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ABSTRACT Data clustering analysis is proposed to detect the orbital maneuvers of satellites at different
scales. In this study, the unsupervised classification methods of K-means, hierarchical, and fuzzy C-means
clustering are used to handle the two-line element (TLE) historical data. The K-means-based contour
map method is applied to the characteristic variable selection and cluster number determination. The
TLE data of large-, medium-, and small-scale orbital maneuvers are clustered by the aforementioned
three methods. Through a series of numerical experiments, it is found that for different scales of orbital
maneuvers, the clustering methods have different performances and that they can essentially fulfill the
functional requirements of orbital detection. By data mining, the orbital maneuvers of the remote sensing
satellites ‘‘YAOGAN-9’’, ‘‘TIANHUI-1’’, and ‘‘Envisat’’ can be easily detected, which will provide useful
information for further orbital supervision and prediction.

INDEX TERMS Clustering, data mining, orbital maneuver detection, space situational awareness TLE data.

NOMENCLATURE
a semi-major axis of ellipse orbit
e orbit eccentricity
i orbit inclination
� right ascension of ascending node
ω argument of perigee
M mean anomaly
r [rx , ry, rz], position vector from the space-

craft to the Earth’s center of mass
v [vx , vy, vz], velocity vector of the spacecraft
µ gravitational parameter of the Earth

I. INTRODUCTION
Remote sensing satellites rely primarily on either reflected
or emitted electromagnetic radiation from the Earth to obtain
information on the Earth’s surface or the overlying atmo-
sphere [1]. There is a certain orbital maneuver that keeps
remote sensing satellites at a prearranged or target orbit so
that they can complete their tasks. Detecting this orbital
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maneuver through effective methods such as data mining has
attracted the attention of many scholars.

Recently, data mining has attracted considerable attention
across several fields, where it has proved beneficial. There are
many people working with the idea that patterns in data can
be sought automatically, identified, validated, and used for
prediction, which spawned datamining. Datamining involves
methods and algorithms that solve problems by analyzing
existing data [2]. With the rapid development of computer
techniques and the unremitting efforts of practitioners in
various industries, data mining technology can automatically
accomplish a task and has been greatly developed and applied
to many practical uses.

In aerospace engineering, there have been many studies on
the use of data mining techniques for exploiting satellite data
to solve dynamic problems [3]–[11].

Compared with the physics-based approach, data min-
ing presents a different modeling and prediction capability
without an exact model of objects, maneuvers, and space
environments. Self points out that data mining is an effi-
cient method for analyzing large volumes of data, such
as in the case of clusters of satellites [3]. Sánchez et al.
applied the deep neural network to the solution of the
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Hamilton–Jacobi–Belman equation and provided a near-
optimal control method for spacecrafts [4]. Du et al. devel-
oped an improved ant colony algorithm based on a sensational
and consciousness strategy to solve the traveling salesman
problem with constraints in the area targets observation mis-
sion [5]. Polivka et al. used data mining to process a large
amount of historical GPS navigation data to compare the
broadcast orbits and clocks to reference products, which
provides insight to long-term performance and establishes
a baseline for assumptions on the clock and orbit errors
and failure rates [6]. Tanner et al. proposed the concept of
on-board data mining [7]. Qu et al. applied the Internet of
Things, which can be combined with big data, to the low-
Earth orbit satellite [8]. Based on the normalization of the
large-scale network cooperation of sensor systems, sensor
data is processed on the satellite, which can improve network
communication capability and reduce costs. To make full use
of remote sensing data, Gong et al. designed a multisource
remote sensing image data mining system framework based
on traditional data mining and knowledge discovery technol-
ogy [9]. Meanwhile, Peng et al. concentrated on the lack of
area-to-mass ratio of a resident space object in most space
catalogs, and used Random Forest, a data mining method,
to determine the connection between the consistency error
and area-to-mass ratio [10]. Peng et al. also used the support
vector machine model to learn the errors of orbit prediction,
aiming to improve the accuracy of satellite orbit predic-
tion [11]. However, they did not simulate TLE or any other
actual on-orbit data.

Orbital maneuver detection is an important component of
space situational awareness [12], especially for very little
maneuvers that are hard to detect by traditional methods.
Through maneuver detection, we can analyze the orbital con-
trol purpose of the satellite to obtain the mission objectives.
Danial et al. developed an optimal state estimator called
the optimal control-based estimator to detect and recon-
struct maneuvers with no prior information [13]. The variable
dimension filter presented by Bar-Shalom et al. changed the
state model for the target by introducing extra state compo-
nents to realize the track of the maneuvering target instead
of relying on the statistical description of the maneuver as a
random process [14]. Spingarn and Weidemann proposed a
linear regression filter for tracking maneuvering targets [15].
Thorp described the maneuver model as an increase in the
driving noise and computed the likelihood for the hypoth-
esis as to whether or not a maneuver occurred [16]. Pat-
era’s space detection method was suitable for detecting
space events, such as maneuvers, collisions, and explosions,
but it focused more on quick events and neglected smaller
maneuvers and natural dynamics mismodeling, making its
application limited [17]. However, there is currently no sys-
tematic method to detect various spatial events based on
orbital anomalies. Thus, as anomaly detection and pattern
mining are a branch of data mining, it is quite practi-
cal to apply data mining technology to orbital maneuver
detection.

