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ABSTRACT Most studies on adaptive streaming over Hypertext Transport Protocol (HTTP) have focused
on improving the quality of experience (QoE) of clients by running the rate adaptation algorithm on the client
side. In a cellular environment, this leads to inefficient resource utilization because of the lack of coordination
between the competing clients. In cellular networks, the key challenge for HTTP adaptive streaming (HAS)
is to optimize the conflicting video quality objectives. Edge cloud-assisted adaptive streaming presents an
opportunity to optimize the quality of experience in cellular networks by moving the adaptation intelligence
from the client to the edge cloud. HAS algorithms select the video quality based on the estimated throughput
and playback buffer level. In this paper, we first present a joint throughput estimation method for HAS by
taking advantage of mobile edge computing. Next, we present an optimized solution for multi-access edge
computing (MEC)-assisted HAS by using edge cloud capabilities. Due to the non-deterministic polynomial-
time hardness of the problem, we design a heuristic rate adaptation algorithm to jointly enhance the quality
metrics of the competing clients. Our extension simulation results show that the proposed edge cloud-
assisted rate adaptation algorithm outperforms the existing strategies under different client-side and server-
side settings. Furthermore, we show that the proposed algorithm is promising under slow-moving and
fast-moving environments.

INDEX TERMS HTTP adaptive streaming, quality of experience, multi-access edge computing (MEC),
quality adaptation algorithm, fairness.

I. INTRODUCTION
Multimedia contents account for a majority of the traffic over
the Internet. According to Cisco’s Visual Networking Index,
the global mobile data traffic is expected to reach 82% by
2022 [1]. The most common solution for managing the traffic
demands is to use Hypertext Transport Protocol (HTTP).
HTTP adaptive streaming (HAS) solutions include Apple’s
HTTP Live Streaming, Adobe’s HTTP Dynamic Streaming,
Microsoft’s ISS Smooth Streaming, and Dynamic Adaptive
Streaming over HTTP (DASH) developed under MPEG and
standardized by the International Organization for Standard-
ization and International Electrotechnical Commission [2].

In HAS, the video content is fragmented into multiple seg-
ments and each segment is encoded into different video rates.

The associate editor coordinating the review of this manuscript and
approving it for publication was Dharm Singh Jat.

The rate adaptive algorithm on the client side selects an
appropriate segment that depends on the received metadata
and system conditions, such as the throughput and the occu-
pancy of the playback buffer. The rate adaptive algorithm
attempts to maximize the quality of the video bymeeting con-
flicting objectives in a manner that improves the user’s view-
ing experience. The potential objectives include selecting the
highest feasible set of video bit rates, avoiding needless video
bit rate changes, assigning equitable video rates among the
competing video clients, and preserving the buffer level to
avoid any interruption in the playback [3]–[8].

In cellular networks, video streaming can be subject to
low video quality and playback rebuffering because of band-
width limitations or unstable networks. The rate adaptation
algorithms strive to select the highest feasible video rate to
maximize the bandwidth utilization. However, in an unstable
network, it leads to higher frequency of vide bitrate switches
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and higher risk of playback interruption due to buffer under-
flow. The standard throughput estimation methods cannot
accurately estimate the bandwidth fluctuations in the pres-
ence of competing video clients [8]–[10]; this is because
the throughput per segment cannot estimate the bandwidth
share. The client downloads the video as fast as possible to
fill the playback buffer by selecting a video rate less than
the available bandwidth. Once the buffer is full, the client
enters the ON–OFF phase. During the OFF state, the client
waits to have sufficient space in the buffer to download the
next segment. The ON state means that the client requests the
next segment. During the steady-state phase, when multiple
streams compete for the network resources, the available
bandwidth is estimated unfairly and incorrectly by HTTP
clients unless downloading of the segment saturates the
end-to-end bandwidth [8]. Moreover, because of the lack of
coordination among multiple clients, the client-based video
quality selection results in unfair allocation of the video
quality.

Recently, the edge computing paradigm has been proposed
as a promising approach to provide better performance com-
pared to cloud computing [11]–[13]. Multi-Access Edge
Computing (MEC) [11] brings computation and storage capa-
bilities to the edge of themobile network by deploying servers
within the radio access network (RAN). TheMECs have real-
time access to the application and RAN information. The
user experience could be enriched by transferring the video
quality adaptation intelligence at the edge cloud. In a cellular
network, the HTTP clients are oblivious of the bottlenecks
in the radio channel and the competing clients. The MEC
presents an opportunity to enhance the user experience by
centrally adapting the video quality.

The understanding of edge computing-assisted rate adap-
tation strategies is still limited. In this paper, we present an
edge computing-assisted rate adaptation method for a single
cell with multiple clients. The contributions of this research
are as follows:
• We present a joint throughput estimation method in
mobile video streaming using edge computing facilities
that assist the quality adaptation algorithm by fairly
assigning video rates and reducing unnecessary quality
fluctuations.

• We design an integer non-linear programming (INLP)
optimization model that jointly optimizes the viewing
experience of the competing clients in a cellular network
with edge computing capabilities.

• We design a heuristic algorithm to efficiently solve the
rate-selection optimization problem.

• Through extensive simulations, we prove that the
proposed algorithm is promising under different
client/server settings and client speeds. Our proposed
algorithm outperforms the existing adaptation algo-
rithms in terms of video quality and smoothness while
protecting the playback buffer from draining. Further-
more, the proposed scheme efficiently uses network

resources, and the competing streams achieve equitable
video rates.

