X × X → R is bounded and continuous:
∃Bk <∞ satisfies

supx∈X k(x, x) ≤ Bk

(3) kernel K : X × X → R is bounded (take ∃ BK <

∞ as bound) and 8(µa) := K (·, µa) : X → H is
Hölder continuous, that is, ∃L > 0 and h ∈ (0, 1], for
∀(µa, µb) ∈ X × X satisfies

‖8(µa)−8(µb)‖H ≤ L ‖µa − µb‖
h
H

(4) y is bounded: ∃By <∞ satisfies |y| ≤ By.
(5) X = µ(M+1 (X)) ∈ B(H ).

V. AN ORBIT DETERMINATION METHOD MODEL BASED
ON WEIGHTING DISTRIBUTION REGRESSION
With ML, the distribution regression problem can be solved
by learning samples Z = {xi, yi}li=1 with xi ∈ M+1 (X) and
yi ∈ R. The goal is to predict a new yl+1 from a new batch
of samples xl+1, where l is the training sample size. For the
space-based OD problem, the feature variable xi =

{
xi,n

}Ni
n=1

indicates the set of sensors’ angular measurements during the
observed arc to the i th object, and the position vectors of
sensors, where Ni is the total quantity of observed points with
respect to this object. The response variable yi indicates the
set of orbital elements of the i th object, where yi ∈ R1×e,
and e denotes the number of orbital elements for each object.
Here, the object’s position vector r0 and velocity vector v0 at
the initial observation time t0 are used to denote yi. In fact, for
certain observers, the values of all the measurements during
the observation depend not only on the geometrical rela-
tionship but also on the dynamic model with perturbations,
because it is the dynamic model and its perturbations that
govern where the object will appear next, and further impact
its measurement. Regardless of how they are described in the
analytical model, we assume these measurements are i.i.d
(independent and identically distributed) and sampled from
an unknown distribution Pi.

Briefly, the two-stage sample [22] can be described as fol-
lows: first, the distributions Pi, i = 1, . . . , n are i.i.d sampled
from a meta-distribution M defined on a measurable space
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FIGURE 1. Schematic of the two-stage sample.

(
M+1 (X)× R,B(τw)⊗B(R)

)
; second, the observed samples

xi,j, j = 1, . . . ,Ni are i.i.d sampled from distribution Pi, as
shown in Figure 1. We denote this process by:{

P1, . . . ,Pn
i.i.d
∼ M

xi,1, . . . , xi,Ni
i.i.d
∼ Pi

Note that the samples xi,j, j = 1, . . . ,Ni are the only ones
that can be observed, which represent the orbital measure-
ments. Beyond that, distributionsM andPi are both unknown.

Based on the preceding assumptions, the kernel mean
embedding of probability measures inM+1 (X) into X ⊆ H (k)
is defined by a mapping as follows [23]:

µx :M
+

1 (X)→ X ⊆ H (k), P→
∫
k(x, ·)dP(x)

The integral above is a Bochner integral, which is defined
for functions in Banach space.

More importantly, because we do not have access to the
true distribution P, and thereby we must rely on the i.i.d

sample X =
{{

xi,n
}Ni
n=1

}l
i=1

, the empirical estimation of

kernel mean embedding µx can be denoted by µ̂x :

µ̂xi :=
1
Ni

Ni∑
n=1

k(xi,n, ·) (2)

Obviously, µ̂x is an unbiased estimation of µx , and µ̂x →
µx when l →∞.
Generally, the OD regression process can be divided

into two steps. First, the measurements xi are mapped to
X ⊆ H through the empirical mean embedding µ̂x . Second,
the results in X are then mapped to yi ∈ R1×e by the linear
kernel K and the function f ∈ H = H(K ), as shown
in Figure 2.

