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ABSTRACT Two-dimensional shear wave elastography (2D-SWE) is an effective and feasible method
for plantar fasciitis (PF) evaluation. Until now, only experienced doctors have been able to give relatively
accurate evaluation via ultrasound images, resulting in low efficiency and high cost. Therefore, designing
automatic algorithms to recognize the pattern of these ultrasound images is urgently required. In recent
years, deep learning (DL) has made considerable progress in computer-aided diagnosis (CAD). However,
there have been no studies that apply DL to the diagnosis of PF. To achieve robust PF classification, this paper
builds a deep Siamese framework with multitask learning and transfer learning (DS-MLTL), which learns
discriminative visual features and effective recognition functions using 2D-SWE. The DS-MLTL model
comprises two VGG-style branches and a multitask loss including a classification loss and a Siamese loss.
The Siamese loss leverages the intrinsic structure (similarities) of different images and contains a contrastive
constraint and a similar constraint. In our framework, visual features and themultitask loss are learned jointly,
and they can benefit from each other. To train theDS-MLTLmodel effectively, themodel transfers knowledge
from the large-scale ImageNet dataset to the PF classification task. For model evaluation, an SWE dataset
of plantar fascia, which contains 282 images of a PF pattern and 60 images of a healthy pattern, is collected.
Experimental results show that the DS-MLTL method achieves favorable accuracy of 85.09 ± 6.67% and
performs better than human-crafted features extracted from B-mode ultrasound and SWE. In addition,
DS-MLTL also obtains the best performance compared with different DL models.

INDEX TERMS Plantar fasciitis, Siamese network, transfer learning, shear wave elastography.

I. INTRODUCTION
Plantar Fasciitis (PF), a commonly reported cause of plantar
heel pain, is a chronic disease caused by aseptic inflammation
of plantar fascia [1]. The etiology and pathogenesis of PF
remain unclear. Early diagnosis and treatment of PF are
essential for improving the patients’ condition and qual-
ity of life, and ultrasound is the most common method
for classifying PF patterns and assisting clinical diag-
nosis [2]. Ultrasound diagnosis of this disease contains
edema, thickening, and hypoechogenicity of plantar fascia.
Some studies [3], [4] also found calcification in tendons
in some patients. Recently, plantar-fascia stiffness measure-
ment (PFSM) based on noninvasive ultrasonic imaging has
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been strongly recommended by many studies [5], [6] because
the stiffness of biological tissue can be used as an important
basis for disease diagnosis and the essence of PF is the
abnormal elastic stress of the arch of a foot.

Two-dimensional (2D) shear wave elastography (SWE),
which integrates B-mode imaging and color-coded tissue
stiffness maps, is an effective stiffness measurement tech-
nology with real-time and high stability. 2D-SWE has been
widely applied for the clinical diagnosis of various diseases,
such as breast cancer [7], prostate cancer [8], and malignancy
in thyroid nodules [9]–[11]. 2D-SWE has also been increas-
ingly used in the evaluation ofmuscle lesions, tendons, fascia,
and neuropathy [12]. Although the PFSM of 2D-SWE has
become one of the most common methods for the clinical
diagnosis of PF [13], 2D-SWE is still subject to many limita-
tions. The definitive standard for defining the optimal region
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of interest (ROI) of PFSM,monitoring the overall image qual-
ity and determining reliable and unreliable measurements is
still ambiguous. This results in the cut-off of SWE values for
PF classification showing great variability. Some studies have
shown that the cut-off of SWE values for PF is 36.8 ± 7.7
kPa [13]. Therefore, it is inadequate to distinguish PF only by
SWE values. Moreover, diagnoses based on ultrasound image
technology are limited by the doctor’s experience. Even in
the same case, different doctors may give different diagnostic
results.