The rest of this paper is organized as follows. Section II
reviews the existing video streaming algorithms. Section III
presents the MEC-assisted HTTP adaptation system.
Section IV explains the proposed throughput estimation
method. The optimization problem is presented in Section V,
and Section VI provides the details of the proposed heuristic
rate adaptation algorithm. Section VII provides the simula-
tion results. Finally, Section VIII concludes the paper.

II. RELATED WORK
A. THROUGHPUT ESTIMATION
The available throughput, T , is calculated by the client as
the ratio of the segment size divided by the download time.
The download time is computed from the instant when the
HTTP request is sent to the instant when the last byte of the
requested chunk is received. Based on the current and past
observations, the throughput of the upcoming segments is
estimated. Currently, several methods have been proposed to
estimate the throughput. The running average of the through-
put, T E , is calculated as follows [14]:

T E (i+ 1) =

{
δ × T (i)+ (1− δ)× T E (i) i > 1
T (i) i = 1

(1)

where the weight coefficient δ is bounded between 0 and 1.
Dubin et al. [15] use the median of the throughput of the
last several segments to estimate the throughput of the next
segment. Rahman and Chung [16] show that the McGinely
dynamic indicator offers a stable response to the through-
put fluctuations, while maintaining a stable playback buffer.
To estimate the throughput of the next segment, [17] and [18]
use the harmonic mean of the throughput of the last 3 and the
last 20 downloaded segments respectively. Conventionally,
the client runs the estimation method to predict the through-
put. In this paper, we propose a joint throughput estimation
method based on HAS by taking advantage of mobile edge
computing (MEC).

B. RATE ADAPTATION
Multiple rate adaptation algorithms for enhancing quality of
experience (QoE) in DASH have been proposed. Tradition-
ally, rate adaptive algorithms run at the client end to select
the video quality. Certain researchers [19] and [20] have
proposed rate adaptation algorithms that select video rates
based only on the estimated throughput. Many methods have
been proposed to incorporate the information concerning the
playback buffer for selecting the video rate [21]–[23]. The
algorithms divide the playback buffer into multiple prede-
fined thresholds: B1, B2, B3, Bmax such that B1 < B2 <

B3 < Bmax . The algorithms increase or decrease the video
rate aggressively or conservatively based on whether the
buffer level increases above the next higher buffer thresh-
old or decreases below the next lower buffer threshold,
respectively. In [16] and [24], the authors propose algorithms
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that consider the size of the upcoming segments in addition
to the throughput and the buffer occupancy to predict the
segment download time.

Recently, several studies have focused on the rate adap-
tation algorithms by considering multi-client scenarios.
Zhao et al. [25] focus onmaximizing the video quality subject
to the stability of the servers’ queues. The problem of optimal
cache resource allocation for streaming over mobile networks
is investigated by [26]. Their research focuses on energy-
efficient caching along with QoE optimization. However,
it does not consider the constraints imposed by the limited
amount of radio resources.

A recent addition to the DASH [2] standard is the server
and network-assisted DASH (SAND-DASH) [27], which
specifies themeans for the clients, the servers, and theDASH-
aware network elements to collaborate with one another.
Li et al. [28] propose the maximization of the utility func-
tion to improve the QoE of the clients over a cellular
network using the SAND-DASH collaboration mechanism.
Yan et al. [29] present Prius, a hybrid-edge cloud and client-
rate adaptation framework that adds a layer of intelligence to
the edge cloud for jointly optimizing the rate adaptation in a
cellular network. Mehrabi et al. [30] design an INLP problem
to jointly optimize the QoE while fairly allocating bit rates
among the clients and balancing the utilized resources among
multiple edge servers.

III. MULTI-ACCESS EDGE COMPUTING ASSISTED HAS
Client-side rate adaptation algorithms have been widely
implemented in modern streaming systems. The cellular links
are highly dynamic, and the underlying TCP is unfair; there-
fore, it is unlikely that a single client will accurately capture
the bandwidth share. The throughput information of multiple
clients can be collected intuitively; the throughput can be
jointly estimated, and the video bit rates can be selected.

One possible solution is to shift the intelligent adaptation
from the client to the base station. This allows the central
controller to jointly optimize the video rate selection. The
MEC computational capabilities and storage support allows
the joint adaptation of multiple clients. However, the com-
peting clients might not be able to support all the available
bit rates because of limited display resolution and power
support.

We follow the MEC system architecture proposed in [29].
Fig. 1 illustrates the edge computing–assisted HAS system
for adaptive video streaming over a cellular network. The
HTTP server stores the video data of different views encoded
into multiple quality levels. The HTTP client downloads the
video stream divided into segments of fixed duration. All the
segments were of equal duration andwere given in seconds by
the time constant τ . HAS operates by monitoring a network
in real time and adjusting the quality of the video stream
accordingly without resetting the TCP connection. The edge
servers were deployed by the service provider within the
RAN adjacent to the base stations to improve the quality of
the mobile services.

FIGURE 1. Streaming architecture for multi-access edge computing
assisted video streaming.