The data volume of TLE historical data is quite large, and
there is very little valuable information. Therefore, a deep
analysis is performed on a large amount of data to obtain
the information that is beneficial to space mission design
and improve model accuracy. So far, some studies on mining
TLE data have been conducted. Doornbos et al. converted a
large amount of TLE data into satellite resistance data for
the problem of the large error in the traditional experience
thermal layer model [18]. Lemmens et al. proposed two
orbital maneuver detection methods based on TLE historical
data. The first method focuses on low-Earth-orbit non-natural
anomalous events based on a consistency check between
arbitrary element sets. The secondmethod evaluates the unex-
pected changes by robust statistical and harmonic analyses
using time series or derived quantity thereof. Both meth-
ods achieve better results in different orbital systems [19].
Kelecy et al. have proposed a maneuver detection algo-
rithm that uses historical TLE data. They examined the
data by searching the abnormal differences that exceed the
user-specified threshold to realize the detection Their filter
requires computing a first-order polynomial fit of all the data
within the interval [20].

This paper focuses on the detection of orbital maneuvers
through data mining with historical TLE data. The unsu-
pervised classification methods, K-means, hierarchical, and
fuzzy C-means clustering, are used to detect the orbital
maneuver and maintenance strategy to record the orbital
control action. The framework of the data mining approach
based on historical TLE data is demonstrated in Figure 1. The
TLE historical data is first divided into large-, medium-,
and small-scale data according to the magnitudes of orbital
maneuvers. Then, data preprocessing is needed to obtain
the conforming data to cluster, such as 0-1 standardiza-
tion, wavelet filtering and Simplified General Perturbations
Satellite Orbit Model 4 (SGP4) orbit prediction [21]. After
completing the above two steps, the data clustering pro-
cess is performed First, the K-means-based contour map
method is applied to the characteristic variable selection and
cluster number determination. Then, according to the TLE
data, the three clustering methods are implemented to cluster
the data and determine the most suitable method. For the
large-, medium-, and small-scale orbital maneuvers, the most
efficient clustering methods are different as a result of vary-
ing the characteristic variable selection and cluster number.
In this paper, the TLE data of the remote sensing satellites,
‘‘YAOGAN-9’’ ‘‘TIANHUI-1’’ and ‘‘Envisat’’ are demon-
strated to prove that the clustering method is effective based
on traditional engineering experience. Although the three
methods have certain missed judgments and return errors in
some cases, the convenience of the data mining method is
superior to that of traditional methods.

This paper makes three main contributions: 1) A large
number of TLE historical data are clustered in a well-
organized manner to present orbital maneuver behaviors
without using complicated estimators or filters usually used
in classical methods. There is no sensitivity trade-off between
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FIGURE 1. Flowchart of the detection of orbital maneuver by data mining:
the three clustering methods are implemented to cluster the data.

the algorithm parameters and the clustering process is
conducted without the artificial threshold derived from the
traditional experiences; 2) The unsupervised classification
methods are demonstrated to have good performance with
regard to detecting orbital maneuvers. The missing rates and
the false rates can be as low as 1%, in comparison to 6%,
which occurs for some classical methods; 3) For different
scales of orbital maneuvers, the performances of different
clustering methods have been investigated, addressing the
shortcoming of only one scale orbital maneuver being exam-
ined in classical methods.

II. FUNDAMENTAL CONCEPTS OF DATA MINING AND
ORBITAL MANEUVERS
In this section, the fundamental concepts of the three main
clustering methods of data mining are reviewed as well as the
orbital maneuvers based on the orbit elements.

A. CLUSTERING METHODS OF DATA MINING
In the face of a huge amount of data, we are interested in
the methods for finding and describing structural patterns in
the data as an implement to help interpret the data and make
predictions from it. Clustering techniques, as one of the main
contents of data mining, are usually applied when there is no
clear class to be predicted yet instances need to be divided

into particular clusters. The data handled in this method are
usually vector objects represented as attribute vectors [22]
These clusters may reflect mechanisms that act in the domain
from which the instances are extracted, which makes certain
instances more similar to each other than to the rest [2]. After
the clustering is completed, the different clusters are analyzed
in detail. Furthermore, to obtain more convincing results,
other methods, such as self-learning algorithms and tun-
able weighting strategies, are used to improve the clustering
methods [23], [24].

Based on the principle of the clustering algorithm, the
clustering methods can be divided into six groups:
partitioning methods, hierarchical methods, density-based
methods, model-based methods, grid-based methods and
soft-computing methods [25]. Most of traditional clustering
methods focus on the density of edges as the attributes
and some new methods come up according to the signs of
edges to cluster. Li et al. proposed a new efficient clustering
algorithm based on the positive and negative update rule to
ensure that the network clustering reaches a state of optimal
convergence [26].

Presently, the K-means, hierarchical, and fuzzy C-means
clustering methods are usually used in practice. The K-means
method is a typical hard partitioning clustering method that
is simple to implement and widely used. It can be viewed
as a degenerate density-based algorithm [27] or a special
case of model-based clustering, where all the distributions
are assumed to be Gaussians with equal variance [28]. The
fuzzy C-means clustering method extends the partitioning
notion and suggests a soft clustering schema. The hierarchi-
cal method, different from the methods above, construct the
clusters by recursively partitioning the instances in either a
top-down or bottom-up fashion. The main advantage of the
hierarchical method is its applicability to any attribute type.
Moreover, the TLE data are typical multi-density data and the
effect of grid-based methods used in multi-density data clus-
tering is ‘‘poor’’ [29]. The grid-based methods are spatially
driven, dividing the embedding space into units independent
of the distribution of input objects, different from the other
four methods driven by data. To make our analysis targeted
and comparable, grid-based methods are not considered in
this paper [30].

