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ABSTRACT Doppler weather radar can detect the changes in precipitation clouds for short-term forecasting.
In the process of development of Doppler weather radar and weather identification algorithms, some typical
Doppler weather radar base data corresponding to different weather phenomena are necessary for signal
processing unit test and algorithm verification. However, the existing real weather radar base data with high
quality can’t meet the requirement in amount. In this paper, an algorithm based on Deep Convolutional
Generative Adversarial Networks (DCGAN) to generate typical weather radar base data is proposed. And
in the test signal simulation step, the power spectrum algorithm is improved. The results show that the data
produced by the DCGAN have the same characteristics with the real weather radar base data without obvious
non-meteorological noise. Moreover, the improved power spectrum algorithm performs better in terms of
accuracy rate of the simulation echo signal.

INDEX TERMS Doppler weather radar base data simulation, baseband weather radar echo signal, DCGAN,
power spectrum simulation.

I. INTRODUCTION
Doppler weather radar detects meteorological targets by
transmitting microwave that can penetrate cloud and rain.
Radar pulse propagates out by radar transmitter, then the
pulse is scattered by a hydrometeor and returns to the
receiver where it is transformed from a microwave pulse
to one that can be displayed on video equipment. Doppler
weather radar is extensively applied as an important remote
sensor for the sounding and short-term forecasting of haz-
ardous weather [1]. So the development of high-performance
Doppler weather radar and robust weather phenomena iden-
tification algorithms are two significant issues.

In the stage of development of Doppler weather radar,
some echo signals corresponding to different weather phe-
nomena are required as test signals to evaluate the perfor-
mance of the signal processing unit. But the desired echo
signals are not always available for application owing to the
lack of observable weather events or applicable radar instru-
ments. Thus, echo signal simulation with existing weather
radar base data is an alternative we can turn to. Furthermore,
in the research process of weather identification based on
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weather radar base data, large amounts of typical weather
radar base data are needed for the algorithm verification. The
applications of weather radar base data are shown in Figure 1.

FIGURE 1. The applications of weather radar base data.

However, the accessible real weather radar base data are
much less than needed for the development of Doppler
weather radar and weather identification algorithms. Hence
typical weather radar base data simulation is a way we
must choose to produce the required amount of data. Sev-
eral researchers explored the simulation of weather radar
base data and echo signals. Zrnic proposed a power spec-
trum simulation algorithm to generate weatherlike Doppler
spectra and signals for determining radar systems’ behav-
ior under adverse conditions [2]–[4]. Bousquet et al. estab-
lished a small-scale wind field model [5], the wind field is
related to real landform,which needs a huge amount of data
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storage space. Lischi et al. adopted theWeather Research and
Forecast (WRF) model combined the Transmission Matrix
code (T-Matrix) to simulate radar echo signals [6], [7]. This
method takes multiple rainfall parameters as input and has
the shortcoming of high dependence on real weather radar
base data. Zhengang et al. designed a mathematical model to
simulate the weather radar base data which can reflect typical
weather phenomena [8]. However, this model only implies
part of characteristics of real data. The Generative Adver-
sarial Networks (GAN) is a Deep Learning algorithm [9]
proposed by Goodfellow, which has been widely applied
in image processing and artificial image generation. The
generated images by GAN can imitate the features of real
ones well. For example, some generated handwritten digits
and human faces can pass fake imitation for genuine [10].
Many researchers have carried out GAN-based experiments
and showed the advantages of GAN in various applications.
Wenqi et al. utilized GAN to synthesize human images from
masks [10]. Zhang et al. proposed a star-galaxy image gen-
eration method based on GAN [11] to generate star-galaxy
images with two different resolutions. Isola et al. imple-
mented image style transfer in different scenarios by using
GAN [12]. Yuanzhao et al. used GAN to predict the pre-
cipitation [13] and showed that GAN could recognize the
characteristics of radar echo image.