Given samples Z = {xi, yi}li=1, the classical regression
with regularization approach is a supervised method where

FIGURE 2. The two steps of OD regression process.

we solve the loss function as,

f ∗ = argmin
f ∈H(K )

1
l

l∑
i=1

(yi − f (xi))2 + γ ‖f ‖2H (3)

where γ ‖f ‖2H is the regularization term, γ is the regular
coefficient, and l is the training sample size. yi represents the
true value and f (xi) represents the predicted value. In DR,
owning an empirical estimation of the kernel mean embed-
ding, the loss function above can be rewritten as:

f ∗ = argmin
f ∈H(K )

1
l

l∑
i=1

(
yi − f

(
µ̂xi
))2
+ γ ‖f ‖2H (4)

According to the Representer Theorem proven by the
reproducing property of RKHS, the function in RKHSH(K )
can be given in the following expression,

f ∗ =
l∑
i=1

α∗m,iK
(
·, µ̂xi

)
(5)

where the symbol ‘‘∗’’ denotes the optimal solution. To deter-
mine the value of α∗m,i ∈ R, we assume a coefficient vector
αm = [αm,1, . . . , αm,l]T, and a coefficient matrix A con-
sisting of the αm, where m = 1, . . . , e, and A=[α1, . . . ,αe].
Introducing the form of f ∗ above to Eq. (4), we arrive at the
following convex differentiable objective function of coeffi-
cient matrix A,

A∗ = argmin
A

{
1
l
(Y−GA)T (Y−GA)+ γATGA

}
(6)

where A∗=[α1∗, . . . ,αe∗], Y=[y1, . . . ,yl]T is the response
matrix, and G = [K (µ̂xi , µ̂xj )] ∈ Rl×l is the Gram matrix.
For the linear kernel K ,

K (µ̂xi , µ̂xj ) =
〈
µ̂xi , µ̂xj

〉
=

1
NiNj

Ni,Nj∑
n,m=1

k(xi,n, xj,m) (7)

where Ni and Nj are total quantity of observed points respect
to the i th object and the j th object, respectively. It reflects
another advantage of kernel mean embedding, that is, it does
not restrict the size of every sample bag to be equal, which
is crucial in OD, since the number of points observed varies
from object to object in practice.

Taking the derivative of the objective function in Eq. (6)
with respect to the coefficient matrix A, we can get the
expression for the optimal coefficient matrix,

A∗ = (G+ γ lIl×l)−1Y (8)
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Substituting Eq. (8) into Eq. (5), we can derive the ana-
lytical solution of the prediction for new test distributions,
according to the given samples Z,

yt = f ∗(µt ) = g(G+ γ lIl×l)−1Y (9)

where g = [K (µ̂x1 , µt ), . . . ,K (µ̂xl , µt )] ∈ Rl is calculated
by the inner product of every training µ̂xl and test µt , and the
subscript t denotes the test data.

The derivation process above is solved through the loss
function in Eq. (4) with a L2 regularization term, which is
the well-known ridge regression.

So far, the OD model based on distribution regression
has been built. However, the space-based OD problem with
angle-only measurements has some specific issues. The fea-
ture variables consist of angular measurements and posi-
tional measurements (the position vectors of observers).
As is known, angular measurements play a very impor-
tant role in short-arc and angle-only OD results. Even a
few seconds of arc errors in angular measurements will lead
to a hundreds-kilometer deviation in OD results. By con-
trast, the deviation caused by hundred-meter errors of the
observer positions will remain on the order of tens of
kilometers [1]. However, since the value of position vectors
of LEO observers are several orders of magnitude larger
than the angle values, their effect is lessened. To improve
it, we introduce a weighting matrix into the measurements,
which is described as follows,

ω =



ωa 0 · · · 0

0 ωa 0
...

...
. . .