To overcome the above issues, radiomics, an emerging
computer-aided diagnosis (CAD) technology, which can
automatically quantify large amounts of medical image fea-
tures to uncover disease that is unable to be recognized
by doctors’ naked eyes [14]–[16], has drawn considerable
attention in recent years. Many image processing methods
have been proposed [17]–[21] for radiomics. Most of these
methods rely on traditional hand-crafted image features,
which may not be robust enough to capture the discrimina-
tive features for disease diagnoses. In addition, these meth-
ods only learn a linear or shallow classification function,
which is not comprehensive enough to represent the mapping
from image features to classification results. Compared with
these shallow models using hand-crafted features, the deep
learning (DL) models can automatically extract robust fea-
tures in an ‘‘end-to-end’’ way and learn effective nonlinear
functions to classify disease. Many researchers have shown
that DL models are valuable for CT, MR and ultrasound
images [22]. For example, Shi et al. proposed a novel stacked
deep polynomial network for tumor classification, which
achieved favorable performance with a small ultrasound
image dataset [23]. Furthermore, there is also some evidence
showing that DL models can obtain more discriminative
information from total 2D-SWE images than only 2D-SWE
values from ROI [24] and achieve higher accuracy in disease
assessment. Recently, various DL architectures for 2D-SWE
image analysis have been proposed, such as the DL model
for classifying breast tumors with 2D-SWE images [25], and
convolutional neural networks (CNN) for liver fibrosis stage
determination [24].

Developing a DL-based CAD framework for plantar fasci-
itis (PF) very significant to efficient diagnosis. To the best
of our knowledge, no work has applied DL for the CAD
of PF. As a result, it is a promising direction to develop a
robust DL model for PF classification, which can improve
the accuracy of diagnosis and reduce the burden of doc-
tors. Although we can directly use traditional DL models
(e.g., CNNs such as AlexNet and VGGNet) to perform PF
classification, these models ignore the intrinsic structures
between 2D-SWE images. In fact, a PF image should be
more similar to another PF image than a healthy image,
and vice versa. If a deep model can learn similar/dissimilar
features for images with the same/different labels, learning
the PF classification taskwill be facilitated. Therefore, adding
comparisons of different images during the learning process
will help improve the discriminative ability of the model.

Motivated by the above observations, this study builds a
deep Siamese framework via multitask learning and trans-
fer learning (DS-MLTL), which learns visual features and
effective nonlinear classification functions to identify PF
in a unified framework using SWE. The method adopts
a Siamese network to evaluate whether an image pair
is similar. The key idea behind a Siamese network is
to learn a matching function that constrains similar pairs
(i.e., images with the same label) to be close to each other
while dissimilar pairs (i.e., images with different labels) to be
separated by a predefined margin. Compared with traditional
Siamese-based networks, which only adopt similarity learn-
ing, the proposed DS-MLTL preforms multitask learning,
where the classification task and the similarity learning task
are learned jointly and can promote each other. The classi-
fication task can learn effective class-specific information,
which is crucial for learning a robust similarity function.
Similarity learning can build a matching function for guiding
more robust feature learning, which facilitates the classifi-
cation process. As shown in Figure 1, in the training phase,
a pair of 2D-SWE images is taken as input to the Siamese
network with two identical branches. This network then out-
puts both classification results and similarity scores of the
two images. In the test phase, only the output classification
results are used. For training data, compared to datasets in
regular computer vision tasks that have millions of training
samples, medical image datasets are generally small (e.g.,
hundreds/thousands of samples). Therefore, transfer learning
provides an alternative for radiomics with small datasets.
A simple and effective transfer learning methodology uses a
pretrained network (typically on large-scale natural images)
for model fine-tuning on new tasks. Here, the model uses the
convolutional layers of VGG-16 net [26] as a feature extractor
and fine-tunes the last 3 fully connected layers with the
multitask loss. To evaluate the performance of the DS-MLTL
for PF classification, a doctor-labeled high-quality 2D-SWE
image dataset, which contains 282 images of a PF pattern and
60 images of a healthy pattern, is collected.

The main contributions of this paper are as follows:
• To the best of our knowledge, this is the first prospective
study that aims to utilize a DL model for the intelligent
diagnosis of PF using 2D-SWE. It is helpful for con-
ducting an effective diagnosis of PF, reducing the rate of
misdiagnosis and missed diagnosis, and decreasing the
burden of doctors.

• Compared with a conventional single classification task
with a single diagnostic variable as output (e.g., disease
present or not), the DS-MLTL model adopts a mul-
titask learning strategy to simultaneously perform a
classification task and similarity learning task. Com-
mon hidden representations shared between both related
tasks improve the performance of the model. We also
use transfer learning to address the problem of lacking
training data.

