
Received August 18, 2019, accepted September 3, 2019, date of publication September 10, 2019,
date of current version September 24, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2940512

A Security Analysis Method of Security Protocol
Implementation Based on Unpurified Security
Protocol Trace a nd Security Protocol
Implementation Ontology
XUDONG HE1, JIABING LIU1, CHIN-TSER HUANG 2, DEJUN WANG1, AND BO MENG 1
1School of Computer Science, South-Central University for Nationalities, Wuhan 430074, China
2Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA

Corresponding author: Bo Meng (mengscuec@gmail.com)

This work was supported in part by the Fundamental Research Funds for the Central Universities, South-Central University for
Nationalities under Grant CZZ19003 and Grant QSZ17007, and in part by the Natural Science Foundation of Hubei Province under
Grant 2018ADC150.

ABSTRACT The security analysis of Security Protocol Implementations(SPI) is an important part of
cybersecurity. However, with the strength of property protection and the widely used applications of
code obfuscation technology, the previous security analysis method based on SPI is hard to carry out.
Therefore, under the condition that SPI is not available, this paper analyzes the security of the SPI using
the unpurified security protocol traces and security protocol implementation ontology. First, we construct
the implementation ontology to describes the attributes of the ontology terms. Second, the format analysis
method is presented based on unpurified flow. Third, the mapping method is proposed to build the mapping
between the security protocol trace and the implementation ontology. Fourth, a is presented to analyze the
security of SPI. Finally, FSIA software is designed and implemented according to the method we proposed
to analyze the login module of a university information system, the result shows that there is a risk of Ticket
leakage in the loginmodule. Compared to the previousmethod,our proposedmethod can deal with unpurified
network traces and find the vulnerabilities of network and system.

INDEX TERMS Security protocol implementation, network trace, security protocol implementation ontol-
ogy, format analysis, semantic analysis.

I. INTRODUCTION
Security Protocol Implementations (SPI) have been an impor-
tant part of cybersecurity [1]. Security protocols provide
reliable and secure services to entities in a variety of network
communications. Nowadays, there are a lot of network-based
attacks that target the vulnerabilities of specific implemen-
tations. As such, only verifying the abstract specification
of security protocols is not enough to guarantee cybersecu-
rity. Therefore, analyzing the Security of Security Protocol
Implementations (SSPI) [2], [3] has attracted the interests of
researchers and experts from both academia and industry.

In general, the researches on the SSPI are based on one
of two assumptions: with SPI and without SPI. Table 1 lists

The associate editor coordinating the review of this manuscript and
approving it for publication was Porfirio Tramontana.

the Comparison of security analysis methods. Under the con-
dition that SPI is available, researchers mainly use program
verification methods [4] and model extraction methods [3] to
analyze the SSPI. The program verification method applies
the type system and logic proof, which depends on code
comments and code assertions. The model extraction method
extracts the formal model and then verifies the abstract spec-
ification of the security protocol implementation. Program
verification methods and model extraction methods depend
on obtaining and understanding SPI. Currently, obtaining
the SPI [5] is impractical because, with the strengthening
of intellectual property protection, it is difficult to obtain
SPI. In addition, owing to the widespread application of
code obfuscation technology, understanding and analyzing
obfuscated codes is becoming a challenge for researchers
and experts in academic and industrial worlds. Under the

131050 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ VOLUME 7, 2019

https://orcid.org/0000-0003-3983-972X
https://orcid.org/0000-0002-4377-0051


X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

TABLE 1. The comparison of the security analysis methods.

condition that SPI is not available, researchers use dynamic
taint [6]–[8] and network trace to analyze the SSPI. Dynamic
taint analysis technology analyzes the records of the instruc-
tion sequence during the program processing and then infers
the protocol format and state machine of security proto-
cols. Dynamic taint analysis technology is not suitable for the
scenarios in which multiple security applications are running
concurrently under different kernel execution environments.
On the other hand, the network trace analysis method is
suitable for most scenarios and applications. The network
trace analysis method mainly analyzes the flow or packet
by statistical methods. Network traces can be captured at
various network nodes on different platforms, which is quite
flexible. Different types of traffic can be classified by traffic
classification methods [9]–[14], and then protocol reverses
engineering methods [15]–[27] can be used to analyze the
protocol format and state machine of security protocols.

The above works mainly focus on purified network trace
and protocol specifications inference and pay little attention
to the significance of unpurified security protocol traces to
analyze SSPI. In the distributed networks, a lot of hosts
provide different kinds of security services and produce many
unpurified security protocols trace. Hence just focusing on
the purified network trace is not appropriate and enough.
Apart from that, most works use network-trace-based method
to analyze the specification of network protocols, and sel-
dom to analyze SSPI. So, with the unpurified security pro-
tocol traces and security protocol implementation ontology,
this paper combines the traffic classification method and
network-trace-based approach to analyze SSPI by verifying
the consistency of security protocol trace and security proto-
col implementation. The main contributions of this paper are
as follows:

(1) We propose the Security Protocol Implementation
Ontology Framework (SPIOF) and build a Security Proto-
col Implementation Ontology (SPIO), which describes the
attributes of the ontology terms.

(2) We present a security protocol format analysis method
called Format Analysis Method based on the Unpurified Net-
work Traces (FAMUNT), which takes the unpurified network
trace sets as inputs and generates the protocol format. The
FAMUNT method consists of trace segmentation, invariable
field (IF) fitting, IF classification, trace clustering, and format
inference.

(3) We propose a mapping method called Security Pro-
tocol Traces to Security Protocol Implementation Ontology

(SPT2SPIO), which combines the greedy algorithm and the
token weight to establish the mapping from the trace to the
implementation ontology.

(4) We present a security analysis method called the
Security Analysis Method of Security Protocol Implementa-
tions (SAMSPI), which applies the mapping analysis method
SPT2SIO to analyze the consistency of the mapping and uses
the non-ontology token analysis method to detect whether
there exists message leakage in the non-ontology token or not.

(5) We develop FSIA software based on SAMSPI. The
input of FSIA is an unpurified protocol trace and SPIO, and
the output is SSPI analysis result.

(6) We analyze the Central Authentication Service
(CAS) [28] protocol SPI of the login module of a university
information system with FSIA. The result indicates that there
is a risk of Ticket leakage in the CAS protocol SPI, which
may cause the data exfiltration [13].

The rest of the paper is organized as follows. Section II
discusses the related works of protocol reverse engineer-
ing methods. Section III presents the SPIOF, FAMUNT,
SPT2SIO and SAMSPI methods. Section IV develops
FSIA software. Section V evaluates the SAMSPI method.
Section VI presents the conclusion and future works.

II. RELATED WORKS
Without SPI, many works apply network traces or program
execution trace to infer protocol formats, protocol semantic,
and FSM(finite state machine). While those works seldom
pay attention to protocol security.