1) K-MEANS CLUSTERING METHOD
K-means is the most typical distance-based clustering algo-
rithm. It uses distance as a criterion for the similarity between
data. Given a predetermined number K , the algorithm divides
the data set into K disjoint subsets. Then, the grouping pro-
cedure is repeated until it converges. After the number of
clusters k and the pieces of data n are given in advance,
the processing flow of the K-means algorithm is as follows:
1) select k data randomly as the initial cluster center from the
n data and; 2) calculate the distance between the remaining
data and the cluster center, and re-divide the data according
to the minimum distance, which minimizes the following

VOLUME 7, 2019 129539



X. Bai et al.: Mining TLE Data to Detect Orbital Maneuver for Satellite

objective function:

E =
k∑
j=1

∑
xi∈ωj

∥∥xi − mj∥∥2 (1)

where xi is a data object in a cluster ωj and mj is the cen-
troid (mean of objects) of ωj; 3) recalculate the mean of
each cluster as a new clustering center; 4) repeat steps 2)
and 3) until each cluster no longer changes.

The K-means algorithm is simple and fast [31]. The time
complexity of the K-means method is O(n · k · l), where n is
the size of the data, k is the number of clusters, and l is the
number of iterations taken by the clustering to converge [28].
It indicates that the K-means method has linear time com-
plexity in the size of the data set. The space complexity of
the K-means method is O(n+ k).
However, as it is a two-stage loop algorithm, it is neces-

sary to continuously re-divide the data, so the computational
burden is heavier, and it is sensitive to some abnormal points
and a given number of clusters k .

2) HIERARCHICAL CLUSTERING METHOD
The hierarchical clustering method is accomplished by divid-
ing the data into clusters and forming a corresponding tree.
The single linkage, average linkage, and complete link-
age methods use the minimum, average, and maximum
distances between the members of two clusters, respec-
tively [32]. According to the formation process, it can be
further divided into agglomerative approaches and divisive
approaches. Agglomerative clustering is a bottom-up strategy
that first regards each data as a separate cluster before merg-
ing different data points into larger clusters until all data is
in one cluster or some termination condition is met. Divisive
clustering is a top-down strategy that starts with one cluster
containing all the data; then, it divides it into different clusters
until all the data are merged into a separate cluster or until the
termination condition holds.

In this paper, the agglomerative clustering algorithm is
used. After the number of clusters k and the pieces of data n
are given in advance, the processing flow is as follows:
1) treat n pieces of data as n clusters; 2) find the data points
that are subordinate to different clusters but closest to each
other; 3) combine the two clusters; and 4) repeat steps 2) and
3) until the number of current clusters reaches k .
For the hierarchical clustering method, the time and space

complexities areO(n2 · log n) andO(n2), respectively because
a similarity matrix of size n2 has to be stored. The agglomer-
ation or divisiveness of hierarchical clustering is difficult to
select at a certain stage, which leads to poor quality clustering
results, and owing to the need to test and estimate a large
amount of data or clusters in the selection process, the flexi-
bility of the method is also modest.

3) FUZZY C-MEANS CLUSTERING METHOD
The fuzzy C-means algorithm extends the hard C-means
algorithm to allow data points to partially belong to

multiple clusters simultaneously [33]. It can be described as
an optimization problem and the goal is to make the objective
function minimum:

J (U ,V ) =
n∑

k=1

c∑
i=1

umikd
2
ik (2)

where n is the number of data, c is the number of clusters,
and U = (uik )c×n is the membership matrix. Here, 0 ≤ uik ≤

1,
c∑
i=1

uik = 1, and the total membership of a dataset is 1. V =

(v1, v2, . . . vc) is the center of the cluster. dik = ‖xk − vi‖
represents the Euclidean distance from the k th data to the
ith cluster center. umik is the weighting coefficient, indicating
that the k th data belongs to the mth power of the membership
of the ith cluster, and m is the parameter that controls the
flexibility of the algorithm.

The fuzzy C-means clustering method has a low compu-
tation burden and a high efficiency. It has an intermediate
O(n · k) complexity [34] It can form a fuzzy similarity matrix
according to the relevant data, and directly processes the
similaritymatrix, avoiding repeated call scans to the database.
The parameter m can be dynamically adjusted as needed and
has good flexibility. However, the gradient method is used in
the optimization process resulting in the local optimum.

B. IMPLEMENTATION OF ORBITAL MANEUVERS
Orbital maneuvers are implemented in the initial orbital phase
and orbital maintenance phase to keep the satellite at the
prearranged orbit because a launch vehicle usually cannot put
the satellite in its final orbit, and there are orbital perturba-
tion factors during its in-orbit phase. Any orbital change is
completed by a velocity change applied to the satellite [35].
Therefore, it is comparatively easy to analyze the change in-
orbit parameters to obtain the orbital maneuvers and if the
observed orbit elements change at different times, the maneu-
ver detection should be considered.

According to the perturbed orbital dynamics [36],
an impulse velocity 1v exerted at an arbitrary point f during
the near-circular orbit will simultaneously change the values
of orbit elements as follows:

1a =
2
n
1vr

1e =
1
na

(sin f1vr + 2 cos f1vu)

1i =
1
na

cos(ω + f )1vh

1� =
1
na

sin(ω + f )
sin i

1vh

1ω =
1
na

(− cos f1vr + 2 sin f1vu −1� cos i)

1M = n+
1
na

(cos f1vr − 2 sin f1vu)

(3)

where 1 is the change in elements caused by the orbital

maneuver, n =
√
µ
/
a3,1vr , and1vu are the impulse veloc-

ity components along the radius and along-track directions,
respectively, and1vh travels along the across-track direction.
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Once the differential values of the orbit elements are known,
the maneuver parameter1v can be calculated, and the orbital
detection can be realized.