Deep Convolutional Generative Adversarial Networks
(DCGAN) is an improvement of GAN [14], where the con-
volutional neural network (CNN) is applied to extract the
features from the original data. CNN can improve the sta-
bility of DCGAN and shorten the training time [15], [16].
As a special data, weather radar base data are color coded.
The color coded data can be visualized on a plan position
indicator (PPI). The PPI images are used as the input of
DCGAN to simulate weather radar base data. The simulated
weather radar base data have the same characteristics with
the real ones. Furthermore, with DCGAN, a dataset including
reflectivity, velocity and spectral width can be generated
simultaneously. So the deficiency problem of weather radar
data can be solved byDCGAN simulation.With the generated
weather radar base data from DCGAN, the baseband weather
radar echo signals can be obtained by using the improved
power spectrum algorithm.

This paper is organized as follows: Section II describes
the datasets for the DCGAN training. Section III presents
the weather radar base data generation method and the radar
echo signals simulation method. Section IV evaluates the
simulation results. Section V discusses the advantages and
disadvantages of these methods. Section VI concludes this
study.

II. DATA
In this research, a rich data set has been constructed, which
includes 2000 samples. It is selected from a large amount of
radar base data detected by multiple CINRAD_SA single-
polarized radars during 2002-2008. Each radar base data con-
tains three parts which are the reflectivity data, the velocity

data and the spectral width data. The main parameters of the
radar base data format are shown in Table 1.

TABLE 1. The main parameters of the weather radar base data format.

In meteorological services, the CINRAD-SA radar mostly
adopts the volume scan mode to obtain the three-dimensional
distribution of precipitation clouds in atmosphere. The radar
completes 360-degree scanning with a fixed elevation, and
then changes the elevation to enter the next layer scanning.
The spatial resolution increases with the raise of elevation and
slope distance, which means it is difficult to apply the radar
base data directly to the DCGAN model. Before using the
radar base data to train the DCGAN model, it is necessary
to preprocess the radar base data, including the standard-
ization and the PPI mapping. The standardization can be
summarized asX̄ =

X − XMin
XMax − XMin

× 255

X̄ = 0 (X is Null)
(1)

where, X is the input to the normalized function, and X̄ is
the output after standardization. Moreover, XMax and XMin
correspond to the maximum and minimum values of radar
base data respectively, which are listed in Table 2. As shown
in Table 1, the range bin length of reflectivity is different
from that of velocity and spectral width. In order to maintain
consistency between multiple product data, each range bin of
reflectivity is duplicated four times to form a new matrix.

TABLE 2. The data formats after preprocessing.

The gray colormap is applied to draw the PPI image of
radar base data, including the reflectivity (Z ), velocity (V )
and spectral width (W ). Moreover, each PPI image with a size
of 400∗800. As shown in Figure 2, three PPI images are used
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FIGURE 2. The PPI images preprocessing.

for the input of DCGAN, which can be regarded as the three
channels data of RGB image.

Finally, the output of the DCGAN is a three-channel color
image corresponding to the reflectivity, velocity and spec-
tral width data respectively. Moreover, the radar Radial data
can be obtained by sampling the color image in the radial
direction.

III. METHOD
A. WEATHER RADAR BASE DATA GENERATION
1) THE PRINCIPLE OF DCGAN
The DCGAN consists of two parts: the generating network
(generator, G) and the discriminating network (discrimina-
tor, D). The DCGAN value function can be seen as a game
learning model about the generating network and the discrim-
inating network. In generating network, the input is a random
noise or a latent variable. The discriminator can be regarded
as a binary classifier to discriminate whether the input data
are real or artificial. The generator and discriminator improve
their imitation and discriminant abilities respectively through
the game learning process. The model of DCGAN is shown
in Figure 3.

FIGURE 3. The model of DCGAN.