0 ωp 0
0 · · · 0 ωp

 (10)

The utilized OD sample set with the weighting matrix has
the following form,

Z =
{
ω ·

{
xi,n

}Ni
n=1 , yi

}l
i=1

(11)

In the matrix, ωa > 1 is the angle weighting coefficient,
andωp > 0 is the positionweighting coefficient. The physical
significance of the weighting matrix is to increase the weight
of angular measurements, as in the real OD dynamic model.
In the following experiment section, we will calculate and
show the changes in the RMSE of ODwith the increase ofωa,
and choose the candidate interval for ωa. Because ωa has
more important physical significance than ωp, the following
work focuses on the effects of ωa, and assigns ωp as a con-
stant. In fact, we find that ωa plays the role of regulating the
weight between the angular measurements and the positional
measurements. If more measurement types are introduced,
such as range, ωp can be introduced at that point to analyze
their interactions.

VI. SPARSE SOLUTIONS OF THE WDR-OD
We note that the solution of ridge regression is a full repre-
sentation of the Gram matrix G ∈ Rl×l , the size of which

depends on the dimension of the training data. Based on
the ridge regression, WDR-OD can obtain higher regression
accuracy, but when processing a large amount of training data,
memory overflow may result, along with heavy computing
resource consumption. Note that Eq. (5) can be rewritten in a
vector form as follows,

Y = f ∗(µ̂x) = G · A∗ (12)

where A∗ is calculated through Eq. (8), based on the ridge
regression with the L2 regularization term.
To solve the preceding problem, our idea is to find the

sparse solution Ã of the coefficient matrixA∗. Sparsitymeans
most nonzero coefficients of the matrix shrink to zeros. Our
aim is to shrink as many as possible nonzero coefficients of
A∗ to zeros under the premise of OD accuracy. In this way,
we are able to store and call the elements of the large matrix
selectively, corresponding to the nonzero coefficients in Ã.
Consider the vector α̃m as one of the columns of the coeffi-

cient matrix Ã. In the sparse representation theory, to obtain
the sparse solution is to find a suitable ‘‘dictionary’’ D =
[d1, . . . ,dl], where d is called an atom, and for a sparse
solution α̃m, let D · α̃m close to αm, that is

min
α̃

{
‖αm − Dα̃m‖22

}
s.t. ∀m ∈ 1, . . . , e, ‖α̃m‖0 ≤ S0

(13)

where ‖·‖0 denotes the L0 norm, and S0 is the sparsity
of α̃m. By solving Eq. (13), we obtain the sparse solution
Ã = [α̃1, . . . , α̃e]. Substituting A∗ ≈ D · Ã into Eq. (12),
we obtain,

Y = G · A∗ ≈ G · DÃ = 3 · Ã (14)

where 3 is called the sensing matrix. Comparing Eq. (14)
with Eq. (12), we can replace G with 3, and replace A∗

with Ã. In this way, we no longer need to store the large
matrixG; instead, we need only to store and call the very few
elements in3 corresponding to the nonzero coefficients in Ã.

Note that solving Eq. (13) is NP hard. Classical orthog-
onal matching pursuit (OMP) is an iterative greedy algo-
rithm which is efficient and has been widely applied to the
sparse representation of a high-dimensional signal. Regular-
ized orthogonal matching pursuit (ROMP) [24] algorithm
selects the first S0 largest atoms at one time, that further
improves the efficiency of OMP.

In OMP or ROMP, the sparsity S0 is considered as prior
knowledge, but it is unknown in our problem. We try to select
S0 as small as possible, but the lower bound is unknown.
The sparsity adaptive matching pursuit (SAMP) algorithm
proposed in [25] does not need the sparsity as the prior
knowledge, instead, it uses a fixed step-size s to reconstruct
the original signal. But different values of s may lead to
different performance in efficiency and accuracy. It also lacks
theoretical support. Hence, we utilize the restricted isometry
property (RIP) [26], [27] and propose a RIP-based ROMP
algorithm. First, we use RIP to theoretically restrict the spar-
sity S0, and then, we perform ROMP under this constraint.
To state our method, we first recall the concept of RIP.
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Definition: For any x̃ with sparsity S0, define the isometry
constant δ ∈ (0, 1) of a matrix8 as the smallest number such
that