The edge cloud can access the RAN information available
in the base station and is computationally powerful. The
adaptation module at the edge cloud can access the channel
knowledge of multiple clients for joint adaptation. The HAS
server shares the MPD w with the edge cloud and the clients
so that they have knowledge of the video representations
stored at the server. The clients first select a video rate Rc
based on constraints such as the display, the buffer level,
and the battery level. Then, the client requests the segment
at Rc. In conventional client-side adaptation, the cellular net-
work forwards the client request to the server. Unlike the
conventional client-side video rate adaptation, the edge could
intercept the request from the client. The adaptation algo-
rithm at the edge cloud overwrites the client’s request based
on the joint optimization of the clients and Rc. The client
periodically shares playback information including the buffer
level and QoE status. The 3rd Generation Partnership Project
standardized the QoE reporting process for the clients by
using the HTTP POST request carrying the XML formatted
metadata [31]. The rate adaptation results are then sent to the
server for streaming the segments. This does not require any
modifications in the video server.

A. QUALITY OF EXPERIENCE AND FAIRNESS
Some of the potential video quality objectives include select-
ing the highest feasible set of video bit rates, avoiding need-
less video bit rate changes, and preserving the buffer level
underflow to avoid interrupting the playback. The video bit
rate and playback interruption because of the buffer under-
flow affects the user experience the most [32]. Moreover,
one long playback interruption is preferred to multiple short
ones [33]. However, there is a tradeoff between selecting a
high video rate and the risk of playback interruption. The high
video rate improves the user experience but increases the risk
of playback interruption. The average video rate of the k th

client, Qk , can be obtained using:

Qk =

S∑
n=1

rik (n)

S
(2)
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where rik is the ith video rate assigned to the k th client,
n is the segment index and S is the number of segments
downloaded by the client. The stall event plays a critical role
in determining the QoE; therefore, we sacrificed the video
rate to mitigate the risk of playback interruption. In the paper,
we designed the optimization problem that ensures that the
sum of the selected video rates of the competing client is less
than the available resources at the base station.

Frequent bit rate switches inversely affect the QoE. Unlike
the case for smooth switching, the QoE for down switching
is impaired by abrupt switching [7]. For an instantaneous
switch, the minimum quality level is on average 30% better
than that of gradual video rate switches [34]. Experiments
have shown that there was little noticeable difference between
the qualities of the high-quality and mid-quality switches
during video playback [34]. In [35], the researchers suggest
that the user experience improves when the video rate was
increased aggressively because the increase makes the users
believe that the provider was attempting to maximize their
QoE. In addition, a long spell of good quality videos improves
the user experience [36]. The bit rate switching metric of the
client k is given by:

QSk =

S∑
n=1

rik (n)− rik (n− 1)

S
(3)

Multiple clients competing at the bottleneck must be able
to achieve equitable video rates. LTE base stations use the
proportional fairness policy to allocate radio resources to
multiple competing clients [37]. Traditionally, each client
selects the video rate according to the observed throughput.
However, because of the lack of coordination between the
competing clients, the client-based rate adaptation heuris-
tics may unfairly allocate the video rates among the clients.
As part of our MEC-assisted optimized solution, we obtain
fairness using the following relationship:

Fk =

C∑
k=1

rik − Ravg

C
(4)

where Ravg is the average of the bit rates of the other active
competing clients. For each competing client, the minimiza-
tion of Fk should satisfy the available resource blocks at the
base station.

IV. THROUGHPUT ESTIMATION METHOD
The conventional quality adaptation algorithms run at the
client end and select the video rate based on the knowledge
of their estimated throughput. MECs are computationally
powerful and can access the application layer information;
therefore, the quality of the clients can be jointly adapted
by overlaying a layer of intelligence on top of the clients.
The proposed estimation method collects the information of
multiple clients at theMEC and jointly estimates the through-
put of the clients for the upcoming segment. As explained
earlier, when multiple streams compete for the bandwidth,

clients estimate the segment throughput inaccurately. The
proposed scheme keeps monitoring the throughput of the nth

segment Tk (n) of the k th client and compares it with the esti-
mated throughput of the (n+ 1)th segment. If the throughput
is inaccurately estimated, the propose scheme continuously
modifies the estimated throughput according to Eq. (5):

T Ek (n+ 1) =

{
Tk (n) n

= 1
T Rk (n)+ e× µ n > 1

(5)

where e and µ are given by:

e = abs (T Rk (n)− Tk (n)) (6)

µ = log(
T Rk (n)− Tk (n)

Tk (n)
)where − 1 ≤ µ ≤ 1 (7)

Eq. (6) gives the difference between T RRk (n) and the
observed throughput. Eq. (7) shows the extent of variability in
T Rk (n) in relation with the observed throughput. A high value
of µ indicates that there is a significant difference between
Tk (n) and T RRk (n) because of throughput fluctuations or the
inaccurate estimation. The client must be sensitive to the
large differences between the estimated and the observed
throughputs. We select video bit rate based on the estimated
throughput; therefore, an inaccurate estimation would lead to
a low video quality or an increase in the risk of playback inter-
ruptions. If the value ofµ is large, Eq. (5) aggressively adjusts
the estimated throughput. However, a small µ value requires
a small adjustment to the estimated throughput. In a cellular
network, the channel conditions can vary significantly during
the download of segments. Therefore, it is reasonable to lever-
age both the throughput history and the current throughput
to interpret the trend of the throughput fluctuations. For this,
we use a simple exponential smoothing function to capture
the channel characteristics as:

T Rk (n+ 1)=

{
T E (n) n=1
(1−α)× T Ek (n+ 1)+α×T Rk (n) n>1

(8)

where α (0 < α ≤ 1) is the smoothing factor. The value
of α is set to 0.8 to remove the outliers from the dataset.
The MEC has the information of the estimated throughput of
all the clients. Therefore, the throughput is jointly estimated.
The HTTP streams compete for the bandwidth resource at
the bottleneck. Fig. 2 shows the example of unfair through-
put estimation because of the ON–OFF scheduling pattern.
As explained above, after the playback buffer is full, the client
enters the ON–OFF scheduling pattern. Let us suppose that
the available throughput is 3 Mbps. As shown in Fig. 2, all
three clients are downloading from time 0 to time t. Each
client observes a throughput of 1 Mbps over the download of
the segments. In the next downloading cycle, Client 3 enters
the OFF state. Clients 1 and 2 overestimate the throughput.
Similarly, in the next downloading cycle, Clients 1 and 2
enter the OFF state. Client 3 overestimates the throughput.
The ON–OFF scheduling pattern not only results in unfair
and inaccurate throughputs, but it also leads to unnecessary
fluctuations in the observed throughput. The clients consider
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FIGURE 2. Example of unfair throughput prediction resulting from the
ON–OFF scheduling pattern.

the throughput for selecting the video bit rate; this leads
to unfair throughput sharing and unnecessary video bit rate
fluctuations.

Our proposed scheme jointly estimates the throughput of
the competing streams. First, the client calculates the average
throughput of the competing clients as follows:

T sum =
C∑
k=1

T Rk (9)

T avg =
T sum

C
(10)

where C is the number of competing clients. However, in a
cellular environment, the throughput is also affected by fac-
tors such as the path loss, fading, and shadowing. Therefore,
a client that is closer to the base station would experience
a higher throughput as compared with the user at the edge
of the cell. Therefore, the throughput for the next segment is
estimated as follows:

T k (n+ 1) = Tavg × (1+
T Rk (n+ 1)− Tavg

Tavg
) (11)

V. RATE ADAPTATION PROBLEM
For the rate adaptation problem, a video is fragmented into τ
second segments. The set of representations available for the
video stream is denoted by Rwhere R = {r1, r2, r3, . . . ,RN}.
The problem is to select the bit rate riε R, for all clients,
such that the QoE is maximized. The variable xik defines the
number of clients streaming the ith video rate stored at the
server. In the next section, we provide a detailed description
of the joint optimization problem and the fairness of QoE.
We define three weighing parameters 0 ≤ δ, β, ϕ ≤ 1
(δ + β + ϕ = 1) to control the respective video rates,
the video rate switches, and the fairness. In addition, we add
a problem constraint to avoid the playback buffer underflow.
The descriptions of the parameters involved in the system
have been summarized in Table 1.

TABLE 1. Description of parameters.

A. PROBLEM FORMULATION
We model the joint optimization for each client i with the
following INLP formulation.

Maximize Uk = δ∗Qk−β∗QSk−ϕ
∗Fk (12)

Subject to
C∑
k=1

xik ×Wk ≤ W (13)

0 ≤ xik (14)

0 ≤ Bk ≤ Bmax (15)

rik ≤ Rc, ∀1 ≤ k ≤ S (16)

rik ∈ R, ∇ ≤ k ≤ S (17)

The objective function (12) aims to jointly maximize the
user experience of the k th client and equitably allocate video
rates among the clients. The constraint (13) ensures that the
total resources distributed among the clients by the base sta-
tion do not exceed the available resources at the base station.
W denotes the available resources blocks at the base station.
The scheduler is responsible for resource scheduling and
resource allocation to the video clients. It is important to note
that in our network model, the observed throughput would be
affected by the presence of competing clients. The constraint
(14) specifies that a video rate can be allocated to multiple
clients. The constraint (15) ensures that the client does not
experience buffer underflow. Constraint (16) guarantees that
the video rate selected for the k th client at the MEC does not
exceed Rc. Finally, the constraint (17) specifies that the bit
rates allocated to the clients belong to the set of video rates
available at the server.

B. NON-DETERMINISTIC POLYNOMIAL-TIME HARDNESS
The optimization problem formulated in the previous section
belongs to the non-deterministic polynomial-time (NP)–hard
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problems because of the existence of integer decision vari-
ables. Hence, the solution space includes exhaustive possible
enumerations.

First, we prove the NP-hardness of the optimization
problem by reduction from the unbounded variant of the
0–1 knapsack problem (KP) [38]. The 0–1 KP has been
shown to be NP-complete. The unbounded variant of KP
exhibits the same hardness as the 0–1 KP [38]. Given a set of
k items {c1, c2, . . . , ck} with associated weights and profit
and a knapsack, we consider an instance of KP in which
multiple copies of each item are available. The problem is the
allocation of the items to the knapsack to maximize the total
profit while the total weight of the items is kept less than the
knapsack capacity. The unbounded variant of the KP does not
put any limits on the number of the times that an item may be
selected.