Tammo et al. [15] proposed the ASAP method, which
extracts the relevant fields from the network payload and
maps them to the vector space and then identifies the basic
direction of the vector by matrix factorization. The n-grams
method is used to infer the format and semantics of the
message. Wang et al. [16]–[18] proposed the Biprominer,
the Veritas, and the Prodecoder. The Biprominer first uses the
machine learning method to obtain the message pattern, then
marks the message pattern in the network trace, and finally
uses the probability transition model to obtain the probability
description of the protocol format. The Veritas adopts the pro-
tocol format by the Kolmogorov-Smirnov method and then
infers the state machine by clustering format information.
The Prodecoder infers the potential rational between n-grams
by clustering the same semantic message and then infers the
security protocol format based on clustering and sequential
pattern mining. Luo and Yu [19] proposed the Autoreengine,

VOLUME 7, 2019 131051



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

which uses the improved Apriori algorithm to extract
frequently occurring strings from the payload, and then,
it selects security protocol keywords from the frequent string
set by analysis of variance based on the position character-
istics. After that, it finds the keyword sequence set and infer
the field of the message format. Finally, the security protocol
state machine is obtained through the most frequent com-
munication mode. Zhang et al. [20] proposed the Proword,
it uses the improved Voting Experts algorithm to extract can-
didate words through the entropy information, then, proposes
a ranking algorithm to establish the candidate word order
structure. The highest order word is used as the security pro-
tocol feature words. Bermudez et al. [21] proposed the Field
Hunter, which extracts fields and infers field types by the
statistical correlation between different messages and meta-
data. These methods make two hypotheses: (1) separators are
1 or 2 characters at prefix byte of fields, (2) separators are
the non-alphabet and non-number sequence. Luo et al. [22]
proposed an application layer network protocol message
modeling method based on left-to-right inhomogeneous cas-
caded hidden Markov model, which describes the evolution
rule between states. The method infers protocol keywords
by selecting lengths with maximum likelihood probability
and then recovers the message format. Tao et al. [23] pro-
posed the PRE-Bin, which uses hierarchical clustering to
identify the number of clusters by silhouette coefficient, then
applies the modified multiple sequence alignment algorithm
to analyze binary field features, and finally uses the Bayesian
decision model to infer the bit-oriented field boundaries.
Zhang et al. [24] proposed an online protocol format extrac-
tion method, which divides the network traffic into sub-flows
and introduces an error decision mechanism to divide the
sub-flows to ensure the correctness of the format extraction.
Marchetti and Stabili [25] developed READ to analyze traffic
traces based on automotive data frames. It extracts the signal
boundaries by analyzing the general CAN bus traffic trace
and identifies and marks different types of signals encoded in
the payload of data frames. READ improves Signal extraction
and classification efficiency. Luo et al. [26] employed the
Latent Dirichlet Allocation model to characterize messages
with types, and then type distribution is used to measure the
similarity of messages and promote the correctness of the
message cluster. Goo et al. [27] proposed a method that can
infer the protocol format, semantic and finite state machine.
It extracts field formats, message formats, and flow formats
as protocol syntax by using a contiguous sequential pattern
algorithm hierarchically, infers the semantic by using prede-
fined datatype, and infers the finite state machine by using
protocol format.

III. SOLUTION
The framework of the Security Analysis Method of Secu-
rity Protocol Implementations (SAMSPI), which is based
on unpurified security protocol trace, is shown in Fig. 1.
Firstly, the SPIO is constructed according to the SPIOF and
the Security Protocol Implementation Specification (SPIS).

FIGURE 1. The framework of SAMSPI.

Secondly, the proposed FAMUNT method is used to purify
the target network trace and produce the security proto-
col format. Thirdly, the SSPI is analyzed by the SAMSPI
method which combines the mapping analysis method and
the non-ontology Token analysis method. The mapping anal-
ysis method analyzes the correctness of the SPT2SIO map-
ping, and the non-ontology token analysis method detects
whether there is amessage leakage in the non-ontology token.

A. SECURITY PROTOCOL IMPLEMENTATION
ONTOLOGY FRAMEWORK (SPIOF)
Due to the huge gap between the protocol specification and
the protocol trace, the semantics of each keyword in the trace
cannot be directly identified and marked using the protocol
specification. The ontology canmodel the relationship among
concepts and the relationship between concepts and instances
in a general or special field. Therefore, we use the ontology
to identify the semantics of each keyword. In the beginning,
we construct the SPIOF, then build the SPIO, and finally,
the semantics of each keyword in the trace is marked through
the SPT2SIO mapping.

The SPIOF has three desirable characteristics: (1) it con-
nects the instance and ontology through the mapping method,
and measures the mapping result of the instance to the ontol-
ogy; (2) the ontology provides the part of prior knowledge
of the protocol semantics; (3) the ontology offers a way
of message presentation, which represents the semantics of
each keyword in the message and the relation between the
keywords. Therefore, it is useful and beneficial to establish
a SPIOF. The seven-step method is used to improve SPIOF,
and then generate the SPIO.

The ontology framework is a tree structure that consists
of a concept set. The SPIO is expressed by the three triples
O :=

{
C, H , R

}
, where C is the concept set, H is the

hierarchical relationship of the concept, and R is the concep-
tual relationship. The SPIO can be customized according to
different security protocols.

SPIOF in Fig. 2 is composed of the Flow, Msg, Token and
rationales. Flow refers to the entire data stream generated
in one session, which is composed of instances of Msg.
Msg is generated in the process from the start to the end in
one transmission. The token is a field contained in a Msg.
Each Msg includes two fields of Msg Num and Token. The
token is composed of Keywords, Separator, Variable Field
(VF), Token Num, Token Length and Token Length Offset.
Keywords are the label of a Token. The separator is the chars

131052 VOLUME 7, 2019



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

FIGURE 2. The structure of SPIOF.

between keywords and data. VF is the value of Keywords.
Token Num is the sequence number of Token. Token Length
is the length of the Token. Token Length Offset is the offset
of the Token Length to the average Token Length. VF is
composed of Variable Field Type, Variable Field Length, and
Variable Field Offset. Variable Field Length is the length of
the VF. Variable Field Offset is the offset of the Variable Field
Length to the average Variable Field Length. Variable Field
Type is the type of VF and it can be specified based on actual
data types in the SPIO. For example, Variable Field Type can
be Number type, Character type, and Code type. Number type
can be integer, Float, and Double. Character type includes
Time, Url and some String, etc. Code type is a specific type
defined in the protocol.

B. FORMAT ANALYSIS METHOD BASED ON THE
UNPURIFIED NETWORK TRACES (FAMUNT)
The framework of the FAMUNT method, as shown
in Fig. 3 takes the unpurified trace sets as inputs and gen-
erates the format of protocol trace. FAMUNT consists of
five methods: trace segmentation, IF fitting, IF classification,
trace clustering, and format inference.

FIGURE 3. The framework of FAMUNT method.

The first step, trace segmentation method, borrows the idea
of the Needleman Wunch algorithm, the trace is divided into
VF and IF by comparing the result that two of traces which
are the almost same length and use threshold to select the
best result. In the second step, IF fitting method takes the IF
distance as input, which is the distance from the IF to the first
byte of the trace, and then, produces the IF distribution curve.
First, it inputs the distance value, applies IFweightingmethod

to generate the weight of the IF length, and then eliminate
the illegal IF, finally it uses the B-spline method to construct
the IF distribution curve based on B-spline. In the third step,
IF classification method, it takes the IF distribution curve as
input and generates the statistical number of every IF types.
Newton CG method [29], [30] is introduced to calculates the
curve extremum value. Then, we use the extremum value
to split the trace into segments. After that based on the
Levenshtein distance [31], it counts the statistics number of
every IF type in every segment. In the fourth step, trace
clustering method, it accepts the statistics number of every
IF types in every segment as input and produces the trace
clusters, in which it selects the largest number of IFs in every
segment, and then uses K-Means method to generate the
trace clusters. In the fifth step, the format inference method
takes the trace clusters as input and generates the format
of protocol trace. First, the trace cluster is used as input.
After that, the statistics number of every IF types in every
cluster is obtained. At last, it uses the Separator inference
method introduced by us to infer the Separator based on the
assumption that delimiter often occurs at the beginning and
end of the IF and uses VF region generated by the curve to
select the legal Separator. According to the separator, the trace
is divided into the form of keywords, separator, and VF.
Finally, the format of the security protocol trace is obtained.

1) TRACE SEGMENTATION METHOD
The trace segmentation method borrows the idea of the
Needleman Wunch algorithm to divide the trace into VF and
IF. We assumed that the security protocol traces with almost
the same length also have similar states, which means that the
distributions of keywords are relatively similar. First, unpuri-
fied network traces are sorted in reverse order by the length
of the trace. Second, the NeedlemanWunch algorithm is used
to compare the two traces and then segment the trace into
IF and VF. Third, we count the number of IF whose length
is longer than 3; if satisfying this threshold, the matching is
considered successful, otherwise select the next trace and go
back to the second step. Finally, we count the IF distance. The
trace segmentation method is shown in Fig. 4.