(1− δ)‖x̃‖2F ≤ ‖8x̃‖
2
F ≤ (1+ δ)‖x̃‖2F (15)

holds for all x̃ with sparsity S0.
For the problem in our study, Eq. (15) can be rewritten as:

−δ‖α̃m‖
2
2 ≤

∣∣∣‖Dα̃m‖22 − ‖α̃m‖22∣∣∣ ≤ δ‖α̃m‖22 (16)

where m = 1, . . . , e.
The term

∣∣‖Dα̃m‖22 − ‖α̃m‖22∣∣ in Eq. (16) can be further
derived as follows:∣∣∣‖Dα̃m‖22 − ‖α̃m‖22∣∣∣

=

∣∣∣∣∣∣∣
∥∥∥∥∥∥

l∑
j=1

djα̃mj

∥∥∥∥∥∥
2

2

−

l∑
j=1

∣∣α̃mj∣∣2
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣
l∑
j=1

∣∣α̃mj∣∣2 +∑
j6=q

α̃mjα̃mq
〈
dj,dq

〉
−

l∑
j=1

∣∣α̃mj∣∣2
∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑
j6=q

α̃mjα̃mq
〈
dj,dq

〉∣∣∣∣∣∣ ≤ ζ
∑
j6=q

∣∣α̃mjα̃mq∣∣
=

1
2
ζ


 l∑
j=1

∣∣α̃mj∣∣
2

−

l∑
j=1

∣∣α̃mj∣∣2


≤
1
2
ζ (S0 − 1)

l∑
j=1

∣∣α̃mj∣∣2
=

1
2
ζ (S0 − 1) ‖α̃m‖

2
2 < ζ (S0 − 1) ‖α̃m‖

2
2 (17)

where ζ = max
q6=j

∣∣〈dj,dq〉∣∣.
Substituting Eq. (17) into Eq. (16), we obtain,

−δ‖α̃m‖
2
2 ≤ ζ (S0 − 1) ‖α̃m‖

2
2 (18)

that is,

ζ − δ

ζ
≤ S0 (19)

In this way, we derive the lower bound of sparsity S0.
In ROMP algorithm, it selects the first S0 largest atoms in∣∣〈dj, εn−1〉∣∣ at one time, rather than one biggest atom as OMP

did. The complete RIP-based ROMP procedure is shown
in Table 1. Step (4) is the regularized procedure. In step (5),
D
0̂n

denotes the atoms (columns) in D corresponding to the
index 0̂i. In step (6), (SupTn · Supn)

−1
· SupTn · αm is the least

square solution of

argmin
α̃i

∥∥αi − Supn · α̃i
∥∥ (20)

In this way, the RIP integrates into ROMP algorithm, and
the sparsity S0 in prior knowledge is replaced by a step size t .
There is no additional constraint on the step size t . In practice,

TABLE 1. The RIP-based ROMP algorithm.

we recommend setting t to 1 in the initial step so that the
optimal sparsity value will not be missed. Although we also
need to provide a value of t first, by contrast, it is much less
restrictive. Note that, the procedure above only involves one
column vector α̃m of Ã = [α̃1, . . . , α̃e], repeat this procedure
for m = 1, . . . , e we arrive at the sparse solution Ã.
In the problem addressed in this study, we first determine

the optimal solutionA∗ according to the precedingWDR-OD
method; then, we employ the RIP-based ROMP algorithm
to pursue the sparse solution Ã. However, since D · Ã is
approximately equal to A∗, the sparse representation will
lead to an OD accuracy loss to some extent. Nevertheless,
the sparse solution is still valuable, since it extends the appli-
cation domain of the WDR-OD method to the case with
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TABLE 2. The ranges of orbital elements of candidate objects in GEO.