The unbounded variant of the 0–1 KP can bemapped to our
problem. The set of k items and the knapsack are mapped to
the set of available video rates at the video server and base
station, respectively. The profit maximization is equivalent
to the utility maximization (Eq. 12) in our problem. The
objective problem given in Eq. (12) is an instance of the KP in
which the number of video rates allocated by the base station
is equal to the number of clients associated with the base
station. The problem is the allocation of the video rates by
the base station to the clients to maximize the total profit;
the total resources distributed among the clients by the base
station do not exceed the available resources at the base
station. The joint allocation of different set of video rates
by the base station to the clients results in different utility
values. Furthermore, multiple copies of a discrete video rate
can be assigned to multiple clients. Now, the unbounded KP
is an NP-complete problem; therefore, our problem is also
NP-complete.

VI. ONLINE OPTIMIZATION ALGORITHM
In this section, we explain the heuristic adaptation algorithm
to solve the optimization problem presented in the previous
section. The algorithm is designed for online execution at the
MEC. A brute-force strategy can be employed to maximize
utility by investigating all the possibilities for allocating video
bit rates to the clients. However, when the number of available
video rates and clients increases, the complexity will also
grow exponentially. To reduce the complexity, we present a
greedy-based algorithm, which is executed using the client
data obtained for the MEC.

As explained in Section III, the clients first select the
video rate Rc. The different video clients support different
playback qualities. The proposed greedy algorithm runs in
the MEC; therefore, this algorithm is unaware of the client’s
capabilities. Therefore, the client shares with the MEC the
highest video rate that it can play back based on the display
and the buffer level. Similarly, it is important to avoid the
buffer underflow. The highest video rate supported by the
client is denoted by Rsup. Given the observed throughput, Tk
and current buffer level, Bk , we set Rc equal to the highest

Algorithm 1 Greedy Algorithm

rik : The ith video bitrate of the k th client
Ravg: Average of video rates of clients
Rnext : The video rate selected for the next segment
Rprev: The video rate selected for the previous segment
Rc: Video rate suggested by the client
Bk : Playback buffer occupancy of the k th client
δS : Switching threshold
δF : Fairness threshold
C : Number of Clients
S: Number of Segments
N : Available video rates
Initialization:
For each client 1 ≤ i ≤ C

If Buffer Level == Empty
If Segment Number == 1
Rnext = Rmin

Else
For each bitrate rεR in the decreasing order

If rik ≤ Tk
Rnext = r
Break

Else
For each bitrate rεR in the decreasing order

If allocation of r satisfies (13) and r < Rc
and r < T̄k

If bitrate r > Rprev
If 1− r−ravg

Rmax−Rmin
> δF

Break
Else If bitrate r == Rprev
If Rprev < ravg

Rnext = Rprev
Break

Else
If
∣∣r−Rprev∣∣≤δS and Rprev≥ravg

Rnext = r
Break

If Rnext == 0 then
For each bitrate rεR in the decreasing order

If allocation of r satisfies (13) and r < Rc
If rik ≤ T̄k

Rnext = r
Break

Compute Video Quality, Switching, Fairness and Utility
Function according to (2), (3), (4) and (12)
Update Buffer Level

video rate that satisfies the condition:max(Bk−rik / Tk×τ >
0.1× Bmax , Rsup).

Algorithm 1 provides the details of the proposed rate
adaptation algorithm. The algorithm selects the ith video rate
from the set R for the nth segment. The video rate for the
nth segment is selected at the end of the download of the
segment n− 1. The video rate selected for the segment n− 1
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is denoted by Rprev. The proposed algorithm running on the
client outputs the video rate for the nth segment as Rnext .

At the start of the streaming session, when the play-
back buffer is empty and no information was available
about the link quality, we select the lowest available video
rate for the first segment. For a buffer underflow, while
downloading the subsequent segments, we select the highest
available video rate less than the observed throughput.

When the buffer level fills up, the algorithm selects the
video rate that reduces the switching frequency and improves
the fairness value. To select the video, two conditions should
be satisfied (1) the resources distributed among the clients
should not exceed the total resources available at the base
station, (2) the video rate should be less than Rc. These
conditions are put in place to minimize the risk of playback
interruption.

Here, we consider the scenario in which the video rate
is increased. As explained in Section III-A, the aggressive
increase in the video rate improves the user experience [35].
Although, the users found the frequent video rate switches
annoying, they positively responded to the improvements in
the video quality. Therefore, it is important to ensure that
the increase in the video rate is not followed by a sudden
decrease. The decrease in the video rate is forced by the
risk of playback interruption. Therefore, the video rate is
selected only if it satisfies the two conditions explained ear-
lier. To increase the video rate, only the fairness condition
should be satisfied. The proposed algorithm considers the
threshold δF of fairness. The fairness index associated with
the selected bit rate is computed as 1−(r−ravg)/(Rmax−Rmin),
which takes the value between 0 and 1. To increase the video
rate, the selected video rate should satisfy the condition:
Fairness index > δF .

Next, we discuss the scenario when the current video rate
is maintained. If the highest available video rate that satisfies
the video selection conditions is Rprev, then we use the current
video rate only if the current video rate is less than ravg. This
is because we want to improve the fairness and minimize the
frequency of the video rate switches. By further decreasing
the video rate, the fairness decreases, and the number of
switches increases.