FIGURE 4. Trace segmentation method.

2) IF FITTING METHOD
The input of the IF fitting method is IF distance produced by
the trace segmentation method. Because of inherent defects
of the Needleman Wunch algorithm, an error matching is
generated which may have a bad influence on the IF fitting.
In the beginning, IF weighting method gives a weight value
to every IF that is closely related to IF length and decreases
mismatching by setting IF weight. Finally, the method uses
B-spline to fit the IF weight and then produces the fitting.
IF fitting method is shown in Fig. 5.

VOLUME 7, 2019 131053



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

FIGURE 5. IF fitting method.

a: IF WEIGHTING METHOD
The IF weighting method assigns weights based on the length
of the IF. The longer the length of the IF is, the greater
the probability of a keyword belonging to the IF will be.
For example, if there are four consecutive characters in two
network traces, which means the length of the IF is 32 bytes,
the weight is set as 3. As another example, if the length of the
IF is 1 character, it can be deduced that there does not exist
any keyword, because IF consists of Field delimiter [21], Key
value and Keywords and thus the length of a normal IF is
longer than 2 characters. In this case, the weight is set to 0.
The IF weighting method is shown in Fig. 6.

FIGURE 6. IF weighting method.

b: B-SPLINE METHOD
The B-spline method produces a function from a lot of dis-
crete points, which not only models approximately the non-
linear relationship among the original discrete point sets and
eliminates error data and interference, but also compensates
for the missing data and predicts the future trends. The input
of the B-spline method is the distance from the IF to the first
byte of the trace and the weightW generated by the IFweight-
ing method, and then the B-spline fitting method generates
the fitting curve which represents the regular pattern of IF
distribution. The B-spline equation is can be stated as below:

P(u) =
n∑
i=0

diNi,k (u) (1)

Here di(i = 0, 1, ..., n) is the control point and Ni,k (u)(i =
0, 1, ..., n) is the basic function of k-th order.

3) IF CLASSIFICATION METHOD
IF Classificationmethod takes the IF fitting curve as input and
uses the Newton CGmethod to generate the curve extremum.
At last, it applies the IF statistical method proposed by us to
obtain the statistics number of every IF types at each interval.
The framework of the IF fitting method is shown in Fig. 7.
Fig. 8 is the IF statistical method in IF Classification method.

a: NEWTON CG METHOD
Newton CG method can quickly solve the Newton equation.
It takes the fitting curve and derivative function as input and
calculates the extreme value of the curve.

FIGURE 7. The framework of IF classification method.

FIGURE 8. IF statistical method.

b: IF STATISTIC METHOD
IF statistic method applies interval (a, b), where a = (xmin+

xmax) ÷ 2, b = xmax, xmin and xmax denoting the minimum
and maximum points of the curve respectively. IF statistic
method takes the IF in each interval as input and outputs the
number of each type of IF in each interval according to the
Levenshtein distance. IF is processed as a string. It uses the
fast sorting method to sort the IF length in descending order
and then calculates Levenshtein distance ratio from start to
end. Finally, it classifies these IFs into different types with
the corresponding threshold and counts the statistics number
of every IF type at each interval.

4) TRACE CLUSTERING METHOD
The trace clustering method takes the statistics number of
every IF type in each interval as input, selects the largest
number of IFs in each interval and marks all the network
traces according to the selected IF. Then, it converts network

131054 VOLUME 7, 2019



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

trace to vectors and applies the K-Means method to generate
the clusters.

5) FORMAT INFERENCE METHOD
The framework of the format inference method in Fig. 9 takes
every trace cluster generated by the trace clustering method
as input, and then uses trace segmentation method, IF fitting
method, and IF Classification method to produce the number
of the IF types and IF distribution curve. After that, the sepa-
rator inference method infers the separator by comparing the
heads and tails of IF and lifter IF by the VF region in the
curve. At last, the IF is divided into separator and keywords,
and the protocol format is obtained.

FIGURE 9. The framework of the format inference method.

The idea of the separator inference method is that the
adjacent IFs may have similar separators. Separators often
appear at the beginning and end of the IF and are shorter
in length. The method first obtains the first 2 characters and
the last 2 characters of the adjacent IF, and then compares
the characters and counts the same ones. After that, it fil-
ters the separators by theVF region and generates the protocol
format by combing with the keywords.

The use of the separator filter method is based on the
following three conditions:

(1) The curve obtained by the IF fitting method in each
trace cluster can effectively identify the VF region. VF region
is distributed in the place where the curve is falling.

(2) The separator cannot appear in VF because VF is a
variable field that consists of data, and the presence of a
separator in VF can cause ambiguity.

(3) The first character of the delimiter either cannot appear
in the VF region or appear with a low distance variance.

For condition (3), if the first character of the delimiter does
not appear in the VF region, this character is regarded as a
separator. Otherwise, we use distance variance to estimate.
Distance variance gives information about the regular pattern
of distance. If the first character of the delimiter appears
in the VF region, we calculate the distance variance and
use a threshold to identify. If the distance variance is lower
than the threshold, we regard the character as a separator.
Otherwise, we delete this character. The distance variance
is calculated by the distance from the character to the IF
which belongs to the same token. For example, in Fig. 10,
‘‘t = LT-’’ is an IF, ‘‘T-’’ and ‘‘t =’’ is Unfiltered separator.
The d ′2,1, d

′

2,2, and d
′

3,1 is the distance of character ‘‘T.’’ The
distance variance of character ‘‘T’’ is d ′, which calculated
by the d ′2,1, d

′

2,2, and d ′3,1 using the variance calculation.
d ′ is bigger than the threshold after computed the distance

FIGURE 10. An example of separator liftering.

variance value. Therefore, ‘‘T’’ is the random character in
the VF region. we remove the ‘‘T’’ from unfiltered separator
‘‘T-’’ to obtain the ‘‘-.’’ In the same way, we lifter char-
acter ‘‘t.’’ Then, we calculate the d by the distance d1,2,
d1,1, . . . , d3,2, which is distance variance of ‘‘−,’’ and it lower
than the threshold, because ‘‘−’’ has a regular pattern of
distribution. So, we treat ‘‘−’’ as a separator. As for ‘‘=,’’
it not appears in the VF region, we treat ‘‘=’’ as a separator
too.

C. MAPPING METHOD OF SECURITY PROTOCOL TRACES
TO SECURITY PROTOCOL IMPLEMENTATION
ONTOLOGY (SPT2SPIO)
We assume the security protocol implementation is not
standard. So, it is very difficult to construct the rela-
tion between the trace and the implementation ontology.
The captured security protocol trace is a Flow that con-
sists of Msg and Token. The mapping method SPT2SIO
in Fig. 11. combines the greedy algorithm and weight and
establishes the mapping from the trace to the implementation
ontology.

FIGURE 11. The framework of MAPPING method of SPT2SIO.

The mapping method of SPT2SIO includes four steps.
The first step is preprocessing, which selects a representative
security protocol trace and uses the protocol format gener-
ated by FAMUNT method to analyze selected trace into the
three-layer structure which consists of Flow,Msg, and Token.
The second step is Token mapping, which calculates the
Token weight between the trace and the ontology through the
weight of IF and the weight of IF type. The third step is Msg
mapping, which takes Token weight as input and produces
the Msg weights from the trace to the ontology based on
the greedy algorithm. The last step is Flow mapping, which
obtains the Msg weights and constructs the best mapping
between trace Flow and the ontology Flow based on the
greedy algorithm. Each step is explained in more detail as
follows.