TABLE 3. The orbital elements of the five observation satellites.

limited computing resources, e.g., performing the WDR-OD
method onboard for an online OD mission. It means that,
the time-consuming training process of WDR-OD can be
carried out in the ground center in advance, and then the
obtained sparse solution with its dictionary can be uploaded
to space-based surveillance network to further perform the
WDR-OD utilizing observed measurements in a real-time
way.

VII. EXPERIMENTS AND DISCUSSION
In this section, we attempt to perform experiments in different
environments through simulations. First, as a preliminary
work before estimating the orbit, we simulate 14520 random
objects as a data set, covering the majority of GEO belt.
The ranges of orbital elements for these candidate objects are
shown in Table 2. In System Tool Kit (STK) software, we set
the propagator as the HPOP model, considering earth gravity
model 21×21 degree, three-body gravity and solar radiation
pressure. Let the coefficient Cr=1 and the area-mass ratio be
0.02 m2/kg. We simulate five nearly uniformly distributed
satellites in LEO to act as observers to obtain angle-only
measurements of these objects. The orbits of the five obser-
vation satellites are shown in Table 3. We set the field of
view size to 8◦×8◦ and the sampling interval to 5 seconds.
In the simulation, the time span of the observed orbit arc
is random but is no more than 18 minutes in practice. For
every candidate object, there are 1∼5 observable satellites
during the observation arc, which is determined by their
geometrical relationships. Each response variable (object’s
orbit) and corresponding feature variable (measurements)
constitutes a sample ‘bag’; that is, the i th ‘bag’ consists
of the i th object’s orbit and its measurements. It has the
form Zi =

{
ω ·

{
xi,n

}Ni
n=1 , yi

}
, where

{
xi,n

}Ni
n=1 indicates

the set of angular measurements and yi indicates the orbit
of the i th object at the initial observation time t0, which

is denoted by a 1×6 vector consisting of the position and
velocity vectors of the object in inertial system. LetQi denote
the number of observable satellites and Ni denote the number
of observation points during the orbit arc in the i th bag.
Therefore, the first 2 × Qi columns of the

{
xi,n

}Ni
n=1 are

the angular measurements, and the last 3 × Qi columns are
the corresponding observation satellite position vectors. Each
row contains all of the observed values of one point. The
number of rows in

{
xi,n

}Ni
n=1 is Ni. Note that the

{
xi,n

}Ni
n=1

of different bags may have different sizes (i.e., different arc
lengths and numbers of observation satellites). All of the
14520 ‘bags’ are order disrupted; that is, each of the ‘bags’ is
introduced to the WDR-OD method in a random order.

Note that, in the response variables, we use the position and
velocity vectors of the object in the J2000.0 Earth Centered
Inertial system to describe the orbit instead of classical orbital
elements.

The Cauchy kernel is employed in our work because of its
long-range influence and sensitivity over the high dimension
space. More information on the kernel can be found in [28].

A. WEIGHTING MATRIX EXPERIMENT
In the following work, we carry out the experiment with
different angle weighting coefficients ωa in 5-fold cross vali-
dation (CV). The relationship between the root-mean-square
error (RMSE) and ωa is shown in Figure 3. Let ωa be a ran-
dom value in the [1], [25] interval. The overall trend is that the
RMSE decreases significantly when ωa is within the [1], [5]
interval, which indicates the beneficial effect of introducing
the angle weighting coefficient. However, with the increase
of ωa, the RMSE shows some fluctuations. In fact, it is
difficult and unnecessary to find a specific value of ωa to
fit all the OD problems; instead, we search for a common
candidate interval for ωa wherein the relatively small RMSE
can be obtained in every fold of CV. So, from this perspective,
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FIGURE 3. The tendency of RMSE with different ωa in each cross validation.

according to the result in Figure 3, we use the candidate inter-
val ωa ∈ [15, 20] for the following experiments. Compared
with the RMSE without weighting coefficients (equivalent
to ωa = 1), the RMSE values within the ωa ∈ [15, 20]
significantly decrease.

