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ABSTRACT Extracting road network information including lane boundaries, lane centerlines, junctions
and their relationship from AIS data plays an important role in location based services, urban computing and
intelligent transportation systems, etc. However, AIS data are large scale, high noisy, the density and quality
are very uneven in different areas, extracting a whole, continuous and smooth maritime road network with
rich information from such data is a challenging problem. To address these issues, this paper proposes an
adaptive maritime road network extraction approach that can extract both lane boundaries and centerlines for
a large sea area from AIS data. Based on a road network definition including nodes, segments and segment
curves, the approach designs parallel grid merging and filtering algorithms to determine if a grided area is
inside lane or not. Lane boundaries are smoothed through jagged edge filtering and Simple Moving Average
algorithms before centerline extraction. We evaluate our method based on real world AIS data in various area
across the world’s seas. Experimental results show the advantage of our method beyond the close related
work.

INDEX TERMS AIS data, road network, spatio-temporal data mining, trajectory data mining, trajectory
computing, visual analysis.

I. INTRODUCTION
The advance in IoT and Cloud Computing technologies gen-
erated and collected massive spatial trajectories representing
the locations of vehicles, such as automobiles, bicycles and
mobile phones. Such unprecedented massive trajectory data
can be used for transportation monitoring and early warning,
trajectory prediction, anomaly detection, travel route plan
etc., fostering or enhancing a broad range of applications
in location based services, urban computing and intelligent
transportation systems etc [1], [2]. Extraction of road net-
works from massive trajectory data is one of such important
research topic attracting the attention of researchers [3]–[5].

The traditional way to acquire geographical road net-
work information is through special equipped vehicles taken
by trained, dedicated personnel driving on the streets [6],
through analyzing high resolution satellite images [7], [8],
or through manual crowdsourcing like OpenStreetMap
(OSM) project [9] based on the editing and updating
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contribution from volunteers. Compared with the tradi-
tional approaches, extraction of road network from trajec-
tories is more cost-effective, flexible and has higher time
performance [10], [11]. Since the trajectory data can be clas-
sified and analyzed according to different kinds of vehicles,
the factual and detailed road information for different kinds
of vehicles can be extracted, and the changes of road can be
reflected in a timely manner [12]. Trajectory data for urban
computing are often collected from the Global Positioning
System (GPS) terminals, while in maritime traffic, Automatic
Identification System (AIS) terminals can provide us reli-
able source information for trajectories of vessels. Although
there are no artificially constructed roads in physical form
on the sea, in fact, vessels typically follow some de facto
standardized maritime routes due to some reasons such as
fuel-efficiency aspects, existing protected sea areas where
maritime traffic is prohibited and some well-known security
threats. As extracting the road information from the crowd-
sourced GPS data, extracting shipping lanes on the sea accu-
rately from the crowdsourced AIS data also offers interesting
applications.
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However, extraction of maritime road networks from
AIS data is challenging because of the following aspects:

1) Large volume, high noise, uneven density and
quality. Trajectories collected from large number of
vessels for a long period are in large volume and tend
to be distorted with noisy data hiding the vessel’s real
location. In our global AIS dataset, there are billions of
trajectory points (records) per month, over 100GB and
over 370,000 active ships, and over 1TB per year. The
sampling frequency of the trajectory points in the off-
shore and nearshore water area ranges from 5 seconds
to 100 seconds and from 2 minutes to 10 minutes in the
open sea. The density and quality of AIS data in the off-
shore and near shore areas are very different. The vessel
trajectory points in the offshore and nearshore water
areas are naturally more densely distributed than in the
open sea areas. Additionally, the extraction precision
requirement is low in open sea but high in offshore and
nearshore water area. These characteristics have posed
huge challenges to road network extraction algorithms.

2) Extract continuous and smooth maritime road
networks. Maritime road networks could include not
only centerlines or lanes, but also boundary infor-
mation, for boundary information is very useful in
some scenarios such as warning of a vessel out of a
secure or legal area. We also believe a whole lane must
be continuous and smooth, or else it is only a segment
of a lane and cannot be well used in real application.
Extracting such a whole, continuous and smooth mar-
itime road network with rich information in a large area
is non-trivial.

To meet the above challenges, we propose a framework
called ‘‘Maritime Road Network Extraction from Crowd-
sourced Trajectories (MaritimeNET)’’ to extract maritime
road network from massive AIS data. The contributions of
the research are:

1) We propose a maritime road network extraction
approach based on adaptive grid merging and filter-
ing and Delaunay Triangulation. The 3-phase approach
includes: a) Through parallel trajectory insertion, dele-
tion, segmentation and clustering based on GeoHash
encoding, quality of trajectory data is improved and
volume is reduced as grid data. b) Through parallel grid
merging and filtering algorithms, those grids inside
lanes are selected; through Delaunay triangles con-
struction and filtering, polygon based lane boundaries
are generated and extracted. c) Through maritime traf-
fic boundary smoothing, second triangles construction
and triangles classification and filtering, lane center-
lines and junctions are extracted and maritime road
networks are built up. Since the first two stages have
been introduced in another paper, this paper mainly
focuses on the third stage.