VOLUME 7, 2019 131055



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

1) PREPROCESSING
The goal of the preprocessing method is to eliminate the
replay messages and missing messages of the HTTP pro-
tocol payload. The HTTP protocol is a connectionless pro-
tocol. It ends the connection after completing a message
response. Then, the method eliminates the replayed message
by calculating the similarity of the message using the Leven-
shtein distance and selects a representative security protocol
trace using cluster center discussed in section 3.2.4. Finally,
it uses the protocol format generated by FAMUNT method
to analyze selected trace into the three-layer hierarchy. The
schematic diagram of the preprocessing is shown in Fig. 12.

FIGURE 12. Schematic diagram of preprocessing.

2) TOKEN MAPPING
The token mapping method calculates the token weight
between the trace and the ontology. The token mapping
method is shown in Fig. 13. First, the key weighting method
calculates the key weight from the trace to the ontology
based on the Levenshtein distance ratio; second, the VF type
weighting method computes the VF type weight; finally,
the token weighing method uses the key weight and the
VF type weight to calculate the token weight from the trace
token to the ontology token.

FIGURE 13. Token mapping method.

Although Token consists of the Key, separator, and VF,
only Key and VF are used in the process of Token mapping.
The key weight is generated by the key weighting method,
which calculates the weight from trace key to ontology key
with Levenshtein distance ratio. The Levenshtein distance
ratio describes the similarity between the trace key and the
ontology key. The VF type is produced by the VF type
weighting method which calculates the weight by VF type
relation and preset VF type weight. It uses regular expres-
sion [32] to describe the VF type. The key weight and the
VF type weight are accepted as the input of the token weigh-
ing method to compute the weight from the trace token to the
ontology token.

Separator plays an important role in separating key and
VF in the security protocol. The type and length of separa-
tor have no contribution when analyzing the SSPI. There-
fore, the weight of separator is not a key factor to establish
SPT2SIO mapping. The key weighting method may be con-
fused by the code obfuscation technique. Therefore, the key

weight is closely related to the level of code obfuscation.
However, the property of the VF type is not affected by code
obfuscation, so the VF type weight is believable.

a: KEY WEIGHTING METHOD
English abbreviation is a key factor in analyzing the imple-
mentation of the protocol. For example, in the text protocol,
most programmers often replace ‘‘password’’ with ‘‘PW’’ or
‘‘PWD.’’ Therefore, the Levenshtein distance ratio is suit-
able for calculating the similarity between trace Key and the
implementation of the ontology Key. The weighting algo-
rithm of Key is shown as below:

W
(
Key1,Key2

)
= 1− LRatio

(
Key1,Key2

)
(2)

W(Key1, Key2) is the weight between trace Key1 and
implementation ontology Key2. LRatio(Key1, Key2) is the
Levenshtein distance ratio between the trace Key1 and the
ontology Key2.

b: VF TYPE WEIGHTING METHOD
The VF type weighting method in Fig. 14 outputs the
VF type weight according to the VF type relation and pre-
set VF type weight. It uses regular expressions to describe the
VF type. In the beginning, it defines the regular expressions
by the implementation ontology and then uses the regular
expressions to verify the trace VF. If the output is false,
the trace VF is not the same type, and if the output is true,
use minimum type relation to identify the minimum VF type
and give the weight to the VF. Finally, it obtains the score of
the VF.

FIGURE 14. VF type weighting method.

In the VF type weighting method, we describe the data
length and type by a regular expression. The data types are
roughly divided into three categories: Number, Character, and
Code. The Number type contains Float, Double and Int which
consists of decimal and hexadecimal. The Code type is a
special type defined by the implementation of the security
protocol. Table 2 lists the four common data types and their
regular expressions.

Because of the mapping from multiple regular expressions
to one VF is many-to-one, the minimum type is introduced
to address the problem. The data type relation diagram is
shown in Fig. 15, in which the hexadecimal number contains
the decimal number, and the URL and Time have a special
format identifier. The VF type is defined by the minimum
type. Finally, it gets the VF type weight by searching the
Minimum type in Table 3. For example, the minimum type is

131056 VOLUME 7, 2019



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

TABLE 2. Data type and regular expressions.

FIGURE 15. Data type relation diagram.

TABLE 3. The weight of regular expressions.

the decimal number, which matches the string ‘‘123456789.’’
Even though this string also matches the hexadecimal num-
ber, but the weight of the str and Decimal is 1 and the weight
of the str and Hexadecimal is 0.5. String ‘‘13:12:51’’ directly
matches the regular expression of time type because of the
time format.
Token weighing method

The token weighing method is used to calculate the weight
from the trace token to the ontology token, which is shown in
Equation (3).

W(T1,T2) =
√
W(Key1,Key2)2 +W(VF1,VF2)2 (3)

It has two inputs. One is the Key weight calculated by the
Key weighting method. The other is the VF weight computed
by the VF type weighting method. The detailed algorithm of
the Token mapping method is shown in Fig. 16. For example,
the trace token is ‘‘PWD: abc123’’ and the ontology regular
expression is ‘‘password: /^[0-9a-fa-F]{10}$/.’’ The weight
of PWD to password is 0.375 and the weight of ‘‘abc123’’
is 1. So, the weight of the trace token to the ontology token
is 1.068 by equation (3). An example of the Token mapping
method is shown in Fig. 17.

3) MSG MAPPING
The framework of the Msg mapping method is shown
in Fig. 18, which calculates the weights of two Msg. It uses
the greedy algorithm to select the weight of the two sets
containing trace Token and the ontology Token. After that,
it accepts matched Token weight as input and then calculates

FIGURE 16. Token mapping method.

FIGURE 17. An example of the Token mapping method.

FIGURE 18. The framework of Msg mapping method.

FIGURE 19. Msg mapping method.

the weight between two Msg by Equation (4). The Msg
mapping method is shown in Fig. 19.

In the beginning, the Msg mapping method calculates the
weight from the trace Token to the ontology Token based
on the token mapping method and applies the greedy algo-
rithm to select and remove a maximum weight from the
trace and the ontology until all token mapping is completed.

VOLUME 7, 2019 131057



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

FIGURE 20. The process of Flow mapping method.

Then, it uses Equation (4) to calculate the Msg weight
between trace and the ontology. The W(Msgt,Msgo) is the
Msg weight between trace Msgt and the ontology Msgo.
Numois the total number of Tokens in the ontology, numt
is the number of successfully matched trace Tokens, and
N∑
i=1

W(Tokent,Tokeno) represents the total weight of the

trace.

W(Msgt,Msgo) =
numt

numo

N∑
i=1

W(Tokent,Tokeno) (4)

4) FLOW MAPPING
The flow mapping method aims to find an optimal mapping
between the trace Msg and the ontology Msg based on the
greedy algorithm. Fig. 20 shows the steps of the Flow map-
pingmethod. First, theMsgweight from each traceMsg to the
ontologyMsg is calculated by theMsgmappingmethod. Sec-
ond, according to the greedy algorithm, the maximum map-
ping from the trace Msg to the ontology Msg is selected and
removed; otherwise, if there are multiple maximum matches,
it uses Equation 5, shown at the bottom of this page, to
select the minimum mapping. Third, it iteratively performs
the second steps until all Msg matches are completed. The
algorithm of the flow mapping method is shown in Fig. 21.

Equation 5 has two inputs. One is trace Msgt, and the
other is ontology Msgo. S is a mapping set of Msgt and
Msgo. In the second method which takes the set S as input,
Equation 5 selects the minimum mapping of Msgt and Msgo.
The NumT and Numo are the total number of traces Msg
and the ontology Msg respectively, t and o are the sequence
number of Msg in the trace and ontology.