B. THE WDR-OD METHOD EXPERIMENT
AND DISCUSSION
Then, we can perform the WDR-OD method from Eq. (2)
to Eq. (9), based on the constructed sample set Z with the
form in Eq. (11) and the candidate interval of ωa. First,
we implement Eq. (9) derived by the L2 regularization in the
loss function. A 5-fold cross validation is employed in the
following experiments. In each fold, we randomly draw 80%
of the samples for training, 10% of the samples for validation
and the remaining 10% of the samples for test. Figure 4 shows
the OD errors in position and velocity vectors from noise-free
measurements. The horizontal axis denotes the number of test
objects (for the sake of visualization, it only shows the first
300 test objects). Note that the most errors in the X, Y and Z
directions are concentrated within the [−0.2 km, 0.2 km]
interval. With respect to the velocity, few objects’ errors are
greater than 2× 10−5 km/s; the results in Vz are even better,
within the [−0.1 km, 0.1 km] interval, except that a few errors
reach a peak of 2× 10−5 km/s.
Next, in order to test the performance in a noisy environ-

ment, we add two different kinds of noise to the measure-
ments. White noise is a random noise with the same energy
density at all frequencies, and white Gaussian noise (WGN)
is a specific white noise with an amplitude represented by
the Gaussian distribution. First, we add WGN ε into the
measurements with a variance (2′′)2 (seconds of arc) in
the angular measurements and (0.1 km)2 in the positional

measurements (1σ ), where ε ∼ N (0, σ 2). However,
the noise in practical observation is much more complex than
WGN, wherein the measurements are full of colored noise,
whose power spectral density is not constant. Thus, second,
we model colored noise with an autoregressive-moving aver-
age (ARMA) process [29]. ARMA is a combination of the
autoregressive (AR) process and the moving average (MA)
process, where the AR process performs the autocorrelation
of noise in a time series, and MA is a linear combination of
WGN. The model of the ARMA process can be described as
follows,

ξn = εn +

p∑
i=1

λiξn−i +

q∑
j=1

θjεn−j (21)

where ξ is the colored noise in the time series, and the
subscript n denotes the nth moment. λ and θ are coefficients
in the AR and the MA processes, respectively, and p and q
denote the order of the AR and MA processes, respectively.
In this paper, we employ a second-order ARMA process. Let
λ1 = 0.35, λ2 = 0.55, θ1 = 0.5 and θ2 = 0.6.

The corresponding OD errors with WGN measurements
are shown in Figure 5. Errors of most of the test objects
in the X and Y directions are within the [−1 km, 1 km]
interval, except for a few errors that reach a peak of 2 km. The
concentrated interval in the Z direction is [−0.5 km, 0.5 km].
Additionally, the velocity errors of most of the objects are less
than 1×10−4 km/s. The RMSE of the OD results of different
folds of cross validation are shown in Table 4, where themean
values are shown in bold font. Note that in the noise-free
experiment, the RMSE of the position vectors remains on
the order of tens of meters, and the RMSE of the velocity
vectors performs even better. It also shows a few differences
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FIGURE 4. Errors of WDR-OD in the position and velocity vectors from noise-free measurements.

TABLE 4. The RMSE of WDR-OD in 5-fold cross validation.

between folds of cross validation. When WGN is introduced,
the mean RMSE of the 5-fold cross validation in position
vectors reaches 0.8793 km. Meanwhile, the corresponding
result in velocity increases to 6.3622×10−5 km/s. Generally,
these results are all within an acceptable scope. Subsequently,
we add the colored noise to the measurements, the results of
which are shown in Figure 6 and Table 4. The RMSE of both
position and velocity increased twice as much than the results
with WGN. The largest test object error reaches−6 km in the
X and Y directions, but the errors of most of the objects are
within the [−2 km, 2 km] interval. A common feature is that
the results in Z and Vz are more accurate than those in other
directions, whether with WGN or colored noise.