2) THE STRUCTURE OF GENERATOR NETWORK
The architecture of the generating network is shown
in Figure 4, in which the input is a 100-dimensional random
noise vector. The fractional-strided convolution is applied to
repalce the pooling layers in the generating network, which
can increase the input size. Moreover, the Batch Normaliza-
tion is applied to normalize the input to each unit to have
zero mean and unit variance. In addition, the fully connected
hidden layers are removed for deeper architectures. Then the
generator uses Rectified Linear Units (ReLU) activation for
all layers except for the output which uses the hyperbolic

FIGURE 4. The architecture of generator.

tangent (Tanh) activation. The Tanh is a zero-mean function
which can improve training efficiency. ReLU and Tanh are
determined by equation (2) and equation (3), respectively.

.Re LU (x) =

{
x, x > 0
0, x ≤ 0

(2)

Tanh(x) =
ex − e−x

ex + e−x
(3)

3) THE STRUCTURE OF DISCRIMINATOR NETWORK
As shown in Figure 5, the architecture of discriminator can
identify the generated data and the real data. The discrimina-
tor of DCGAN is different from the traditional GANproposed
by Ian Goodfellow [9]. The discriminator replaces all pooling
layers with strided convolutions. It uses Batch Normaliza-
tion to resolve the problem that the poor initialization and
the gradient flow in deeper models. The discriminator uses
LeakyReLU activation in all layers.

Leaky Re LU (x) =

{
x x > 0
0.2x x ≤ 0

(4)

FIGURE 5. The architecture of discriminator.

When the gradient is less than 0, the neurons can be acti-
vated, so that it can improve the stability of the training. The
final fully connected layer has only one output node, and the
output value of the network is mapped to probability by using
the sigmoid function.

simgoid(x) =
1

1+ e−x
(5)

4) THE TRAINING PROCESS OF DCGAN
The steps of DCGAN implementation are as follows:

The first step is to calculate the loss function V (G):

V (G) = (1− y) log(1− D(G(z))) (6)
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where, y is the parameter for balancing losses. In this paper,
z is a 100-dimensional random noise vector,G(z) is the output
of generator, andD(G(z)) represents the true probability of the
data generated by the G.

The second step is to calculate the loss function V (D):

V (D) = −((1− y) log(1− D((G(z)))+ y logD(x)) (7)

where, x is the real sample data, and D(x) represents the true
probability of the real sample data.

The third step is to calculate the optimization function, and
the mathematics model is expressed as:

min
G

max
D

V (D,G) = Ex∼Pdata(x)(logD(x))

+ Ez∼Pz (log(1− D(G(z)))) (8)

In which Pdata is the distribution of real data, and Pz is
the distribution of random noise. When the discriminator’s
input x comes from data, the output is close to 1. When the
discriminator’s input z comes from noise variables, the output
is close to 0. The stronger the ability of D is, the bigger D(x)
and the smaller D(G(z)) will be so that V (D,G) will become
larger. It is a time to finish the training when the generated
data are very close to the real data and D cannot judge.

B. BASEBAND RADAR ECHO SIGNAL SIMULATION
1) PRINCIPLE OF POWER SPECTRUM ALGORITHM
The method of I/Q time-domain sequence simulated by the
traditional power spectrum algorithm which can be abbrevi-
ated PS is proposed by Zrnic [2], [3]. The I/Q time-domain
sequence is the radar echo signal. Zrnic proposed that the
power spectrum distribution of weather echo signal is very
similar to the Gaussian distribution. The power spectrum
function [2] can be defined as:

Pn(fk ) =
pr√
2πδf

exp[−
(fk − fd )2

2δ2f
] ·

1
p0

(9)

Here fd = 2vr/λ is the Doppler frequency, vr is the radial
velocity, δf = 2δv/λ is the standard deviation of fd , δv is the
spectrum width, and p0 is the mean value of multiple Gauss
power spectral components and is defined in equation (10).
It guarantees that the signal power keeps constant when defin-
ing the power spectrum function.

p0 =
1
N

N−1∑
k=0

1√
2πδf

exp[−
(fk − fd )2

2δ2f
] (10)

and frequency fk is

fk = −PRF/2+ k · PRF/N (k = 0, 1, 2 · · ·N − 1) (11)