D. SECURITY ANALYSIS METHOD OF SECURITY
PROTOCOL IMPLEMENTATIONS (SAMSPI)
SAMSPI method accepts a security protocol trace, a SPIO,
and a SPT2SIO mapping as input to analyze security

FIGURE 21. Flow mapping method.

protocol implementation. SAMSPI method consists of the
mapping analysis method and the non-ontology token anal-
ysis method. It applies the mapping analysis method to
check the correctness of the SPT2SIO mapping. If the
mapping is correct, it is considered that the security
protocol implementations are correct. Then, we use the
non-ontology token analysis method to detect whether
there exists any message leakage in the non-ontology
token.

FIGURE 22. The framework of SAMSPI method.

The SAMSPI consists of four methods as depicted
in Fig. 22. The first method constructs the SPIO based
on the SPIOF. The second method gets the analyzed net-
work trace by the FAMUNT method. The third method
obtains SPT2SIO mapping through the mapping method of
SPT2SIO. The fourth method is the SAMSPI method, which
accepts a format analyzed security protocol trace, a SPIO, and
a SPT2SIO mapping as input and generates the conclusion.
The mapping analysis method and the non-ontology token
analysis method can be found in Fig. 23.

The mapping analysis method takes the obtained SPT2SIO
mapping and the format analyzed network trace as input.
Protocol implementation security is verified by analyzing the
consistency of the network trace VF type and the imple-
mentation ontology VF type. The details of the methods are
described as follows:

W (Msgt ,Msgo) =

 (Msgt ,Msgo)

∣∣∣∣∣∣∣∣ t
NumT

−
o

NumO

∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣ t ′

NumT
−

o′

NumO

∣∣∣∣ ,

∃(Msgt ,Msgo) ∈ S,∀(Msgt ′ ,Msgo′ ) ∈ S

 (5)

131058 VOLUME 7, 2019



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

FIGURE 23. Mapping analysis method.

1) Msg sequence analysis
The SPT2SIO mapping is used to analyze the Msg

sequence of the security protocol traces. In Fig. 23, TMsgi
Tokenjis the trace T, j is the token sequence number and i
is the Msg sequence number. The TMsgi Tokenj is marked as
MapMsgi,p Tokenj,q, where p is the token sequence number of
the ontology and q is the Msg sequence number of the ontol-
ogy. When p is increased one by one, if i is also increased,
it returns True, otherwise returns False.

2) Token sequence analysis
If the Token is missing in the mapping, it may cause

security risks. For the mapping MapMsgi,p Tokenj,q, when q
is increased one by one, if j exists, it returns True, otherwise
returns False.

3) VF type analysis
According to the mapping MapMsgi,p Tokenj,q, find the

regular expression Formp,q. If the TMsgi Tokenj matches
Formp,q, the TMsgi,p Tokenj,q is correct, otherwise, it is
wrong.

The non-ontology Token analysis method checks the infor-
mation leakage by mapping the values of the VF type in the
non-ontology token.

IV. FSIA
In order to put the SAMSPI method into practice, we develop
a security analysis software FSIA which consists of the FA
(Format Analyzing, FA) module, the SA (Semantic Ana-
lyzing, SA) module and the ISA (Implementation Security
Analysis, ISA) module. The input of the FSIA is the unpu-
rified protocol trace and the security protocol ontology, and
the output is the conclusion on the security of the SPI.
The FA module is designed and implemented according to

the FAMUNT method; the SA module is developed based
on the mapping method of SPT2SIO; the ISA module is
implemented with the SAMSPI method.

FIGURE 24. FSIA software.

The FSIA software is shown in Fig. 24. The FA module
takes unpurified network trace as inputs and generates the
protocol format. The SA module takes the format analyzed
trace and the SPIO as input and produces the SPT2SIO map-
ping. The ISA module takes the SPIO, the format analyzed
trace and SPT2SIO mapping as input and then generates
conclusion of the security protocol implementation.

V. EVALUATION
Here we use FSIA software to analyze the security protocol
implementation in the login module of a university informa-
tion system. The login module supports two ways to login:
user/password and WeChat QR code. The development doc-
uments show that the login module adopts the widely used
CAS protocol [28], [33], [34] which consists of CAS-SSO
versions and CAS-OAUTH versions. The FAMUNT takes
unpurified network traces as input and outputs a protocol
format of two traces, which are called red trace and green
trace respectively. The mapping method of SPT2SIO takes
the red and green network traces as input, and then builds
the regular expression to describe the data type, define the
data type relation and score, and matches the red and green
network traces with the two implementation ontologies. The
results show that the green network trace is CAS-OAUTH and
the red is CAS-SSO. At the same time, this method estab-
lishes SPT2SIO mapping. The SAMSIP method verifies the
SPT2SIO mappings, and the result shows that the application
server authorization ticket in the CAS protocol has a risk of
leakage, which exposes the hidden security risks existing in
the login module of a University.

A. PREPROCESS
The login module of a university information system has two
ways to login, either by password or by WeChat QR code.
According to the development documents, the login plat-
form adopts the widely used CAS-SSO and CAS-OAUTH
protocols.

In the data preprocessing, we use the proxy function in the
Burp Suite to collect 186 login traces. Since the login trace is
sensitive data, we need to get the consent of the participants to
collect data, so the number of login traces set is small. Fig. 25
shows the processed security protocol trace.

VOLUME 7, 2019 131059



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

FIGURE 25. Preprocessed data.

The preprocess is as follows:
(1) Apply Filter function in the Burp suite to filter out the

HTTP stream with JavaScript, XML, CSS, etc. to obtain the
traces related to the security protocol.

(2) The fields that are not related to the security protocol,
such asHost, User-Agent, andAccept, are removed according
to the HTTP protocol specification.

(3) The fields related to the session establishment such
as amp.locale, iplanetdirectorypro, and user_id, etc. are
removed.

B. FORMAT ANALYSIS
In the format analysis, it takes the preprocessedHTTP trace as
input. First, the trace segmentation method generates the seg-
mented protocol trace. Second, the IF fitting method outputs
the IF distribution fitting curve. Third, the IF classification
method filters out the IF at each interval and marks the trace
with IF and converts it into a vector. Fourth, it sends the vector
to the trace clustering method and produces the red trace and
the green trace by the K-means method. Fifth, the format
inference method takes the red trace and green trace as input
to produce the protocol format.

1) TRACE SEGMENTATION
Fig. 26 shows the execution result of Trace segmentation,
where the ‘‘−’’ indicates there is no match to the charac-
ter. Due to the flaws of the Needleman Wunch algorithm,
the segmented original trace contains lots of mismatches.
The parameters in the Needleman Wunch method are set to
mismatch = −2, gap = 1, and match = 2.

FIGURE 26. Result of trace segmentation.

2) IF FITTING
The IF fitting method uses IF weight and the B-spline to gen-
erate the B-Spline function, which is the green line in Fig. 27,
where the horizontal axis is the IF distance value which is the
distance from the IF to the first byte of the trace, the vertical
axis is the sum of the IF weights, and the red points represent
the IF type. The upper the red point is, the larger themaximum
value of the spline function is, and the bigger the probability

FIGURE 27. B-Spline function.

of Key is. In the B-spline fitting, a 30-th ordered spline
function was used.

3) IF CLASSIFICATION AND TRACE CLUSTERING
The character classification method applies the string clas-
sification to process the IF table at the peak of the B-spline
in Fig. 28. The character classification module selects the IF
of the 13 peaks of the B-spline.

FIGURE 28. IF in every peak of the B-spline.

The trace clustering method uses K-Means method to
generate the red and green clusters shown in Fig. 29. The
clustering visualization graph is shown in Fig. 30. There are
155 red traces and 31 green traces.

FIGURE 29. Clustering result.

4) FORMAT ANALYSIS
The format analysis method takes the red traces and green
traces as input respectively and then obtains IFs. IFs in the

131060 VOLUME 7, 2019



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

FIGURE 30. The clustering visualization graph.