For comparison, we introduce the improved Laplace
method. The improved Laplace method reduces its depen-
dence on a relatively reliable initial value by adding a

constrained term in the normal vector of orbit plane, and
iterates in geometric and dynamic model with perturbations.
It performs well in noise-free measurements, as discussed
in [1]. Note that we utilize the consistent measurement data
with the same orbit arc and the same noise level in the
improved Laplace and the proposed WDR-OD method. The
results are shown in Figure 7∼ 8 and Table 5. With regard to
the WGN, the RMSE of position and velocity are 5.0804 km
and 0.0051 km/s, respectively, while with colored noise,
the values are 14.8132 km and 0.0129 km/s. Apparently,
when measurements are polluted by noise, the errors of
the improved Laplace method increase significantly and are
remarkably greater than the RMSE in the WDR-OD method.
It is not difficult to understand the cause of the differences
between these two methods. Because the observation model
that the improved Laplace method relies on is established
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FIGURE 5. Errors of WDR-OD in the position and velocity vectors from measurements with WGN noise.

FIGURE 6. Errors of WDR-OD in the position and velocity vectors from measurements with colored noise.

on a precise geometric relationship from observer to object,
any slight errors in angular measurements will disturb the
true position of the object we observe. On the other hand,
the proposed WDR-OD method is based on learning theory;
in other words, the model it regresses from relies on the
training data. Although the measurements are noisy, if the
training data and test data are sampled from similar distribu-
tions, the predicted results will not deviate from the expected
results dramatically. Thus, the WDR-OD method based on

the weighting DR theory shows great robustness in a noisy
environment. Figure 4 to Figure 8 show the fluctuations of
the OD errors from the first 300 test objects. A common
feature is that most test object errors in Figure 4∼6 are
centered around zero, and a small number of test objects have
spikes. However, the corresponding results in Figure 7∼8
show few regularities; they are more strongly dominated by
random noise in each test object. In other words, the results
in WDR-OD are more converged, in contrast to the more
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FIGURE 7. Errors of laplace OD results in the position and velocity vectors from WGN measurements.

FIGURE 8. Errors of laplace OD results in the position and velocity vectors from colored noise measurements.

divergent results obtainedwith the improved Laplacemethod.
This conclusion indicates that the results of WDR-OD have a
higher confidence and are less affected by the fluctuations of
random noise.

C. EXPERIMENT EXPLORING THE SPARSE
SOLUTIONS OF THE WDR-OD
Then, in the following experiment, we employ the RIP-based
ROMP algorithm to obtain sparse solution Ã, according

to the optimal solution A∗ in the preceding WDR-OD
method. In each iteration step, it selects the atom d of dic-
tionary in Eq. (13) with the highest correlation to the cur-
rent residual, and the signal is projected to the span of the
selected atoms orthogonally. Figure 9 and Table 6 show the
corresponding results. The format in Figure 9 is different
from the earlier figures; the vertical coordinate represents the
true values rather than the errors. The test results and the
predicted results are represented by blue circles and black
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TABLE 5. The RMSE of Laplace OD results in the position and velocity vectors from noisy measurements.

TABLE 6. The RMSE of WDR-OD results with sparse solutions from measurements with WGN.

TABLE 7. The sparsity of coefficients in each direction (shown as percentages).

FIGURE 9. The WDR-OD results with sparse solutions from measurements with WGN.

dots, respectively. The closer a dot is to the center of a circle,
the better the prediction is. We find that most predictions
perform well, and also we note that, because of an inherent
characteristic of objects in GEO belt, most samples in Z
and VZ are distributed around zero. The positional RMSE
in Table 6 has increased from the 0.8793 km in WDR-OD
to the 1.6554 km in the sparse method. However, it is still
acceptable and smaller than the improved Laplace method’s
5.0804 km.