Here, PRF is pulse repetition frequency, N is the number
of sampling sites. pr = CZ/r2 is echo power where Z is
radar reflectivity, r is radial distance between meteorology
object and radar, and C is radar constant that depends on radar
parameters [17], which is defined as:

C = 0.93
π3

1024 ln 2
PtG2hθϕ
λ2

(12)

where, Pt is transmitting power, G is antenna gain, θ is
horizontal beamwidth, ϕ is vertical beamwidth, λ is the wave-
length of the electromagnetic wave emitted by the radar, and
h is pulse length.
In general, the true signal power spectrum is mixed with

noise. In order to simulate the true power spectrum char-
acteristics of weather signal, it is necessary to add noise in
equation (9) and then randomize it [2]. Adding noise power
spectrum PN /PRF to equation (9) and multiplying this new
equation by − ln(1 − rnd) to get a randomized function,
the result is shown in equation (13).

Pn(fk ) = − ln(1− rnd){
pr√
2πδf

exp[
−(fk − fd )2

2δ2f
] ·

1
p0

+ PN /PRF} (13)

where, PN is noise power, and rnd is a random variance
uniformly distributed between 0 and 1. The Inverse Discrete
Fourier Transform (IDFT) is used to obtain the time-domain
sequences [2] s(i):

s(i) = I (i)+ jQ(i)

=
1
N

N∑
k=1

(
√
Pn(fk ) exp(jθk ) exp(−j

2π
N
ki) (14)

where, θk is a uniformly distributed phase between 0 and 2π ;
and Pn(fk ) and θk are statistically independent.

2) POWER SPECTRUM ALGORITHM WITH
ADAPTIVE SPECTRUM SCOPE
The traditional power spectrum algorithm is used to simulate
weather radar test signals. The quality of partial areas of these
simulated signals is poor. When analyzing the data in these
areas separately, it is found that the deviation of simulated
signal is large when the radial velocity is too large or too
small.When using traditional algorithms to calculate the echo
power spectrum, a problem is that it will make part of power
spectrum components beyond the spectrum scope when the
velocity is too large or too small. In order to solve this
problem, a power spectrum algorithmwith adaptive spectrum
scope (which can be called adaptive power spectrum algo-
rithm and can be abbreviated APS) is applied in this paper.
In this algorithm, the spectrum scope is selected according
to the velocity automatically. Suppose PRF = 1000Hz,
the frequency fk corresponding to different velocity is defined
in equation (15).

fk =


−k · PRF/N , vr < −12
−PRF/2+ k · PRF/N , −12 < vr < 12
k · PRF/N , vr > 12

(15)

Assume that the value of reflectivity is 30 dBz, velocity is
20 m/s, and spectral width is 3 m/s. Based on these assump-
tions, the power spectrum is shown in Figure 6. Figure 6(a)
shows the power spectrum using PS, and Figure 6(b) shows
the power spectrum using APS in the same condition. The PS
discards a portion of the power spectrum components because
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FIGURE 6. The power spectrum calculated by PS (a) and APS (b).

of the spectrum scope limitations, while the power spectrum
components are almost completely retained when using APS
to adjust the spectrum scope.

When the radar parameters are known, echo signals with
real weather object characteristics can be simulated based
on weather radar base data. Weather radar base data can be
calculated by I/Q time-domain sequences and the calcula-
tion can be used as a module to verify the accuracy of the
simulation algorithm. At present, the weather radar signal
processor mainly uses Pulse Pair Processing (PPP) algorithm
and the Fast Fourier Transform (FFT) algorithm [18], [19].
The estimation accuracy of FFT algorithm is higher, therefore
the FFT algorithm is adopted in this paper.