Finally, we discuss the scenario when the video rate is
decreased. If the highest available rate that satisfies the video
selection conditions is less than Rprev, the selected video rate
should satisfy the following two conditions: (1) Rprev > ravg,
(2) Switching index ≤ δS . If the current video rate is greater
than ravg, we improve the fairness value by decreasing the
selected video rate. The algorithm considers the threshold
δS for the video rate switches. The switching threshold δS
is computed as |max{R} < Tn−1 − max{R} < Tn| where
max{R} is the highest video rate in the set R that is less
than Tn. The switching index associated with the selected bit
rate is computed as

∣∣r − Rprev∣∣.
If there is no such bit rate that satisfies the conditions to

increase or decrease the video rate, the algorithm selects the
highest video rate less than the estimated throughput that

satisfies both the video selection conditions. After the bit rate
selection, the algorithm returns the local utility of the client,
which was computed using (12).

FIGURE 3. Network topology.

TABLE 2. Cellular network configuration.

VII. PERFORMANCE EVALUATION
We implement HTTP-based adaptive video streaming in
the multi-access edge computing scenario shown in Fig. 3.
We implement the LTE network as the underlying cellular
network. A detailed configuration of the cellular network is
shown in Table 2. To achieve adaptive streaming, the HTTP
server offers the client 10 levels of representation to adapt the
video rates. These video rates are 184, 380, 760, 1000, 1600,
2100, 2500, 3000, 3500 and 4000 kbps.We assume that all the
clients can playback the highest available video rate. We set
the fairness threshold δF equal to 0.7. The tuning parameters
in the objective function in (12) are set to δ = 0.75, β = 0.25
and ϕ = 0.25.

In the simulation, we evaluate the algorithms under vary-
ing network conditions, buffer sizes, and segment dura-
tions. We analyze the algorithms for the settings mentioned
in Table 3. We demonstrate the impact of the buffer size
and the segment duration on the performance of the algo-
rithms. The HTTP clients offer distinct buffer sizes. The rate
adaptation algorithms should be able to guarantee QoE under
different client settings. We set the buffer sizes to 20, 40,
and 60 s and evaluate the performance of the rate adapta-
tion algorithms. Then, we demonstrate how the algorithms
perform with variations in the segment duration. Microsoft
Smooth Streaming and Adobe HTTP Dynamic Streaming
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TABLE 3. Buffer size and segment duration settings.

offer segment durations of 2 and 4 s [39], [40]. The users are
randomly distributed within the cell. The users are moving
at a speed of 60 kmph. The simulation runs 200 s. The
experiment is repeated five times for each setting.

We adopt the solutions proposed in [24] and [30] as the
benchmarks to demonstrate the efficiency of the proposal.
In the results, we refer to the algorithms proposed in [24]
and [30] as ECAA and SARA, respectively. The ECAA is
an MEC-assisted DASH system for mobile video streaming
that includes a client-to-edge-server mapping strategy and
an optimization of QoE and fairness. We adopt the solution
proposed in [30] for a single-cell scenario such that the MEC
allocates the video rates to the clients. Unlike the MEC-
assisted adaptation algorithm, SARA is a client-based adapta-
tion algorithm. The clients select the video rate independently
and are oblivious of the decisions taken by other clients.

Along with the factors that affect the user experience,
fairness and inefficiency are also important factors that the
algorithm must strive to achieve. The inefficiency at the time
t is given as follows [17]:

Inefficiency =

∣∣∣∣ C∑
i=1

ri −W

∣∣∣∣
W

(18)

where W is the bandwidth, and each client i selects
the bit rate ri. The unfairness is computed according to
√
1− JainFair , where JainFair is the Jain fairness index

calculated using Eq. (19). We used the Jain fairness index to
quantify the fairness [41]. The Jain fairness index of ri over
all the players i is given by

Fairness =

(
C∑
i=1

ri

)2

C
C∑
i−1

r2i

, i ≥ 0 (19)

Ideally, the values of inefficiency and unfairness should
be zero. Low inefficiency values are desirable because it
wouldmean that the client selects the highest feasible bit rates
that are lower than the actual throughput. Low unfairness
values are also desirable because the competing clients would
achieve equitable video rates.

A. EVALUATION OF THROUGHPUT ESTIMATION METHOD
In this section, we show how the proposed throughput esti-
mationmethod helps the rate adaptation algorithm to improve

the user experience. To evaluate the performance of the pro-
posed scheme, we compare our results with the two most
commonly used throughput estimation methods: running
average [3] andmoving average of the last three segments [4].
The video bit rate was determined by selecting the highest
video rate less than the estimated throughput.

FIGURE 4. Throughput observed by the competing clients.

FIGURE 5. Average video rates selected and average video rate switches
experienced by the clients.

FIGURE 6. Comparison of the unfairness values when the clients employ
different throughput estimation methods.

The throughput observed by the competing clients is
depicted in Fig. 4. Figs. 5 and 6 show the performance
parameters when the clients use the proposed method,
the running average, and the moving average throughput esti-
mation methods. Fig. 5 shows that all the compared through-
put estimation methods achieve a similar video quality, but
the proposed algorithm is able to minimize the number of
video rate switches. This shows that the proposed method is
robust to small variations in the throughput. To demonstrate
this, we perform an experiment in which the client experi-
ences small fluctuations followed by a large fluctuation in the
throughput. Fig. 7 shows that the proposed method during

VOLUME 7, 2019 129089



W. U. Rahman et al.: Edge Computing Assisted Joint Quality Adaptation for Mobile Video Streaming

FIGURE 7. Throughput values estimated by the proposed, running and
moving average methods.

this period provides a stable response to small fluctuations.
This helps to minimize the video quality fluctuations by
mitigating unnecessary fluctuations. Fig. 7 also shows that
our proposed method is sensitive to large variations in the
throughput. Our proposed method also responds quickly to
large variations in the throughput. The rate adaptation algo-
rithms select the video quality on the basis of the estimated
throughput; therefore, our proposed method helps to reduce
the risk of playback interruptions and improves the use of the
available throughput. The running average method has the
highest number of switches followed by the moving average
method. Fig. 6 also shows that the proposed method has
the lowest unfairness value, which means that the proposed
method gives a fair estimate of the throughput for the com-
peting users.