• Experimental results demonstrate that the deep Siamese-
based method achieves favorable accuracy of 85.09 ±
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FIGURE 1. Architecture of the DS-MLTL model, which consists of 16 convolutional layers (transferred from VGG-16 Conv layers)
and three fully connected layers. The number on the right side of the layer represents the dimension of the output layer. The total
loss of our model is comprised of the classification losses for all samples, the Siamese losses for all sample pairs and the
regularization item. In the test phase, only a single branch with the learned weights is used for PF classification.

6.67% and performs better than human-crafted features
extracted from B-mode ultrasound and SWE.

II. PATIENTS AND METHODS
In this section, the design and overview of this study are
illustrated first. Next, how to conduct data preprocessing is
introduced in detail. Finally, the deep Siamese-based model
architecture and the loss function are shown.

A. DESIGN AND OVERVIEW
The aim of this study is to design a high-performance
algorithm to realize CAD of PF effciently and accurately.
Although traditional DL models are capable of performing
image classification tasks, this study uses a deep Siamese-
based method to further improve discriminative ability. All
the data for our study are provided by Xi’an Hospital of Tra-
ditional Chinese Medicine and the study was approved by the
ethics committee of the principal investigator’s hospital. The
clinical results of PF are used as the ground truth. To prove
the superiority of the DS-MLTL model, the performance
comparisons between four DL models (CNN, transfer learn-
ing model, DS-ML and DS-MLTL) are performed first, and
then the performance comparisons between the DS-MLTL
model and various features of sono and elastograms (thick-
ness, hypoechogenicity, elasticity value.) are implemented.

Moreover, the DS-MLTL model is trained on different size
datasets to test the performance of the model.

B. DATA COLLECTION AND PREPROCESSING
In this work, an SWE dataset is obtained by a Mindray
R7 scanner with an L14-6 MHz transducer. During an ultra-
sound session, a B-mode ultrasound scan is first performed,
and then 2D-SWE is implemented near the heal of the
participants. The thickness of the plantar fascia and corre-
sponding B-mode ultrasound images are obtained, and then
the 2D-SWE value and corresponding 2D-SWE images are
obtained from each patient. Two doctors with 10 years of
ultrasound operating experience are employed as quality con-
trollers for reviewing all 2D-SWE images and excluding
unqualified images. Finally, a total of 342 2D-SWE images
of plantar-fascia, including 282 PF and 60 healthy images,
is collected. However, the 2D-SWE dataset is still too small
to achieve good performance by using DL models. To avoid
overfitting, data augmentation is conducted for the training
set and test set by a cutoff of 5 or 10 pixels from four direc-
tions of the raw images (See Figure 2A). Next, the images
are normalized to a fixed size of 313 ∗ 526, which is the
largest height and width in the dataset. These images have
three channels (RGB). Twenty healthy individuals and 20
patients with PF were selected randomly as the test set while
maintaining the others as the training set. It is noteworthy that
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FIGURE 2. Illustrations of data augmentation and split. (A) Data augmentation for the training and test sets. The image is
translated by 5 or 10 pixels from four directions. (B) Raw images and augmentation images are divided into the training and
test set.

the constructed dataset is balanced: (1) For the training data,
as shown in Figure 2B, we conduct data augmentation for
the training samples (262 PF images and 40 healthy images).
After data augmentation, we have 262 + 262 ∗ 8 = 2358
PF images and 360 healthy images. We then choose 360 PF
images (including the initial 262 PF images and randomly
selected 98 augmented PF images) and all the healthy images
as training data. As a result, the ratio of positive to negative
training samples is 1:1, which is balanced. (2) For the test
data, as shown in Figure 2B, 20 PF images and 20 healthy
images (180 PF images and 180 healthy images after data
augmentation) are adopted, which is also balanced.