III. DETECTION OF THE ORBITAL MANEUVER AT
DIFFERENT SCALES
This section describes how the three methods mentioned
above are used to detect the orbital maneuver and main-
tenance strategy, identify the abnormal orbit behavior, and
record the orbital action. With regard to the difficulty in
determining the threshold criterion of a traditional method
in advance, with the clustering methods, the detection of
the orbital maneuver begins from the TLE historical data,
which avoids artificial threshold setting and achieves auto-
matic measuring of the distance by algorithm. The number of
characteristic variables and clusters is confirmed first by the
counter method based on the K-means algorithm; then the
TLE historical data can be unsupervised and classified into
expected clusters that represent the different orbital behaviors
after analyzing the characteristic variables.

According to aerospace dynamics, orbital maneuvers can
be divided into three scales based on these events: the estab-
lishment and reconfiguration of formation, the maintenance
of the low earth orbit, and the maintenance of the high
earth orbit. Two of the ‘‘YAOGAN-9’’ constellation satellites
launched from the Jiuquan Satellite Launch Centre, China,
on 5 March 2009, i.e., A and B, are used as the data source
for the detection of large-scale orbital maneuvers owing to
there being more maneuvers and obvious orbital control in
the initial stage of orbit [37]. While ‘‘YAOGAN-9’’ is in
its late stage of orbit, where moderate/little orbital mainte-
nance is required, its data will be used for the detection of
small-scale orbital maneuvers. The ‘‘TIANHUI-1’’ satellite
launched from the Jiuquan Satellite Launch Centre, China,
on 24 August 2010 has more maneuvers and less orbital con-
trol during the long-term control period and is used as the data
source for the orbit detection of medium-scale orbital maneu-
vers described in this section [38]. The ‘‘Envisat’’ satellite
was launched on Mar. 1, 2002, by ESA and operated until
Apr. 8, 2012 [39] Its TLE contain a fairly dense maneuver
history of small-amplitude orbit-control maneuvers. Further-
more, the variables of data mining depend on the different
scales of orbital maneuvers according to the counter method.

A. THE NUMBER OF CLUSTERS
In Section II, the TLE historical data is deconstructed into a
standardized in-orbit state comprising 13 combined parame-
ters, including orbital elements, and the position and velocity
vectors. To facilitate the application of the subsequent cluster-
ing methods, clustering characteristic variable selection and
cluster number determination must be solved first. Gener-
ally speaking, to judge whether orbital maneuvering occurs,
manually determining the characteristic variable as a criterion
and observing whether there is a significant change in the
characteristic variables before and after the orbital control is
necessary. This method is based on the empirical or statistical

theory for the selection of the characteristic variables and
the determination of the threshold, mostly requiring human
intervention. This method combines the characteristic vari-
able selection with the contour method, calculates the average
contour value by using a single in-orbit state, sorts accord-
ing to the calculation result, selects the combination of the
criterion variables, and solves the problems of characteristic
variable selection and number determination.

The contour value of the ith data in the dataset is defined
as:

S (i) =
min (b)− a

max [a,min (b)]
, i = 1, . . . , n (4)

where min and max are the minimum and maximum func-
tions, respectively, a is the average distance between the
ith data and other identical cluster data, and b is a vector where
the elements represent the average distance between the
ith data and other different cluster data. Obviously, the value
range of S(i) is [−1, 1]. The larger the value is, the more
reasonable the classification result of the data is. There are
two conclusions that can be drawn from Equation (4): 1) For
the calculation of the contour value of a certain data, it is
necessary to complete clustering; and 2) the average contour
value of a dataset can be used as the basis for judging the
current clustering result.

For different scales of orbital control maneuvers, cluster
numbers and characteristic variables correspond to different
average contour values.

The TLE historical data of satellite A of ‘‘YAOGAN-9’’
are used as the basis of the simulation. The data should be
processed first, and the characteristic variables before and
after the orbital maneuver will change greatly. Therefore,
the adjacent two data are differentiated, which means the data
form [a, e, i, �, ω, M , rx , ry, rz, vx , vy, vz] is converted into
the differentiated form [δa, δe, δi, δ�, δω, δM , δrxδryδrz,
|δr|, δvx , δvy, δvz, |δv|]. It is worth mentioning that in the
natural evolution stage of the orbit, some difference results
may be quite close to 0, which is in conflict with the clustering
algorithm and exceeds the computer floating point precision.
Therefore, 0-1 standardization is performed again to avoid
this problem.

The K-means method is then used to cluster the data
and draw the contour map for the following reasons: 1) the
K-means algorithm is relatively scalable and efficient with
a certain universality for the following analysis 2) the algo-
rithm is simple and fast empirically, reducing the time of
execution required to find an appropriate number of clusters
for the huge dataset; 3) the algorithm has less computation
complexity compared with other methods. 4) it is the most
typical distance-based clustering algorithm using distance as
a criterion for the similarity between datasets. Consequently,
it is used for characteristic variable selection and cluster
number determination. Figure 2 shows the contour map when
1a was chosen as the characteristic variable and the number
of clusters is 2, 3, 4, and 5. The cluster with label ‘‘1’’ has
the largest proportion and it is most likely the data of the
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FIGURE 2. Contour map: δ a was chosen as the characteristic variable; a
the number of clusters is 2; b the number of clusters is 3; c the number of
clusters is 4; and d the number of clusters is 5.

natural evolution stage of the orbit. The clusters labeled ‘‘2’’,
‘‘3’’, and ‘‘4’’ are relatively small and should correspond to
the different categories, such as ascending points, descending
points, and abnormal points, which are not frequent dur-
ing satellite operation and account for a small proportion.
However, it is difficult to directly determine the number of
clusters.