IV. EXPERIMENT ANALYSIS
A. ANALYSIS OF REAL WEATHER RADAR ECHO IMAGES
The base data of Doppler weather radar contains information
about reflectivity, velocity and spectral width. The reflec-
tivity is related to liquid water content or precipitation rate
in the resolution volume and it can be calculated by the
weather signal power. Previous studies have shown that pre-
cipitation is likely to occur where reflectivity is greater than
10 dBz [20]. And the higher the reflectivity is, the stronger
the precipitation intensity is. As shown in Figure 7, the

FIGURE 7. Real weather radar echo images corresponding to rainfall
phenomena. Figure 7(a) is reflectivity image. Figure 7(b) is velocity image.
Figure 7(c) is spectral width image.

TABLE 3. Parameters in neural network training.

precipitation intensity in the marked areas is much stronger
than that in the surrounding areas. Besides, the reflectivity has
been decreased from the center to the edge, and the edge is
uneven. Based on Doppler effects, Doppler weather radar can
measure the relative velocity of precipitation particles to the
beam emitted by radar. Relative velocity means that velocity
vectors exist both toward and away from the radar. Therefore,
there is both positive and negative velocity in the PPI image
of velocity as shown in Figure 7. The spectral width is a
measure of the velocity dispersion, that is, shear or turbulence
within the resolution volume. Most of the spectral width is
less than 2m/s. The reflectivity and velocity are positively
related with spectral width, which is consistent with known
experience [21], [22].

B. THE SIMULATION RESULTS OF DCGAN
DCGAN’s experimental hardware environment is: NVIDIA
Tesla P40 GPU, CUDA 9.1, Ubuntu 16.04, memory 24GB.
TensorFlow 1.4 and Python3.6 are used as the software. The
training datasets used in the experiment are as shown above.
Some parameters in neural network training are configured
as shown in the following table.

When the DCGAN training is completed, the generator can
generate data samples that have the same distribution with the
real data. Figure 8 shows the simulated weather radar echo
images (base data) corresponding to rainfall phenomena

Three kinds of rainfall phenomena weather radar echo
images are selected for analysis in this paper. As shown
in Figure 8(a), the reflectivity is characterized by high inten-
sity and large areas. There are positive and negative velocity
regions which are symmetric to the radar station approxi-
mately and the maximum radial wind speed is more than
12m/s in the velocity echo image. The distribution of the
spectral width is basically around 2m/s.

Figure 8(b) is the generated squall line process. The regions
where the reflectivity has a part of the intensity are distributed
along the squall line. The squall line passes through the
radar station, so there is a clear positive and negative speed
zone. The distribution structure of the spectral width is also
substantially identical to the reflectivity distribution.
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FIGURE 8. Simulated weather radar echo images corresponding to
rainfall phenomena. Figure 8(a1), 8(b1), 8(c1) are reflectivity images.
Figure 8(a2), 8(b2), 8(c2) are velocity images. Figure 8(a3), 8(b3), 8(c3) are
spectral width images.

Figure 8(c) can be regarded as a rainfall process containing
supercell. There are multiple strong reflectivity areas and the
gradients in these areas are large, so these areas can be con-
sidered as areas where supercell may appear. Figure 8(c2) is a
velocity image with significant positive and negative velocity
regions in the radial direction. The distribution characteristics
of the spectral width are basically consistent with that of the
velocity.

These distribution characteristics are consistent with the
general law of rainfall phenomena which is mentioned in
Section 4.1. Besides, the cause of rainfall can be distin-
guished, such as squall line, supercell and so on.

In summary, the typical weather radar base data generated
by the DCGAN have the distribution characteristics of real
weather radar base data.

C. THE PERFORMANCE OF APS
Assuming a set of weather radar base data which are
Z = 25dBz, δr = 3.5m/s and vr = 1, 2, · · · 25m/s. The data
are used as the input of PS and APS respectively to simulate
baseband I/Q time-domain sequences. Then the FFT trans-
form algorithm is applied to the I/Q time-domain sequences
to recover the weather radar base data. The comparison of the
recovered and the originally assumed weather radar base data
can be taken as a reference to verify the performance PS and
APS. The comparison results are shown in Figure 9. REAL
represents the originally assumed weather radar base data.
The maximum errors of reflectivity, velocity and spectral
width with APS are 1.41, 0.32 and 0.25, respectively. And
the correspondingmaximum errors with PS are 1.48, 3.32 and
1.35, respectively. It shows that the APS has more accuracy
than PS in baseband weather radar echo signal generation.