FIGURE 31. The IFs generated by red traces and green traces.

left half of Fig. 31 is generated with the red traces, while IFs
in the right half are generated with the green traces.

TABLE 4. IF Frequency of red trace.

The protocol format inference method takes the IFs as
input and produces the protocol format. For the red trace,
separator inference method takes the IF table and the curve
generated by the red trace as input and then count the Sta-
tistical frequency of IF. After setting a threshold, 7 candidate
separators are selected. The candidate separators are shown
in Table 4. According to the condition proposed in separator
inference method, VF region is selected, and then condition 3
is iteratively used to filter the 3 separators ‘‘T-,’’ ‘‘as,’’ ‘‘ti’’
because the first character of this separator is in theVF region.
Finally, 4more separators ‘‘−,’’ ‘‘-c,’’ ‘‘&,’’ ‘‘=’’ are selected,
and the protocol format is obtained. Fig. 32 shows the partial

FIGURE 32. Part of protocol format.

protocol format. The red protocol format based on IFs gener-
ated with red traces is as shown on the left and another is the
green trace.

C. SEMANTIC ANALYSIS
The input of the Mapping method of SPT2SIO is the
format analyzed red and green traces. In the beginning,
based on the development documents and CAS official
implementation specification, the method establishes the
CAS-SSO and CAS-OAUTH protocol implementation ontol-
ogy. Then, it matches the red and green traces with CAS-SSO
and CAS-OAUTH implementation ontology. The result
shows that the green network trace is an instance of the
CAS-OAUTH ontology, and the red network trace is an
instance of the CAS-SSO. Finally, the mapping between
the security protocol trace and the SPIO are constructed
respectively.

1) SPIO CONSTRUCTION
According to the development documents and CAS official
implementation specification, we establish the SPIO of the
CAS-SSO and CAS-OAUTH. The implementation message
structure of the CAS-SSO version is shown in Fig. 33. The
CAS-SSO protocol version includes the client, the authenti-
cation server, and the application server. The communication
between the authentication server and the application server is
hard tomonitor, specifically themessages Nos. 6, 9, 10, 13, so
we don’t construct the SPIO of these messages. Meanwhile,
message No. 4 is sent to the login interface and is not related
to security, so this message is discarded. The messages of
the client and the application server can be captured, so the

VOLUME 7, 2019 131061



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

FIGURE 33. CAS-SSO message structure.

TABLE 5. CAS-SSO SPIO.

messages Nos. 1-5, 7-8, 11-12 are analyzed. The implemen-
tation ontology of the CAS-SSO protocol message Nos. 1-5,
7-8, 11-12 can be found in Table 5.

Fig. 34 shows the protocol implementation message struc-
ture for the CAS-OAUTH WeChat version. CAS-OAUTH
mainly consists of the client, the WeChat authentication
server, CAS authentication server, and application server. The
implementation message structure omits the messages of
the CAS authentication server to the WeChat authentication
server and the authentication messages of the mobile phone
and the WeChat authentication server. We only preserve the
messages from the client, WeChat authentication server and
application server, because in the CAS-OAUTHWeChat ver-
sion, it is difficult to capture the packets from the mobile
phone to the WeChat authentication server and the packets
from the application server to the WeChat authentication
server. Therefore, we don’t construct the SPIO of these mes-
sages. The implementation ontology messages that the client

FIGURE 34. CAS-OAUTH message structure.

communicates with the WeChat authentication server and
application server can be found in Table 6.

TABLE 6. CAS-OAUTH SPIO.

2) TOKEN MAPPING
Table 7 shows the VF type and regular expression defined
by SPIO. Fig. 35 shows the data type relation, where Code,

131062 VOLUME 7, 2019



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

TABLE 7. VF type and regular expression.

FIGURE 35. Data type rationales.

State, uuid, and username and so on are special data types in
the CAS protocol.

Table 8 lists the weight of the data type. Other VFs includ-
ing ‘‘appid,’’ ‘‘Type,’’ ‘‘response_type’’ and so on are fixed
values, and the weight of them is set to 0. ‘‘CASTGC,’’
‘‘MOD_AUTH_CAS,’’ and ‘‘ticket’’ have specific start char-
acters in the implementation specification, and it is easy to
identify them with regular expressions. Therefore, the weight
of these VF types is set to 1 or 0. However, ‘‘username,’’
‘‘uuid’’ and ‘‘State’’ have similar data type. Hence when the
minimum type ‘‘uuid’’ matches the ‘‘Code,’’ the weight is set
to 0.3. When the minimum type ‘‘uuid’’ matches the ‘‘State,’’
the weight is set to 0.7.

3) MSG MAPPING
The weight between the trace Msg and the ontology Msg is
calculated by Equation (4). For instance, in the green trace,
Msg4 is ‘‘uuid = a84Fb2&last = 404&_= 4786wx_ code =
hieo923fp3domlhcnnvdbpiathkpnka&code = hie7o92 3fp3d
omlhcnnvdbpiathkpnka&state = 99efebf38249d3dgd7b
58g.’’ The matched result with Msg4 is shown in Table 9.
First, we use Equation (2) to calculate the Key weight. When
the distance ratio is lower than 0.7, the Keyweight is specified
as 0. Then, according to the VF weighting module, the VF

weight is obtained by Table 7, and then the Token weight is
calculated by Equation (3). After that, we apply the greedy
algorithm to select the maximum Token weight one by one.
Finally, the Token weights are added by Equation (4) to get
the Msg weight in Msg4.

4) FLOW MAPPING
In order to analyze the red trace and the green trace, the flow
mapping method takes the red trace and the CAS-OAUTH
implementation ontology as input and produces the
matching weight. Table 10 shows the matched weights of
the red trace to the CAS-OAUTH implementation ontology,
where ‘‘Omsg’’ is CAS-OAUTH implementation ontology
Msg and ‘‘Tmsg’’ is trace Msg. Weight selection is based on
the greedy selection algorithm. In the first method, it selects
the global maximum 7.071, the red trace ‘‘Tmsg5’’ matches
the ‘‘Omsg8,’’ so ‘‘Omsg8’’ is removed; in the second
method, it selects the global maximum 5.893, the ‘‘Tmsg3’’
matches the ‘‘Omsg6,’’ and the ‘‘Tmsg4’’ matches ‘‘Omsg7,’’
so ‘‘Omsg6’’ and ‘‘Omsg7’’ are removed; in the third method,
it selects the global maximum 4.243, the ‘‘Tmsg1’’ is
matched with the ‘‘Omsg1,’’ so ‘‘Omsg1’’ is removed; in the
fifth method, the ‘‘Tmsg2’’ is matched with the ‘‘Omsg5,’’
so ‘‘Omsg5’’ is removed. The matching results of the red
trace and the CAS-OAUTH implementation ontology are
shown in Table 11. Since the weight of the red trace match-
ing the CAS-OAUTH implementation ontology is low, it is
impossible to match the red trace with the CAS-OAUTH
implementation ontology.

Similarly, the green trace is matched to CAS-OAUTH
implementation ontology, and thematchedweights are shown
in Table 12. The matched results are shown in Table 13. Since
the weight of the green trace matching the CAS-OAUTH
implementation ontology is high, the green trace is fully
matched with the CAS-OAUTH implementation ontology.

The matched results of the red trace and the CAS-SSO
implementation ontology are shown in Table 14, and the red
trace is fully matched with the CAS-SSO implementation
ontology. Since the weight of the red trace matching the
CAS-SSO implementation ontology is high, the red trace is
fully matched with the CAS-SSO implementation ontology.