Figure 3 shows the variation in the average contour value in
the case of different cluster numbers and different characteris-
tic variables. As can be seen from the foregoing, the clustering
results are effective for the average contour value closer to 1.
Figure 3a demonstrates the trend of the average contour value
corresponding to 14 characteristic variables as the number of
clusters changes from 2 to 15. It can be seen that when the
number of clusters is greater than 3, the average contour value
has a certain decline and the overall trend starts to diverge.
Therefore, Figure 3b focuses on the case of the average
contour value corresponding to each characteristic variable
when the number of clusters is 2 and 3. Except for those of
δ�, δM, and δ |r| , the average contour value corresponding to
most of the characteristic variables has a tendency to converge
toward 1 as the number of clusters changes from 2 to 3.
Therefore, setting the number of clusters to 3 is a reasonable
choice.

The determination of the characteristic variables and
the number of clusters are based on the TLE histori-
cal data of satellite A of ‘‘YAOGAN-9’’, which mainly
comprises large-scale maneuvers in the deployment phase.
For medium- and small-scale orbital maneuvers, the num-
ber of the clusters is basically consistent except that
the selection of the characteristic variables requires a
separate analysis. The specific discussion can be found
in Sections III.C and III.D.

FIGURE 3. Average contour value in the case of different cluster numbers
and different characteristic variables: TLE data from YAOGAN-9A; a trend
of the average contour value corresponding to 14 characteristic variables
as the number of clusters changes from 2 to 15; and b average contour
value corresponding to each characteristic variable when the number of
clusters is 2 and 3.

B. DETECTION OF LARGE-SCALE ORBITAL MANEUVER
When the satellite constellation is in the deployment phase,
it will produce larger and more obvious orbital maneuvers,
so the TLE historical data of satellite A of ‘‘YAOGAN-9’’
was chosen as the basis for the simulation on a large scale.
The results of averaging the average contour values of all the
characteristic variables with different numbers of clusters are
shown in Table 1. It can be quantitatively seen that when the
number of clusters is greater than 3, the mean average contour
value presents a downward trend despite some fluctuations.

However, the average values of the numerical results
of the three clusters, shown in Figure 3, are smaller than
those of the two clusters, which can be seen in Table 2.
This is because the average contour value corresponding to
δ� decreases by 18.27% when the number of clusters
increases from 2 to 3, lowering the average contour value
of cluster number 3. In fact, if δ� is not taken into account,
the average contour value of Cluster 3 is 0.9879, which is
greater than that of Cluster 2, which is 0.9790. In addition,
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TABLE 1. Average contour value of different numbers of clusters.

TABLE 2. Average contour value of different characteristic variables when
the number of clusters is 3.

as can be seen from Table 2, δa is not the optimum char-
acteristic variable when the number of clusters is 3 because
the average contour values corresponding to the characteristic
variables such as δω, δrx , and δrz are higher than δa, which
is different from the traditional method where the semi-major
axis variation is regarded as the first criterion [20].

According to the above analysis, for the detection of large-
scale orbital maneuvers, the number of clusters is determined
to be 3 and [δa, δω, δrz, δvx] are chosen as the characteristic
variables. Focusing on the first 200 TLE historical data points
after Satellite A is in orbit, we obtain the semi-major axis
variation curve and the K-means clustering result shown
in Figure 4, in which the clustering result is plotted as a
dot-dash line to highlight the contrast between them. The
semi-major axis corresponding to Cluster 1 has no obvious
fluctuations, indicating that Cluster 1 represents the natural
evolution points of the orbit; while Cluster 2 always appears
behind Cluster 3, demonstrating that Cluster 3 represents the
starting point of orbital maneuver, while Cluster 2 represents
the end point.

By the K-means clustering method, the orbital maneu-
ver implemented in the deployment phase of Satellite A is
illustrated in Figure 5. The clustering results show that the
entire maneuvering process comprised two descending and
four ascending nodes. However, from the semi-major axis
curve, the first descending is not obvious, and it is in the early
stage of the orbit, indicating that it is not a highly probable
active maneuver of satellite A. After the second ascending,
it seems there is still an ascending maneuver according to the
semi-major axis curve, which is excluded from the clustering
results.

Figure 6 shows the distance matrix between the 200 data
points, which is the degree of similarity of each cluster. It can
be seen from the color bar on the right side that the lighter
the color of the dots in the figure, the larger their distance
from other data points, and the lower the similarity between

FIGURE 4. Semi-major axis variation curve and the K-means clustering
result: the blue line indicates the semi-major axis variation with time and
the red line indicates the clustering result.

FIGURE 5. Semi-major axis curve marked with orbit control points by the
K-means clustering method: the black line indicates the natural evolution
process; the red asterisk indicates the starting point of the orbital
maneuver; and the blue asterisk indicates the end point of the orbital
maneuver.

the clusters; hence, it is reasonable to prove that the number
of clusters is 3.