B. EVALUATION OF QoE AND FAIRNESS
In this section, we examine the performance of the algorithms
in terms of QoE, fairness, and inefficiency. To evaluate the
performance of the proposed algorithm, we compare the per-
formances of the three algorithms under different client and
server settings.

TABLE 4. Statistics of different adaptive methods when buffer size is set
to 60 s.

1) EFFECT OF BUFFER SIZE
First, we evaluate the performance of the algorithms under
varying buffer sizes of the clients. Table 4 shows the statistics
of the adaptation algorithmswhen the buffer size of the clients
is set to 60 s. Table 4 shows that the proposed and ECAA

algorithms outperform the SARA algorithm in terms of the
average video rates. The proposed algorithm experiences
the least number of video rate switches as compared with
the competing algorithms. The proposed algorithm not only
achieves high video rate but is also able to mitigate unnec-
essary video rate switches. The SARA algorithm achieves a
high video rate at the expense of high number of video rate
switches. Here, we can observe a tradeoff between selecting
high video quality and minimizing the number of video rate
switches. The SARA algorithm runs only on the client side.
Therefore, a greedy client increases the video rate whenever
it gets the opportunity but at the expense of higher video
rate switches. Table 4 shows that the proposed algorithm has
the highest fairness value followed by the SARA algorithm.
The SARA algorithm has a high fairness value because all the
clients start streaming simultaneously and are moving at a
constant speed. Therefore, their throughput fluctuations are
synchronized. This helps the SARA algorithm to achieve a
high fairness value although the clients are oblivious of one
another. The proposed and ECAA algorithms achieve a lower
inefficiency value as compared with the SARA algorithm.

TABLE 5. Statistics of different adaptive methods when buffer size is set
to 40 s.

Next, we decrease the video rate to 40 s. Table 5 shows
the statistics of the adaptation algorithms the buffer size of
the clients is set to 40 s. A smaller buffer size increases the
risk of playback interruption. The rate adaptation algorithm
should react aggressively to avoid playback interruptions.
Table 5 shows that the proposed algorithm outperforms other
algorithms in terms of the average video rate achieved by
the clients. The proposed algorithm achieves the highest
video rate and experiences the lowest number of video rate
switches. The ECAA algorithm is also able to reduce the
video rate switches andmaintain a high video rate. The SARA
algorithm achieves the lowest video rate and experiences the
highest number of video rate switches. Similar to the previous
scenario, the proposed algorithm and the SARA algorithm
achieve a high fairness value followed by the ECAA algo-
rithm. Furthermore, all the competing algorithms achieve the
same inefficiency value.

In the next experiment, we decrease the buffer size to 20 s.
Table 6 shows the statistics of the adaptation algorithms
the buffer size of the clients is set to 20 s. Table 6 shows
that the proposed algorithm achieves the highest average
video rate and is able to minimize the number of video
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TABLE 6. Statistics of different adaptive methods when buffer size is set
to 20 s.

rate switches. Our proposed algorithm also achieves high
fairness value and efficiently uses the bandwidth. The ECAA
algorithm achieves a higher video rate and a smaller number
of switches than our proposed algorithm, but ECCA has the
lowest fairness value among the competing clients. However,
the SARA algorithm experiences the highest number of video
rate switches. The video rate switches are high because the
algorithm tries to bring about a balance between achieving
a high video rate and minimizing the risk of playback inter-
ruption. The algorithm increases the video rate as soon as the
bandwidth allows it to do so. However, the client moves at
a high speed; therefore, a large number of fluctuations are
experienced in the bandwidth. The client aggressively adjusts
the video rate in response to the fluctuating bandwidth to
reduce the risk of buffer underflow. Table 6 also shows that
the proposed and the SARA algorithms have a marginally
lower inefficiency value as compared with the SARA algo-
rithm when the segment size was set to 20 s.

These results show that our proposed algorithm is able
to select high video rates for the clients while reducing the
number of video rate switches. Moreover, the video rates are
selected fairly, and the clients efficiently use the resources.
The ECAA algorithm can achieve a high video rate; however,
as compared with the proposed algorithm, it has a higher
number of video rate switches and a lower fairness value.
The SARA algorithm achieves the lowest video rate among
the competing clients and the highest number of video rate
switches.

2) EFFECT OF SEGMENT DURATION
Here, we evaluate the performance of the algorithms under
different segment durations. The different service providers
provide videos that are divided into different segment dura-
tions. We set the value of the buffer size to 60 s. In the
previous section, we explained the performance of the algo-
rithms when the segment size is set to 2 s. Figs. 8 and 9
show a comparison of the performance of the algorithms
for segment durations of 2 and 4 s, respectively. When the
segment duration is increased to 4 s, the proposed algorithm
and the SARA algorithm marginally improve their perfor-
mances, whereas the performance of the ECAA algorithm is
marginally degrades. The proposed algorithm achieves higher
video rate and the number of video rate switches decrease.