C. OUR DEEP MODEL ARCHITECTURE
In this paper, the CAD of PF is formulated as a multitask
learning framework, which includes a classification task and
a similarity learning task. The similarity learning task can
guide more effective visual feature learning, which is cru-
cial for improving the classification task. The details are
as follows. For classification, given an image x, the model
learns a classification function f (x) to determine whether
this image belongs to PF. For similarity learning, the model
aims to learn a similarity metric function g(x, y) to determine
whether the input image pairs belong to set P or Q. Here,
P is used to denote a set of similar image pairs and Q is
used to denote a set of dissimilar image pairs. If the image
pair (x, y) ∈ P, it means that the images x and y have the
same classification label. If the image pair (x, y) ∈ Q, x and
y have different labels. To achieve the above goals, a novel
DS-MLTL learning framework is built, as shown in Figure 1.
Here, the training and test phases of DS-MLTL are shown.
The DS-MLTL model contains two identical branches with
shared weights. Each branch includes 16 convolutional lay-
ers (transferred from VGG-16 [26] Conv layers) for feature
extraction and 3 fully connected layers (FC1, FC2, FC3) for
feature fine-tuning. The output sizes of the FC layers are
shown in Figure 1. In the training phase, an image pair (x
and y) is simultaneously input to the DS-MLTL model. In the
forward propagation, different features of the image pair are
calculated by the shared weights in the convolutional and
fully connected layers. Although the same branch is adopted

to learn a nonlinear classification function, the two images
are separately propagated forward through each layer. The
Euclidean distance of the two output vectors of the FC1 layer(
F1 and F ′1

)
is calculated to denote the similarity of the two

images. The output of the FC3 layer
(
F3 and F ′3

)
denotes the

classification results of the input images. The weights of the
convolutional layers are fixed to avoid overfitting. In the fully
connected layers, the dropout operator is carried out after
FC1 and FC2 with a dropout rate of 0.5, which is not shown
in Figure 1. The rectified linear units (RELU) [27], as the
activation function, is used after FC1 and FC2. The sigmoid
activation function is used after FC3 for classification. In the
test phase, only the single branch with learned weights is used
for PF classification.

D. LOSS FUNCTION
As a multitask learning model, the total loss of the DS-MLTL
model is comprised of the classification losses for all samples,
the Siamese losses for all sample pairs and the regularization
item. The stochastic gradient descent (SGD) is adopted for
the optimization of the DS-MLTL. For an image x, the model
utilizes a binary cross-entropy to optimize the classification
loss as follows:

Lc(x) = lc log f (x)+ (1− lc) log(1− f (x)) (1)

where lc ∈ {0, 1} is the classification label. lc = 0 indicates
that x belongs to the healthy pattern, while lc = 1 means x
belongs to the PF pattern. f (x) is the learned classification
score for x, indicating the PF probability of x. For an image
pair (x and y), the model optimizes the Siamese loss to learn
the similarity between the pair of images. The Siamese loss
consists of two constraints: a contrastive constraint and a
similarity constraint of the image pair (x and y). The two
constraints and the Siamese loss are described as follows:

Lp(x, y) = s
(
τ − D2

)
(2)

Lq(x, y) = D2 (3)

Ls(x, y) = ldLp(x, y)+ (1− ld )Lq(x, y) (4)

Here, τ is a threshold that enforces the similarity margin of
image x and y. D =

∥∥F1 − F ′1∥∥2 is the Euclidean distance
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of two learned features, and
(
F1 and F ′1

)
are two vectors

generated by the first fully connected layer. s(x) = max(0, x)
is the nonsaturating nonlinearity function. ld ∈ {0, 1} is an
indicator scalar. ld = 0 indicates that image x is similar to
image y, while ld = 1 indicates that image x and image y are
dissimilar. Finally, the total loss is defined as (5).

L =
1

2|G|

∑
x∈X

Lc(x)+
∑

(x,y)∈G
Ls(x, y)

+ λ1‖2‖2F (5)

Here, X denotes all the training images. G = P ∪Q contains
all the similar and dissimilar image pairs. 2 denotes all
weights of the DS-MLTL model. We use the Frobenius norm
of all the learnable weights as themodel regularization, which
can limit the model complexity and avoid the overfitting
problem. In the DS-MLTL model, the PF classification loss
and Siamese loss are learned jointly in a unified framework,
where they can enhance and complement each other. The
classification loss can learn effective class-specific informa-
tion, which is crucial for similarity metric learning. Addition-
ally, the Siamese loss can learn a better matching function to
guide more robust visual feature learning, which facilitates
the classification process. For the test phase, the input is a
single image, and the DS-MLTL model uses one branch with
the learned weights to predict whether the input image is
healthy.