Figure 7 shows the semi-major axis variation curve and
hierarchical clustering results of satellite A. The two semi-
major axes of Cluster 2 have no obvious fluctuations, indi-
cating that Cluster 2 represents the natural evolution points
of the orbit; only one point is classified into Cluster 1, and
only one point is placed into Cluster 3, which cannot show
the ascending or descending maneuver clearly.

According to the detection through the hierarchical cluster-
ing method, the orbital maneuver implemented in the deploy-
ment phase of satellite A is given in Figure 8. The results
show that the entire process had one descending and one
ascending maneuver only, which is quite different from the
actual maneuvers indicating that the hierarchical clustering
missed several maneuvers.
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FIGURE 6. Distance matrix of the K-means clustering result: the color
represents the degree of similarity of each cluster.

FIGURE 7. Semi-major axis variation curve and the hierarchical clustering
result: the blue line indicates the semi-major axis variation with time and
the red line indicates the clustering result.

Figure 9 shows the distance matrix between the 200 data
points. As there are fewer data points divided into Cluster 1
and Cluster 3, it can be seen that the hierarchical clustering
method is not effective.

Figure 10 demonstrates the semi-major axis variation curve
and the fuzzy C-means clustering results of satellite A.
It can be seen that except for the descending and ascending
points, there are some unclear points, which is similar to the
K-means result This indicates that the fuzzy C-means clus-
tering method misjudged some points. The orbital maneuver
implemented in the deployment phase of satellite A is given
in Figure 11. The semi-major axis corresponding to Cluster 1
has no obvious fluctuation, indicating that it represents the
orbit natural evolution points, and Cluster 3 always appears
after Cluster 2, indicating that Cluster 3 represents the starting
point of the orbital maneuver, and Cluster 2 represents the
end point of the orbital maneuver. Figure 12 illustrates the
distance matrix between the 200 data points.

FIGURE 8. Semi-major axis curve marked with orbit control points by the
hierarchical clustering method: the black line indicates the natural
evolution process; the blue asterisk indicates the starting point of the
orbital maneuver; and the red asterisk indicates the end point of the
orbital maneuver.

FIGURE 9. Distance matrix of the hierarchical clustering result: the color
represents the degree of similarity of each cluster.

Table 3 provides a comparison of the three clusteringmeth-
ods in which the number of each cluster and the number of
false and missed judgments are regarded as the comparative
evaluation. It can be seen from Table 3 that the K-means
clustering method can clearly distinguish different maneuver
points despite two missed points and two fault points. The
hierarchical clustering method can only detect the two points
of maneuvering and the fuzzy C-means method detects sev-
eral misjudged points. The missing rates of the three methods
are 1%, 5%, and 1%, respectively, and the false rates are 1%,
0%, and 11%, respectively, meaning that both the hierarchical
and fuzzy C-means methods cannot detect the orbit control
points efficiently. Thus, the K-means method is chosen as the
orbital detection method and the subsequent content on the
detection of large-scale orbital maneuvers will be based on
K-means.

It is confirmed that satellite A underwent one descend-
ing and four ascending maneuvers after entering the orbit.
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FIGURE 10. Semi-major axis variation curve and the fuzzy C-means
clustering result: the blue line indicates the semi-major axis variation
with time and the red line indicates the clustering result.

FIGURE 11. Semi-major axis curve marked with orbit control points by
the fuzzy C-means clustering method: the black line indicates the natural
evolution process; the blue asterisk indicates the starting point of the
orbital maneuver; and the red asterisk indicates the end point of the
orbital maneuver.

However, based on engineering experience, it is difficult for
the spaceborne orbital control engine to achieve a descending
maneuver up to 30 km at a time, and the true descending
process should have the same multiple maneuvers as the
ascending process. In fact, there are another three additional
TLE historical datasets of the spatial catalogs (the final stage
of the rocket, the bracket, etc.), and through analysis of these
data, it is found that the actual early descending maneuver of
satellite A is recorded in the datalogs of the last stage of the
rocket’s orbit.

Figures 13 and 14 show the detection results through the
K-means method for the early descending maneuver of satel-
lite A. Consistent with the previous analysis, the descending
process is performed three times. From the semi-major axis
variation curve, there is a missed judgment at the second
descending, and the actual descending process should contain
four maneuvers. Furthermore, it should be noted that the

TABLE 3. Comparison of the three clustering methods.

FIGURE 12. Distance matrix of the fuzzy C-means clustering result: the
color represents the degree of similarity of each cluster.

in-orbit state of almost all the spatial targets fluctuates near a
few points after orbit-injection, so the clustering results near
the orbit-injection points are not discussed.

C. DETECTION OF MEDIUM-SCALE ORBITAL MANEUVER
Section III.B shows that the clustering method is effective
in detecting large-scale orbital maneuvers with magnitudes
of approximately 5 km at one time. While for medium-scale
orbital maneuvers, the TLE historical data of ‘‘TIANHUI-1’’,
of which the maneuver is approximately 50–200 m during
the long-term control period, is used as the basis for the
simulation. The characteristic variables and the number of
clusters are reselected. Figure 15a illustrates the variation in
the average contour value when different clusters and differ-
ent characteristic variables are taken. When the number of
clusters is greater than 6, the average contour value converges
to around 0.7. Figure 15b shows an enlarged view of the

VOLUME 7, 2019 129545



X. Bai et al.: Mining TLE Data to Detect Orbital Maneuver for Satellite

FIGURE 13. Early semi-major axis variation curve and the clustering
result: the blue line indicates the early semi-major axis variation with
time and the red line indicates the clustering result.