FIGURE 8. Average video rate and video rate switches experienced when
the segment duration is set to 2 and 4 s.

FIGURE 9. Fairness and inefficiency values achieved by the algorithms
when the segment duration is set to 2 and 4 s.

Fig. 8 shows that the SARA algorithm experiences a video
rate switch during the streaming of almost half the segments.
The ECAA algorithm not only achieves a slightly lesser
video rate, but the frequency of the video rate switches also
increases. It is important to note here that when the segment
duration is set to 4 s, the client downloads 50 segments as
compared with the experiment when the segment duration is
set to 2 s, and 100 segments are downloaded.

Fig. 9 shows that the proposed and SARA algorithms
achieve similar fairness values, whereas the ECAA algorithm
has a slightly lower fairness value when the segment duration
is increased to 4 s. Fig. 9 shows that the SARA algorithm
uses resources more efficiently when the segment duration is
increased to 4 s. A closer look at Table 6 shows that when
the buffer size is reduced to 20 s, the fairness value of the
ECAA algorithm is low as compared with other experiments.
Similarly, when the segment duration is increased, the ECAA
algorithm shows a drop in the fairness value. One reason for
this drop is that the fairness condition of the ECAA algorithm
is not stringent. Secondly, if none of the available video
rates satisfies the fairness condition, the ECAA algorithm
selects the video rate based only on the basis of the switching
condition. The fairness and efficiency values of the proposed
algorithm remain similar regardless of the buffer size and
segment duration, whereas for the SARA and ECAA algo-
rithms, these values vary when the segment duration or buffer
size is changed. The SARA algorithm has a slightly lower
inefficiency value when the segment duration is increased.
The segment duration is directly proportional to the risk of the
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buffer underflow if the selected video rate is higher than the
throughput. When the segment duration is small, the SARA
algorithm increases the video rates aggressively and takes
the risk of selecting the video rate higher than the available
throughput. This leads to an increase in the inefficiency value.
When the segment duration is large, the SARA algorithm
increases the video rate conservatively because a slight mis-
match between the video rate and the throughput could lead
to a buffer underflow.

FIGURE 10. Average video rate and video rate switches experienced
when the clients speed is set to 3 and 60 kmph.

FIGURE 11. Average video rate and video rate switches experienced
when the client speeds are set to 3 and 60 kmph.

3) EFFECT OF MOBILITY
In this section, we evaluate the performance of the algorithms
when the clients move at the speed of a pedestrian and a
vehicle. We first set the client speed to 3 kmph and then
increase the speed to 60 kmph. Figs. 10 and 11 show the
performances of the algorithms under different client speeds.
We set the buffer size and segment duration to 60 s and
2 s, respectively. Fig. 10 shows that the proposed and ECAA
algorithms show a significant increase in the video rate for
low client speeds. There was a marginal increase in the
clients’ average video rate for the SARA algorithm. Fig. 10
shows that the proposed algorithm has the lowest number
of video rate switches for both experiments; the next lowest
number is given by the ECAA algorithm. The proposed and
ECAA algorithms have fewer switches when the client moves
at the pedestrian’s speed than at the speed of the vehicle.
Surprisingly, the SARA algorithm experiences more switches
at the speed of a pedestrian. SARA is a greedy algorithm, and
it runs on the client side; therefore, the tug-of-war between
the clients to achieve a high video rate leads to higher video

rate switches regardless of the client speeds. Fig. 11 shows
that the proposed algorithm has the highest fairness value for
the speeds of both a pedestrian and a vehicle. The ECAA
algorithm has the lowest fairness value. The SARA algorithm
achieves the highest inefficiency value in both the exper-
iments. One reason for the high inefficiency value is that
the SARA algorithm slowly increases the video rate at the
start of the streaming session. If the available bandwidth is
high, this leads to inefficient utilization of the algorithm.
However, the ECAA algorithm selects the highest available
video rate for the first segment. If the available bandwidth
does not allow all the clients to stream at the highest available
bandwidth, there is a sudden adjustment of the video rates to
satisfy the available resources at the base station. This results
in unfair bit rate selection at the start of the streaming session.

VIII. CONCLUSION
In this paper, we have presented an edge cloud–assisted
rate adaptation solution to enhance the user experience in a
cellular network. The edge cloud–assisted solution shifts the
adaptation intelligence from the client to the edge cloud to
jointly optimize the QoE of the streaming clients. We present
an edge computing–assisted throughput estimation method
that helps the rate adaptation algorithm to improve the video
quality objective. Next, we propose an INLP optimization
model that jointly optimizes the users viewing experience of
the competing clients. Then, we propose a heuristic adapta-
tion algorithm to jointly enhance multiple conflicting video
quality objectives for improving the user experience of the
competing clients in a cellular network. Using extensive sim-
ulations, we proved that the proposed throughput estimation
method assists the rate adaptation algorithm to smoothen the
frequency of the bit rate switches and improve the fairness.
Next, we show that the proposed algorithm outperforms the
existing algorithms in terms of the QoE and fairness under
different client and server settings. Lastly, we show that the
proposed algorithms maintain high user experience regard-
less of the clients’ speeds.
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