III. EXPERIMENTS AND RESULTS
A. TRAINING AND TEST SETS
The proposed DS-MLTL algorithm is evaluated on the col-
lected 2D-SWE dataset, which contains 282 images of PF
pattern and 60 images of healthy pattern. After data aug-
mentation, 720 images (360 images with healthy labels and
360 images with PF labels) are selected as training images
and 360 images are selected as test images (180 images with
healthy label and 180 images with PF label). See Figure 2
for details. Each training image is paired with other training
images with either the same category label or a different
category label.

B. IMPLEMENTATION DETAILS
The DS-MLTL model is implemented using the public deep
learning library Keras. The parameter τ in the Siamese loss
is set to 1.0. The weight decay λ1 is set to 0.001. The weights
of the three FC layers are initialized with Gaussian filter
with a standard deviation of 0.005 and constant bias of 0.
In the training phase, we use 10% of the training data as
a validation set. Three-fold cross-validation is employed to
select appropriate hyperparameters. The learning rate of the
model is set to 1E − 5. The early stopping function is used
to monitor the training process. The training model stops
training when it has not improved after five epochs. In the
test phase, we randomly split the dataset three times formodel
evaluation. The following experiments were run using a PC
with an Intel I7-4790 3.60GHz CPU, 32GB RAM, and an
Nvidia Titan X GPU card.

C. EVALUATED ALGORITHMS
To evaluate the effectiveness of the DS-MLTL algorithm, per-
formance comparisons between the following DL methods
are performed: (1) CNN model. CNN is a classic model that
has been successfully applied in the computer vision field.
The CNNmodel in this study is comprised of 3 convolutional
layers, 2 fully connected layers, and a binary cross-entropy
loss. The convolutional neural layers are adopted to extract
features for category representation, and the fully connected
layers are adopted to learn a nonlinear function for the diag-
nosis of PF. (2) TL model. Instead of training a model from
scratch, the TL model uses the convolution layers of VGG-16
to extract features, and 3 fully connected layers, similar to the
DS-MLTL model for classification. The loss of this model
is also the binary cross-entropy. (3) DS-ML model without
transfer learning. Compared with the CNN model, DS-ML
takes two images as input to a two-branch CNN network at
the same time. Each branch in DS-ML is the same as the CNN
model. The output vectors of the first fully connected layer of
the two images are used to measure the Siamese loss. This is a
multitask learning model that uses a binary cross-entropy loss
for classification and a Siamese loss for similarity learning.
Moreover, performance comparisons between the DS-MLTL
model and various features such as sono and elastograms are
also conducted.

D. LEARNED CLASSIFICATION RESULTS
1) COMPARISON WITH DEEP LEARNING-BASED METHODS
The sensitivity, specificity and accuracy of the compared
models are enumerated in Table 1, where the mean value and
standard deviation are reported. In this table, n (P) denotes
the number and percentage of data sets. We compared the
performance of DL-based models with 720 training images
and 360 test images. Our DS-MLTL model achieves the
best performance in test set with classification sensitivity,
specificity and accuracy of 76.85 ± 7.40%, 93.33 ± 6.19%,
85.09 ± 6.67%, respectively. The TL model achieves the
best performance in the training set. Figure 3 shows the
comparison of AUC curves of four models from a random
data split. It can also be find that the TL model achieves
best AUC score of 0.97 in the training phase (Figure 3A)
and the DS-MLTL model has the best AUC score of 0.90
in the test phase (Figure 3B). This verifies the advantages
of transfer learning in the small medical dataset. It also
shows the effectiveness of the joint learning of visual fea-
tures and the multitask loss. In fact, our model has better
ablility to avoid overfitting. In all test datasets in Table 1,
the augmented images only come from the translation of
the original images. To evaluate the performance of these
models more comprehensively, we reconstruct a test dataset
without data augmentation for model evaluation, which only
includes 40 raw images (20 healthy images vs 20 PF images).
Table 2 shows the classification results on the test dataset
without data augmentation. The DS-MLTL model achieves
the best sensitivity, specificity and accuracy of 78.33±5.77%,
91.67± 5.78%, and 85.0± 5.0%, respectively.
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TABLE 1. Diagnostic performance of CNN, TL, DS-ML, DS-MLTL for the evaluation of PF on the training and test sets.