FIGURE 9. The comparison of originally assumed and recovered radar
base data from the I/Q signals generated by APS and PS.

In this paper, the weather radar base data generated by
DCGAN are applied as the input of APS to generate the
baseband weather radar echo signals. Moreover, the baseband
weather radar echo signals can be used in the test of radar
signal processing unit. In order to verify the correctness of the
baseband weather radar echo signals, they are converted into
the radar base data by using FFT algorithm. By comparing
Figure 10 and Figure 8(a), it can be seen that the distribu-
tions of the two radar base data are consistent. In addition,
a quantitative error analysis method of weather radar base
data is proposed by selecting valid data for calculation. The
valid data are defined that the value of reflectivity, velocity
and spectral width are in the valid range. The formula is as
follows:

ρ =

N∑
i=1

(|Ai(valid)− Bi(valid)|)
M

(16)
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FIGURE 10. The recovered weather radar echo images. Figure 10(a) is
reflectivity image, Figure 10(b) is velocity image, and Figure 10(c) is
spectral width image.

Here, N is the number of the weather radar base data, M is
the number of valid weather radar base data, A is the value of
original weather radar base data and B is the value of simu-
lated weather radar base data. The average errors of reflec-
tivity, velocity and spectral width are 0.9422, 0.0738 and
0.0452 respectively. The maximum errors of reflectivity,
velocity and spectral width are 4.123, 0.5522 and 0.3761.
Though some reflectivity errors are big due to the small
spectral width, most of the errors are in a reasonable range.
In conclusion, APS performs better than PS and has practical
value.

V. DISCUSSION
As mentioned above, the available typical weather radar
data are difficult to meet the needs of current weather radar
research. In recent years, a great number of studies have
focused on the generation of the typical weather radar base
data. These traditional methods have a common shortcoming
that they can only generate a single radar product data without
considering the correlation between multiple product data.
There is a big deviation between the generated product data
and the real data. In this paper, the DCGAN is applied to gen-
erate the typical weather radar base data, which is widely used
in the generation of sample data because of the strong feature
extraction and learning ability. In this method, the reflectivity,
velocity and spectral width data are generated by using a noise
sequence as input. Moreover, the relationships between mul-
tiple radar product data are fully considered, which make the
generated weather radar base data closer to the real weather
radar base data.

In order to convert the radar base data generated by
DCGAN into the radar echo signals without distortion, a new
power spectrum algorithm is proposed in this paper, which is
referred to as APS. Compared with the traditional algorithm,
the spectrum scope is adjusted according to the velocity

adaptively in APS. The problem of power spectrum compo-
nents loss caused by too large or too small of the velocity data
is avoided, which makes the generated test signal closer to the
real radar echo signal.

However, the training process of DCGAN usually requires
large labeled data and powerful computational resources. It is
obvious that the training samples described in Section II are
insufficient. Future work should be focused on collecting
more samples for training the DCGAN. Moreover, the gen-
erated data corresponding to the weather type are rainfall in
this paper. More kinds of precipitation data are needed in the
meteorological services, such as snow, hail, and so on. Future
work should change the DCGAN to generate multiple types
of radar base data.

VI. CONCLUSION
In this paper, the DCGAN network is applied to generate the
weather radar base data. Experiment shows that the DCGAN
can generate multiple radar product data simultaneously,
including the reflectivity, velocity and spectral width data.
Moreover, the relationships between multiple radar product
data are fully considered in this method, which make the
generated radar base data more similar with the real radar
base data. In addition, a new power spectrum algorithm
is proposed in this paper, which can adjust the spectrum
scope according to the velocity adaptively. It is applied to
a transformation which turns the radar base data into the
baseband weather radar echo signals. The generated radar
echo signals are more accurate than the calculation results of
the traditional power spectrum algorithm.
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