D. IMPLEMENTATION SECURITY ANALYSIS
The mapping analysis method is used to analyze the map-
ping of the CAS-OAUTH and CAS-SSO. The result shows
that the CAS-OAUTH trace consists of 39 ontology tokens
and 70 non-ontology tokens. The CAS-SSO trace consists
of 22 ontology tokens and 46 non-ontology tokens. The
analytical conclusions of both two traces indicate that the
Msg sequence is fully consistent with the implementation
ontology and the number of ontology Token is equal to the
implementation ontology. The type of VF in the two traces
is consistent with the regular expression generated by imple-
mentation ontology. Moreover, the non-ontology token anal-
ysis method shows that there is an information leakage threat
for the Ticket in the 7th and 8th messages of the CAS-SSO

VOLUME 7, 2019 131063



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

TABLE 8. Weight of the data type.

TABLE 9. Matching result with green trace Msg4 and CAS-OAUTH implementation ontology.

TABLE 10. Matched weights of the red trace to the CAS-OAUTH implementation ontology.

TABLE 11. Matching result with red trace and CAS-OAUTH implementation ontology.

TABLE 12. Matched weights of the green trace to the CAS-OAUTH implementation ontology.

protocol trace. We also find this information leakage threat
in the 12th and 13th messages of the CAS-OAUTH protocol
trace.

Figs. 36 and 37 show the results of the non-ontology token
analysis method. The Ticket appears in the Location field
and Get field. It indicates that Ticket is sent along with

131064 VOLUME 7, 2019



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

TABLE 13. The mapping between the green trace to the CAS-OAUTH implementation ontology.

TABLE 14. The mapping between the red trace to the CAS-SSO implementation ontology.

FIGURE 36. The 7th message of CAS-SSO.

FIGURE 37. The 8th message of CAS-SSO.

the URL. Get field and Location field is the plaintext in the
HTTP protocol and is generally used to query resources and
jump to another website. However, according to the SPIO,
the ticket is an important authorization credential for estab-
lishing a session between the client and the CAS application
server. The Get field and location field could be saved in
the cache by the browser, and the attacker can get the ticket
by searching the cache. Therefore, the login module of a
university information system has a risk of data leakage.

We also notice that the number of non-ontology token in
the trace is larger than the ontology token. There are two rea-
sons for this phenomenon: (1) Many tokens may traverse in
the same connection multiple times. (2) CAS protocol and the
other protocol are mixed in transmission. The CAS protocol
implementation of the user login module is not standard.

E. DISCUSSION
We discuss in detail our approach from four aspects:

(1) The past protocol reverse engineering methods merely
infer the protocol specification, but in our work, it is used to
analyze the consistency of security protocol trace and SPIO
to find the vulnerabilities of network and system.

(2) In the past, researchers used purified network traces to
promote the correctness, but purified network traces are hard
to obtain. In our work, unpurified network traces are used.

We process it by B-spline such that the noise can be resisted
and reduced. The B-spline points out the special characters
used for the K-means method to classify the unpurified net-
work traces.

(3) As for complexity, PI project [35] uses multiple
sequence alignment in which computational complexity is O
(Ln) (L-is the length of the trace, n is the number of the trace).
[15,17-19] adopts the n-gramsmethod to analyze the protocol
format. The computational complexity of the n-grams is O
(Kw) (K is the number of keywords and W is the number
of n-grams for the given corpus). We use two-way sequence
alignment method to replace multiple sequence alignment
method and reduce the computational complexity from O
(Ln) to O (L2), which is a considerable improvement on the
efficiency.

(4) Regarding the separator identification assumption,
Field Hunter [21] uses two assumptions: (1) Separators often
appear at the beginning and end of the IF and are usu-
ally shorter in length, (2) Separators are a nonalphanumeric
sequence of 1 or 2 characters. Field Hunter uses assumption
(2) to filter separators. But we only adopt assumption (1) and
then use VF region to filter separators.

(5) Malicious traffic detection methods [9]–[14] find an
attack when an attack is launched, while our proposed
SAMSPI method can find in advance the vulnerabilities of

VOLUME 7, 2019 131065



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

the network and system before an attack is launched to take
advantage of these vulnerabilities.

VI. CONCLUSION AND FUTURE WORKS
Under the condition of not being able to obtain SPI, in this
paper, we analyze the SSPI based on the unpurified security
protocol traces and SPI specifications. First, the SPIOF is
presented based on a seven-step method and an ontology
framework. It describes the attributes of the ontology terms.
Second, FAMUNTmethod is presented using separator infer-
ence method. It produces the protocol format from the unpu-
rified network trace. Third, the mapping method of SPT2SIO
is presented based on the greedy algorithm. It generates
SPT2SIOmapping. Fourth, the SAMSPI method is presented
to analyze the consistency of CAS trace and check the token
leakage. Finally, FSIA software is implemented to analyze
the CAS-SSO protocol and CAS-OAUTH protocol of login
module of a university, the result shows that there is a risk of
leakage of the Ticket in the CAS protocol and a large number
of the non-ontology token are mixed with ontology token in
the same connection.

In the future, we will take the token dependencies and
the protocol state machine into consideration to analyze the
security of SPI to a finer degree.

REFERENCES
[1] K.-S. Min, S.-W. Chai, and M. Han, ‘‘An international comparative study

on cyber security strategy,’’ Int. J. Secur. Appl., vol. 9, no. 2, pp. 13–20,
Sep. 2015.

[2] M. Aizatulin, A. D. Gordon, and J. Jürjens, ‘‘Extracting and verifying
cryptographic models from C protocol code by symbolic execution,’’ in
Proc. 18th ACM Conf. Comput. Commun. Secur., Chicago, IL, USA,
Oct. 2011, pp. 331–340.

[3] B. Meng, X. He, J. Zhang, L. Yao, and J. Lu, ‘‘Security analysis of
security protocol Swift implementations based on computational model,’’
J. Commun., vol. 39, no. 9, pp. 178–190, Sep. 2018.

[4] J. Jürjens, ‘‘Automated security verification for crypto protocol implemen-
tations: Verifying the Jessie project,’’ Electron. Notes Theor. Comput. Sci.,
vol. 250, no. 1, pp. 123–136, Sep. 2009.

[5] J. Lu, L. Yao, X. He, C. Huang, D. Wang, and B. Meng, ‘‘A security
analysis method for security protocol implementations based on message
construction,’’ J. Appl. Sci., vol. 8, no. 12, p. 2543, Nov. 2018.

[6] Z.Wang, X. Jiang,W. Cui, X.Wang, andM.Grace, ‘‘ReFormat: Automatic
reverse engineering of encrypted messages,’’ in Proc. Eur. Symp. Res.
Comput. Secur., vol. 5789, Berlin, Germany, Sep. 2009, pp. 200–215.

[7] J. Zeng and Z. Lin, ‘‘Towards automatic inference of kernel object seman-
tics from binary code,’’ inProc. Int. Symp. Recent Adv. Intrusion Detection,
vol. 9404, Kyoto, Japan, Dec. 2015, pp. 538–561.

[8] M. Li, Y. Wang, P. Xie, and Z. Huang, ‘‘Reverse analysis of secure
communication protocol based on taint analysis,’’ in Proc. Commun. Secur.
Conf., Beijing, China, May 2014, pp. 1–8.

[9] G. Sun, L. Liang, T. Chen, F. Xiao, and F. Lang, ‘‘Network traffic classifica-
tion based on transfer learning,’’Comput. Elect. Eng., vol. 69, pp. 920–927,
Jul. 2018.

[10] M. Marchetti, F. Pierazzi, M. Colajanni, and A. Guido, ‘‘Analysis of
high volumes of network traffic for advanced persistent threat detection,’’
Comput. Netw., vol. 109, no. 2, pp. 127–141, Nov. 2016.

[11] Z. Chen, Q. Yan, H. Han, S. Wang, L. Peng, L. Wang, and B. Yang,
‘‘Machine learning based mobile malware detection using highly imbal-
anced network traffic,’’ Inf. Sci., vols. 433–434, pp. 346–364, Apr. 2018.