For the sake of visualization, we reshape the first 100 coef-
ficients of the 1-dimensional coefficient vectors α1 and α̃1 to
a 10×10 dimensional matrix view and display it in a form of
heat map in Figure 10 (for simplicity, Figure 10 only shows
the coefficient vectors in the X-direction, as an example).
On the left is the view of the coefficient vector from the ridge
regression, and on the right is the view of the corresponding
sparse solutions. The darker the color is, the larger the value
of each element is. Apparently, most coefficients shrink to
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FIGURE 10. The visualization of the coefficients vector from ridge regression method (left) and its sparse solution (right) (reshaped results of
the first 100 coefficients of the 1-dimensional vectors α1 and α̃1).

zero in the right figure. The number of nonzero coefficients
of the first 100 coefficients is only ten (a 90% reduction).
The sparsity in each direction is shown in Table 7; the results
in other directions can also achieve 90%∼93% reductions.
This sparsity is worthwhile in practice; it means that only
7%∼10% of the elements of the sensing matrix 3 need to be
stored. It can be rewritten as a sparse expression correspond-
ing to the nonzero elements of Ã. These improvements make
contribution to save computing cost.

For the same computer (ThinkPad X1, with 2.5GHz Intel
Core i7 processor and 8G RAM), except for the same training
process, the time consumed by the test process (with the num-
ber of 1452 objects) of the WDR-OD method is 2.1 minutes,
and that of the sparse method is 32 seconds.

Especially, it is suitable for the cases owning large sample
size but with limited computing resources; e.g., performing
the WDR-OD method onboard for recognizing space debris
with a space-based surveillance network in the future.

VIII. CONCLUSION
In this paper, from a ML perspective, we apply the two-stage
sampled distribution regression to the domain of space-based
orbit determination and propose theWDR-ODmethod for the
future short-arc and angle only OD problem with big data.
The following conclusions are drawn:

First, we propose the structure of angle-only OD samples
consisting of the angular measurements from observers to
objects and the inertial position of the observers. We show
the effectiveness of a weighting matrix in improving the
accuracy of orbit estimations. Second, and more importantly,
we successfully apply the distribution regression technique
to space-based OD. The preceding experiments show that the

RMSE of position vectors reaches 0.8793 km with WGN
and 1.6972 km with colored noise, which are significantly
smaller than the corresponding Laplace method’s 5.0804 km
and 14.8132 km. The velocity RMSE performs even better.
Compared with the improved Laplace method, the WDR-OD
method shows great robustness and is more accurate in noisy
environments. Furthermore, based on the solutions of WDR-
OD method, we also introduce RIP theory in ROMP to pro-
vide the bound of sparsity theoretically, and then to pursue
sparse solutions. The experimental results show that this
method achieves 1.6554 km RMSE in position and 6.9032×
10−4 km/s in velocity with a 90%-93% reduction of nonzero
coefficients. This approach is helpful for reducing computing
load for onboard computation.

Note that, there needs to be consistent between the training
data and the test data. In other words, the training sample
needs to be large enough to cover the possible range of the
test sample. In the foreseeable future, with the construction
of space-based surveillance networks, there will be a mass
of short-arc measurements swarming into the data process-
ing center. Many of these measurements belong to known
spacecraft, and many of them belong to unknown objects.
The purpose of the proposed method from a ML perspective
is not only to improve the OD accuracy compared with clas-
sical method, but more importantly, it takes full advantages
of the large amounts of observation data. In the proposed
framework, users can predict the orbits of unknown objects by
learning from the known spacecraft and their corresponding
measurements.

In the future work, first, we will expand the algorithm
to different objects in different catalogs and perform the
WDR-OD method with real space-based measurements data.
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Second, we are going to research on the global optimality to
further improve the precision of sparse solution.
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