FIGURE 14. Early semi-major axis curve marked with orbital control
points: the black line indicates the natural evolution process; the red
asterisk indicates the starting point of the orbital maneuver; and the blue
asterisk indicates the end point of the orbital maneuver.

average contour values for 2 clusters and 3 clusters. Based
on the order of the average contour values, [δa, δi, δ�, δω]
are selected as the feature variables.

After comparing the performance of the three clustering
methods, the K-means method finally is used to perform
orbital maneuver detection on the first 2000 TLE historical
data points after ‘‘TIANHUI-1’’ was in orbit. The hierarchical
and the fuzzy C-means clustering methods miss a lot of
maneuvers.

Figure 16 shows the detection results when the number of
clusters is 3, and 16 orbital maneuvers are detected. How-
ever, there are 14 missed points and 5 fault points, and the
correspondence between the start and the end points of the
maneuver is not accurate.

In the case where the number of clusters is 3, the time and
the orbital control of 16 maneuvers are as shown in Table 4.
It can be seen that the orbital control fluctuates between
100 and 1000 m, but lies mostly around 450 m, while the

FIGURE 15. Average contour value in the case of different cluster
numbers and different characteristic variables: TLE data from TIANHUI-1;
a trend of average contour value corresponding to 14 characteristic
variables as the number of cluster changed from 2 to 15; and b average
contour value corresponding to each characteristic variable when the
number of clusters was 2 and 3.

interval of control timing fluctuates between 15 and 35 d, but
lies mostly around 25 d. The orbital control and maneuver
are proportional to the orbital control intervals; this result is
compatible with traditional orbital dynamics.

Through the above-mentioned orbital maneuver detection
of the ‘‘TIANHUI-1’’ during the long-term control period,
the applicability of the clustering method is verified; further-
more, the method shows good performance in the case of
medium-scale orbital maneuvers.

D. DETECTION OF SMALL-SCALE ORBITAL MANEUVER
In this section, two conditions of small-scale orbital maneu-
vers are discussed: maneuvers by absolute orbit elements and
maneuvers by relative orbit elements.

1) MANEUVERS BY ABSOLUTE ORBIT ELEMENTS
‘‘Envisat’’, as an Earth observation satellite, provides
observational parameters to improve environmental studies.
A 2-year segment of the ‘‘Envisat’’ dataset running
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FIGURE 16. Semi-major axis variation curve and the clustering result of
‘‘TIANHUI-1’’: a the blue line indicates the semi-major axis variation with
time; the red line indicates the clustering result; b the red asterisk
indicates the start point of the orbital maneuver; the blue asterisk
indicates the end point of the orbital maneuver.

TABLE 4. Time and orbital control of 16 maneuvers of ‘‘TIANHUI-1’’.

from 2003–2005 is examined by the clustering method. It can
be easily seen that the orbit maneuver applied in Envisat
during 2003 to 2005 is approximately 50 m and below, which

FIGURE 17. Average contour value in the case of different cluster
numbers and different characteristic variables: a TLE data from ‘‘Envisat’’;
a trend of average contour value corresponding to 13 characteristic
variables as the number of cluster changes from 2 to 15; b average
contour value corresponding to each characteristic variable when the
number of clusters is 2 and 3.

can be devoted to the detection of small-scale orbital maneu-
vers. The characteristic variables and the number of clusters
are reselected. Figure 17 shows the variation in the average
contour value in the case of different cluster numbers and
different characteristic variables.

Figure 17a illustrates the variation in the average con-
tour value when different clusters and different characteristic
variables are taken. Figure 17b shows an enlarged view of
the average contour values for 2 clusters and 3 clusters.
In order of the average contour values, setting the number
of clusters to 2 is a reasonable choice and [δz, δa, δω] are
selected as the feature variables. According to the results of
the semi-major variation curves of the three methods with the
orbital control points, the fuzzy C-means clustering method
is useful in detecting the orbital maneuvers of ‘‘Envisat’’.
The K-means and hierarchical clustering methods cannot
effectively classify the TLE data.

As shown in Figure 18, the fuzzy C-means clustering
method can clearly distinguish the semi-major axis increases
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FIGURE 18. Semi-major axis variation curves marked with orbital control
points: the black line indicates the natural evolution process; the blue
asterisk indicates the orbital maneuver points; and the green dotted lines
represent the detected orbital maneuvers.

and decreases: the semi-major axis corresponding to Cluster 1
exhibits an ascending trend, and the semi-major axis corre-
sponding to Cluster 2 exhibits a descending trend, indicating
that Cluster 1 represents the orbital control process. To make
it more apparent, the green dotted lines represent the detected
orbital maneuvers by the clustering method. The false detec-
tion rate is a little over 1.4%.

To prove the efficiency of the proposed detection method,
the comparison with the classical algorithm presented by
Kelecy et al is made [20]. Their study focused on Envisat for
which high-quality TLE data and known maneuver histories
are available. The main differences and advantages are as
follows: 1) There are no complicated estimators to establish
in our proposed method. While the detection proposed by
Kelecy et al needs a linear polynomial filter and computes
the filtered differences between each nearby data segment to
find anomalously large differences; 2) because the clustering
methods are based on the similarity of data, the maneuver
detection proposed in this paper is insensitive to the artifi-
cial threshold derived from the traditional experiences. How-
ever, a sensitivity trade-off between the algorithm parameters
exists in the classical method. The filtering window length,
the order of the filtering polynomial and the n-σ detection
level can influence the performance metrics; 3) and the
false detection level of the clustering method is about 1.4%,
which is lower than the 6% of the classical method used by
Kelecy et al. 4) For computational complexity, the clustering
methods are at least linearly proportional to the size of the
data set, which is higher than that of the classic algorithm
with linear complexity, i.e. O(n), where n is the size of data.