[12] Y. Wang, X. Yun, Y. Zhang, L. Chen, and T. Zang, ‘‘Rethinking robust
and accurate application protocol identification,’’ Comput. Netw., vol. 129,
pp. 64–78, Dec. 2017.

[13] F. Ullah, M. Edwards, R. Ramdhany, R. Chitchyan, M. A. Babar, and
A. Rashid, ‘‘Data exfiltration: A review of external attack vectors and
countermeasures,’’ J. Netw. Comput. Appl., vol. 101, pp. 18–54, Jan. 2018.

[14] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti, ‘‘Detecting
Android malware leveraging text semantics of network flows,’’ IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1096–1109, May 2018.

[15] T. Krueger, N. Krämer, and K. Rieck, ‘‘ASAP: Automatic semantics-aware
analysis of network payloads,’’ in Proc. Int. Workshop Privacy Secur.
Issues DataMiningMach. Learn., Barcelona, Spain, Sep. 2010, pp. 50–63.

[16] Y. Wang, X. Li, J. Meng, Y. Zhao, Z. Zhang, and L. Guo, ‘‘Biprominer:
Automatic mining of binary protocol features,’’ in Proc. 12th Int. Conf.
Parallel Distrib. Comput., Appl. Technol., Barcelona, Spain, Oct. 2011,
pp. 179–184.

[17] Y. Wang, Z. Zhang, and L. Guo, ‘‘Inferring protocol state machine from
real-world trace,’’ in Proc. Int. Workshop Recent Adv. Intrusion Detection,
Ottawa, ON, Canada, Sep. 2010, pp. 498–499.

[18] Y. Wang, X. Yun, M. Z. Shafiq, L. Wang, A. X. Liu, Z. Zhang, D. Yao,
Y. Zhang, and L. Gou, ‘‘A semantics aware approach to automated reverse
engineering unknown protocols,’’ in Proc. 20th IEEE Int. Conf. Netw.
Protocols, Austin, TX, USA, Oct./Nov. 2012, pp. 1–10.

[19] J.-Z. Luo and S.-Z. Yu, ‘‘Position-based automatic reverse engineering of
network protocols,’’ J. Netw. Comput. Appl., vol. 36, no. 3, pp. 1070–1077,
May 2013.

[20] Z. Zhang, Z. Zhang, P. P. C. Lee, Y. Liu, and G. Xie, ‘‘ProWord: An unsu-
pervised approach to protocol feature word extraction,’’ in Proc. IEEE
INFOCOM, Toronto, ON, Canada, Apr./May 2014, pp. 1393–1401.

[21] I. Bermudez, A. Tongaonkar, M. Iliofotou, M. Mellia, and M. M. Munafó,
‘‘Towards automatic protocol field inference,’’ Comput. Commun., vol. 84,
pp. 40–51, Jun. 2016.

[22] J.-Z. Luo, S.-Z. Yu, and J. Cai, ‘‘Method for determining the lengths
of protocol keywords based on maximum likelihood probability,’’ Chin.
J. Commun., vol. 37, no. 6, pp. 119–128, Jun. 2016.

[23] S. Tao, H. Yu, and Q. Li, ‘‘Bit-oriented format extraction approach for
automatic binary protocol reverse engineering,’’ IET Commun., vol. 10,
no. 6, pp. 709–716, Apr. 2016.

[24] Z. Xiaoming, Q. Qian, W. Weisheng, W. Zhanfeng, and W. Xianglin,
‘‘IPFRA: An online protocol reverse analysis mechanism,’’ in Proc. Int.
Conf. Cloud Comput. Secur., Haikou, China, Sep. 2018, pp. 324–333.

[25] M. Marchetti and D. Stabili, ‘‘READ: Reverse engineering of automo-
tive data frames,’’ IEEE Trans. Inf. Forensics Security, vol. 14, no. 4,
pp. 1083–1097, Apr. 2018.

[26] X. Luo, D. Chen, Y.Wang, and P. Xie, ‘‘A type-aware approach to message
clustering for protocol reverse engineering,’’ Sensors, vol. 19, no. 3, p. 716,
Feb. 2019.

[27] Y.-H. Goo, K.-S. Shim, M.-S. Lee, and M.-S. Kim, ‘‘Protocol specifica-
tion extraction based on contiguous sequential pattern algorithm,’’ IEEE
Access, vol. 7, pp. 36057–36074, 2019.

[28] Enterprise Single Sign-On for All. Accessed: Jan. 2015. [Online]. Avail-
able: https://ereo.github.io/cas/4.2.x/protocol/CAS-Protocol.html

[29] C. W. Royer, M. O’Neill, and S. J. Wright, ‘‘A Newton-CG algorithm with
complexity guarantees for smooth unconstrained optimization,’’ Math.
Program., vol. 19, pp. 1–38 Jan. 2019.

[30] J. Nocedal and S. J. Wright, Numerical Optimization. Berlin, Germany:
Springer, 2006.

[31] L. Yujian and L. Bo, ‘‘A normalized levenshtein distance metric,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1091–1095,
Apr. 2007.

[32] K. Thompson, ‘‘Programming techniques: Regular expression search algo-
rithm,’’ Commun. ACM, vol. 11, no. 6, pp. 419–422, Jun. 1968.

[33] R. Yang, W. C. Lau, and T. Liu, ‘‘Signing into one billion mobile
app accounts effortlessly with OAuth2.0,’’ in Proc. Blackhat Eur., 2016,
pp. 1–10.

[34] S.-T. Sun and K. Beznosov, ‘‘The devil is in the (implementation) details:
An empirical analysis of OAuth SSO systems,’’ in Proc. ACM Conf.
Comput. Commun. Secur., Raleigh, NA, USA, Oct. 2012, pp. 378–390.

[35] M. A. Beddoe, ‘‘Network protocol analysis using bioinformatics algo-
rithms,’’ Toorcon, to be published.

XUDONG HE was born in 1991. He received the
M.S. degree from the School of Computer Science,
South-Central University for Nationalities, China,
where he is currently a Research Assistant. His
research interests include security protocol imple-
mentations and reverse engineering.

131066 VOLUME 7, 2019



X. He et al.: SAMSPI Based on Unpurified Security Protocol Trace and SPIO

JIABING LIU was born in 1994. He is currently
pursuing the master’s degree with the School
of Computer Science, South-Central University
for Nationalities. His research interests include
blockchain and smart contract security.

CHIN-TSER HUANG received the Ph.D. degree in
computer science from the University of Texas at
Austin, Austin, TX, USA. He is currently a Pro-
fessor with the Department of Computer Science
and Engineering, University of South Carolina,
where he is also the Director of the Secure Protocol
Implementation and Development (SPID) Labora-
tory. His current research interests include network
security, network protocol design and verification,
secure computing, and distributed systems.

DEJUN WANG was born in 1974. He received
the Ph.D. degree in information security from
Wuhan University, China. He is currently an Asso-
ciate Professor with the School of Computer,
South-Central University for Nationalities, China.
He has authored or coauthored more than 20 arti-
cles in international/national journals and con-
ferences. His current research interests include
security protocols and formal methods.

BO MENG was born in China, in 1974.
He received the M.S. degree in computer sci-
ence and technology and the Ph.D. degree in traf-
fic information engineering and control from the
Wuhan University of Technology, Wuhan, China,
in 2000 and 2003, respectively, where he was a
Postdoctoral Researcher in information security,
from 2004 to 2006. From 2014 to 2015, he was
a Visiting Scholar with the University of South
Carolina. He is currently a Full Professor with the

School of Computer Science, South-Central University for Nationalities,
China. He has authored or coauthored more than 50 articles in interna-
tional/national journals and conferences. He has also published two books
Automatic generation and verification of security protocol implementations
and secure remote voting protocol (Science Press), China. His current
research interests include blockchain, and security protocols and formal
methods.

VOLUME 7, 2019 131067