FIGURE 3. Comparison of ROC curves between CNN, TL, DS-ML, DS-MLTL
for the assessment of PF. (A) ROC curves for the training set. (B) ROC
curves for the test set.

TABLE 2. Comparison results on the test dataset without data
augmentation.

2) PERFORMANCE COMPARISON WITH DIFFERENT
QUANTITIES OF TRAINING DATA
To evaluate the DS-MLTL model, the model is also trained
on different size datasets (540 training images vs 540 test
images, 900 training images vs 180 test images, 990 training
images vs 90 test images). The deep Siamese-based method
achieves consistently high performance on these datasets with
different sizes, which again demonstrates the effectiveness of
the DS-MLTL model (Table 1).

3) COMPARISON WITH HUMAN-CRAFTED FEATURES
There are varieties of hand-crafted features extracted from
B-mode ultrasound and SWE available to doctors for PF
evaluation. (1) Thickness, which is the plantar fascia thick-
ening at its calcaneal insertion; (2) Hypoechogenicity, which
indicates echo on the plantar fascia in B-mode ultrasound
images; (3) Young’s modulus, which defines the relationship
between stress and strain in the ROI of the plantar fascia. The
mean and the maximum value in the ROI are measured for
plantar fascia elasticity assessment; (4) SWE value, which is
deduced by shear wave propagation; SWE value also mea-
sures the maximum and mean in ROI of plantar fascia for
plantar fascia elasticity assessment; (5) Calcification, which
is a condition of calcification on the plantar fascia determined

TABLE 3. Comparison results between human-crafted features and the
DS-MLTL model.

by a doctor. (6) Blood flow, in which the doctor determines
whether there is blood flow on the plantar fascia. Table 3
shows the performance comparison between human-crafted
features and the DS-MLTL model. From this table we can
find that our proposed DS-MLTL achieves the best accuracy.
For all human-crafted features, the thickness has the best
sensitivity of 80.0 ± 5.0%. For elasticity evaluation (both
Young’smodulus and the SWEvalue), themean value is more
robust than the maximum value. Figure 4 shows the compar-
ison of AUC curves between our model and human-crafted
features from a random data split. The AUC of thickness,
SWE value (mean) and hypoechogenicity are 0.81, 0.77 and
0.63, respectively. Our DS-MLTL model achieves favorable
performance with AUC in both the training and test dataset.
The result suggests the superiority of the DS-MLTL model
over other human-crafted features.

E. T-SNE VISUALIZATION OF THE LEARNED FEATURES
DL is a new method for learning representation from data,
which emphasizes learning from continuous layers. These
layers correspond to increasingly more meaningful represen-
tations of specific tasks. To demonstrate the effectiveness of
the learned features, t-SNE [28] dimensionality reduction is
utilized for the raw 2D-SWE images and the learned features.
Figure 5 shows the t-SNE results of a random data split in
two-dimensional space. The results show that the features
learned by the model can perform PF classification better
than the raw images, which proves the effectiveness of the
DS-MLTL model again.

IV. DISCUSSION
Ultrasound is a common diagnostic method for PF. However,
only experienced doctors can obtain relatively accurate eval-
uation via ultrasound images, resulting in low efficiency and
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FIGURE 4. Comparison of ROC curves between DS-MLTL and sonographic
characteristics.

FIGURE 5. T-SNE visualization. (A, B) t-SNE for training data. (C, D) t-SNE
for test data. (A, C) t-SNE for the raw images. (B, D) t-SNE for the
FC2 output of the DMML-TL model.

high cost. Therefore, designing CAD algorithms to recognize
the pattern of these ultrasound images is urgently required.
In this study, various hand-crafted features extracted from
B-mode ultrasound and SWE for PF are evaluated by statisti-
cal analysis of collected clinical cases. To realize an effective
CAD algorithm, a deep Siamese-based PF classification
model is proposed. This is the first prospective study that
uses a DL model for intelligent diagnosis of PF based on
2D-SWE images. It is of great significance for improving
diagnostic accuracy and reducing the burden of doctors. Com-
pared with traditional deep learning methods (e.g., CNNs),
the deep Siamese framework via multitask learning
and transfer learning can further improve discriminative
ability.