2) MANEUVERS BY RELATIVE ORBIT ELEMENTS
When the satellite formation of ‘‘YAOGAN-9’’ was deployed
in its late stage of orbit, there was moderately little orbital
maintenance required at about 5–20 m devoted to the

FIGURE 19. Average contour value in the case of different cluster
numbers and different characteristic variables: the trend of the average
contour value corresponding to 3 characteristic variables as the number
of clusters changes from 2 to 15.

detection of small-scale orbital maneuvers. This section
mainly focuses on satellite A and satellite B.

In fact, the detection of small-scale orbital maneuvers is
different from that of large- or medium-scale orbital maneu-
vers. As the formation configuration changes periodically
owing to the different orbit elements of each satellite, the rel-
ative orbit elements at each moment also change. Therefore,
an orbital maneuver can be detected by the relative orbit ele-
ments of a fixed moment within the satellite orbit period; this
requires the orbital data of each satellite in the formation to be
synchronized. Because the sampling time interval is large and
the sampling time of each satellite is different, the TLE data
downloaded directly from thewebsitemust be processed to be
used as a clustering database. First, the SGP4model is used to
predict the orbit data when satellite A runs to the orbit phase
of 0, the orbital data of satellite B is also predicted at this time
to obtain the relative orbit elements between the two satellites
at the same time. Owing to certain noise in the TLE data, there
are some errors in the prediction data, so wavelet filtering is
needed to preprocess the data. The adjacent two datasets are
differentiated and the relative orbit elements are converted
into differential form. δaAB, δeAB, and δrAB are chosen as
the characteristic variables owing to the insignificance of the
other relative orbit elements.

Figure 19 shows the variation in the average contour value
in the case of different cluster numbers and different char-
acteristic variables. It demonstrates the trend of the average
contour value corresponding to 3 characteristic variables as
the number of clusters changes from 2 to 15. It can be seen
that when the number of clusters is greater than 2, the average
contour value has a certain decline and the overall trend starts
to diverge. Therefore, the number of clusters is determined to
be 2 for the detection of small-scale orbital maneuvers. When
the number of clusters is 2, it can be seen from Figure 19 that
the average contour value of δrAB is higher than that of δaAB
and δeAB, so δrAB is chosen as the characteristic variable.
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FIGURE 20. Relative distance variation curves marked with orbital control points: a by the K-means clustering method; b by the hierarchical clustering
method; and c by the fuzzy C-means clustering method; the green dotted lines represent the detected orbital maneuvers.

Different from those of the large orbital control and the
medium orbital control, the characteristic variable of the
small-scale orbital maneuver detection, δrAB, is a relative-
position quantity, so it is necessary to compare the clustering
methods again. Figure 20 shows the relative distance variation
curves of the three methods with the orbital control points.
In Figure 20a, only 7 points indicating the start or end maneu-
ver points are detected by the K-means clustering method
and there are some meaningless points. In Figure 20b, only
2 maneuver points are detected, which does not agree with
the actual maneuvers, demonstrating that the hierarchical
clustering method is not accurate. Both of these methods
can not indicate the accurate orbital maneuvers. As shown
in Figure 20c, it can be seen that the fuzzy C-means clustering
method can clearly distinguish the relative distance increases
and decreases: the relative distance corresponding to Cluster
1 exhibits an ascending trend, and the relative distance corre-
sponding to Cluster 2 exhibits a descending trend, indicating
that Cluster 2 represents the orbital control process. The green
dotted lines represent the detected orbital maneuvers by the
clustering method. The missing rate is approximately 4%.
Therefore, the K-means and hierarchical clustering methods
cannot effectively classify the relative distance data, while the
fuzzy C-means clustering method is useful in detecting the
orbital maneuvers.

IV. CONCLUSION
In this paper, the capabilities of data mining in detecting
orbital maneuvers at different scales are explored, as well as
its application to the remote sensing satellites ‘‘YAOGAN-9’’
‘‘TIANHUI-1’’ and ‘‘Envisat’’. The unsupervised classifi-
cation methods, K-means, hierarchical, and fuzzy C-means
clustering, are used to process TLE historical data to obtain
the maneuver points to record the orbital control action.
Different scales of orbital maneuvers of the TLE data are
simulated to evaluate the performance of the clustering meth-
ods. According to the results, the clustering methods can
capture the orbital maneuver points although there are certain
missed judgments and errors in the clustering results.
The characteristic variables selection and cluster number
determination are crucial to the accuracy of clustering meth-

ods. Through a series of numerical experiments, for the
detection of orbital maneuvers at different scales, the three
clustering methods have the following performances: The
K-means clustering method is suitable for detecting large-
and medium-scale orbital maneuvers, while the fuzzy
C-means clustering method can detect small-scale orbital
maneuvers more efficiently. The current work illustrates how
to mine the law based on the existing orbital data of the Chi-
nese remote sensing satellites. Future work can be conducted
with the purpose of predicting the orbital maneuvers based on
the historical data, combined with global or local coverage
on the ground, eclipses, geometrical relationship with other
satellites, and so on, which can be extended to satellites of
other categories, except remotesensing satellites.
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