Doctors evaluate PF by synthesizing human-crafted
features extracted from ultrasound images [2]. The features
collected in this study include plantar fascia thickening at
its calcaneal insertion, hypoechogenicity, calcification, blood
flow, Young’s modulus and SWE value. Here, the statistical
analysis results show that the thickness of plantar fascia has
a favorable performance with both sensitivity and accuracy.
Young’s modulus and SWE value are two metrics for elas-
ticity assessment. Young’s modulus defines the relationship
between stress and strain. The SWE value is deduced by
shear wave propagation. These two metrics have favorable
specificity. In addition, we also find that the mean of both
Young’s modulus and SWE value in the ROI is better than
the maximum for PF diagnosis.

2D-SWE is a new noninvasive stiffness measurement tech-
nology with great advantage. It has been applied to evaluate
many diseases, such as cancer and diseases of the muscu-
loskeletal system. In recent years, the deep learning method
has made great progress in 2D-SWE image classification
tasks in many studies [24], [25]. All of these DL models have
achieved good performance. Undoubtedly, a deep learning
model can improve the accuracy of PF diagnosis based on
2D-SWE images. In this work, four DLmodels are conducted
for PF classification based on 2D-SWE images. Compared
with the method based on SWE values, the DL strategy has
the following advantages: (1) SWE values measure only a
small area of plantar fascia stiffness, while the DL method
considers the entire 2D-SWE image. More effective informa-
tion can be obtained through a larger area of the ROI. (2) DL
models can automatically extract image features in an ‘‘end-
to-end’’ way, and more effective high-dimensional features
can be obtained. (3) As convolutional neural networks have
an apparent advantage and wide application in computer
vision, it is a promising method for promoting the intelligent
diagnosis of medical images.

Although traditional deep learning methods can perform
ultrasound image classification tasks, many studies have
improved the traditional model to achieve better performance.
For example, Shi et al. proposed a novel stacked deep polyno-
mial network for tumor classification that achieves favorable
performance with a small ultrasound image dataset [23].
To improve our model performance, we proposed a deep
Siamese-based network for PF classification.

In the DS-MLTL model, the classification loss and the
Siamese loss are learned jointly in a unified framework to
benefit each other. Here, the Siamese loss can constrain
the distance of the input image pair, which makes similar
image pairs close to each other while dissimilar image pairs
are separated by a predefined margin. For these two related
tasks, the classification loss can learn useful class-specific
information, which facilitates the similarity learning process.
The Siamese loss can guide more robust feature learning,
which is crucial for improving the performance of classifi-
cation. In our framework, the multitask strategy has better
performance than the traditional classification model, which
makes a single diagnostic result output. Table 1 and Table 2
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show that theDS-MLTLmodel achieves the best performance
compared with the CNN model and TL model in the test set,
although the TL model achieves the best performance in the
training set, which suggests that learning the classification
loss and the Siamese loss jointly in a unified framework is
robust and avoids model overfitting.

Moreover, transfer learning is widely used in medical
image processing because medical image datasets are usually
small [29]. Here, the DL model based on TL can effec-
tively improve the performance of feature extraction and
classification. It can be observed that the DS-MLTL model
achieves better performance than the DS-MLmodel (Table 1,
Table 2). Because there are large-scale weights to be fit-
ted in the DL model, deep learning is highly dependent
on the quantity and quality of data. We believe that the
performance of the deep Siamese-based model will be fur-
ther improved as more diverse and high-quality 2D-SWE
images of plantar fascia (healthy and PF) are collected in the
future.

V. CONCLUSION
This paper presents a deep Siamese-based architecture for
plantar fascia classification based on 2D-SWE images. This
architecture can effectively improve the discriminative ability
of the model by adding comparisons of image pairs. The TL
method avoids overfitting the training phase in the case of a
small dataset. Compared with various features of sono and
elastograms (thickness, hypoechogenicity, elasticity value,
etc.), the DS-MLTL model achieves the highest accuracy of
85.09 ± 6.67%. The model is also superior to the traditional
CNN model. It is valuable and practical for the accurate
diagnosis of PF. Motivated by the favorable performance of
our framework, we intend to apply this approach to other
medical image analysis tasks, such as breast cancer and
thyroid nodules.
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