2) Experimental results show that the proposed method
can automatically effectively extract maritime road net-
work from crowdsourced data in a large area with high

noise and very uneven density and quality, by compar-
ing with the related work.

The rest of this paper is organized as follows. Section II
reviews related work. In Section III, the basic concepts
throughout the paper are introduced and the problems to be
solved are described. Section IV describes the preprocessing
algorithm. Section V describes the grid merging, grid filter-
ing, and the maritime road boundary extraction algorithms.
Road centerlines extraction and road network building algo-
rithms are described in Section VI. Section VII evaluates our
approach and compares it with current methods. Section VIII
concludes the paper.

II. RELATED WORK
The existing related researchwork on road network extraction
from trajectory data can be classified into three categories:

1). Vector-based approaches: Transform trajectory points
into vectors and then extract the road network information.
Most of vector-based approaches are based on clustering
algorithms. Point clustering methods cluster the trajectory
points into way points and then find the information to
connect them into roads or lanes [13]–[19]. Segment clus-
tering methods cluster trajectory segments to extract road
segments [20]–[22]. Others use statistical method of motion
attributes to find way points and lines [23]–[25] or extract
the road lines by incrementally inserting and merging tracks
based on their geometric relations and/or shape similar-
ity [26]. The above methods can be used to extract road
lines or segments but is difficult to be used to extract lane
boundaries or whole lane boundaries in a large area. Further-
more, the methods are applicable to densely sampling traces,
but not robust to position points with noises and varying
density.

2). Image-based approaches: Transform the location data
of all the trajectory points into row and column coordinates of
image, and then recognize and/or extract the lane information
using digital image processing technology [5], [27], [28]. The
image-based methods are also applicable to densely sampling
traces, but not robust to noisy data and have efficient problem
when applying to massive trajectory data.

3). Grid-based approaches: Transform trajectory points
into grids, and then extract road information from grid
data [10], [29]–[31]. Some authors [10], [29], [31] apply
Delaunay Triangulation to extract road boundaries and road
centerlines. Others [30] use the number of trajectory points
in grids (grid heat value) to determine the road direction,
however the lane boundaries and junctions have not been
considered in their paper. The grid-based approach can be
used to extract both boundary information and centerlines,
and is more robust to data with noises and varying density
than the other two approaches. The existing research papers
haven’t discussed how to apply their algorithms on massive
AIS data and how to extract a continuous and smooth lane in a
large area, which is very challenging when the data volume is
large, the data quality is low and the trajectory points density
is quite uneven.
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Different from these related work, this paper extracts both
marine lane boundary and lane centerlines. The framework
and approach proposed in this paper can deal with massive
trajectory data efficiently using algorithms based on parallel
computing, and the challenges of extraction lane networks
from noisy and density uneven trajectory data are also tackled
by various ways such as grid merging, sliding-window filter-
ing and boundary smoothing algorithms.

III. DEFINITIONS AND OVERVIEW
This section first gives a few basic concepts, then describes
the problem we are aiming to solve and overviews the
approach.

A. DEFINITIONS
Definition 1 (Vessel Trajectory): A vessel Trajectory Tvi is

a spatio-temporal point sequence of a vessel vi, that repre-
sents the sequence of positions of vi over a period of time.
Tvi = (vi, (p0, p1, . . . , pN )), where vi represents the mar-
itime mobile service identity (MMSI) of the vessel, pj =
(xi,j, yi,j, tj) indicates the position of the vessel at a certain
moment, where tj is the sampling (or collecting) time of the
position, xi,j, and yi,j represents the longitude and latitude of
vi at tj.
Definition 2 (Marine Lane Boundary): A marine lane

boundary Plane is a two-dimensional polygon represent-
ing the area where ships are allowed to sail in. Plane =
(p0, p1, . . . , pn), in which the set of vertices pi constitutes a
polygon P in a clockwise direction.
Definition 3 (Grid): A grid is a rectangular area on a map.

By dividing the 2D geospatial space through horizontal and
vertical direction, the whole geographical space is divided
into multi equal rectangles in size. Each rectangle is called
a grid. Grid can be described as Grid = (Code,Dsy), where:
Code: GeoHash code of a grid. Code can be obtained based

on the GeoHash algorithm [32] encoding the location of the
grid center including longitude and latitude. It is a string
constituted by 0 or 1.
Dsy: grid density. Dsy is defined as the number of AIS

points in one grid g, Dsy = |{gswlon < plon < gnelon , gswlat <
plat < gnelat , p ∈ P}|, where p indicates a AIS point, plon and
plat indicate the longitude and latitude of an AIS point p, gsw
and gne indicate the south-west and north-east boundary point
of g.
Definition 4 (Parent Grid): If a grid is divided into

four sub-grids by separating the grid into two parts in
both the latitude and longitude directions respectively. The
divided grid is called the parent grid of the four sub-
grids. In fact, for the parent Gridpar = (Codepar ,Dsypar ),
Codepar is the prefix of any of its sub-grid’s Code. That is,
Codepar = subString(Codesub, 0, |Codesub| − 2), and the
parent grid’s density is the sum of four sub-grids’ density:
Dsypar =

∑
Dsysub.

Definition 5 (Marine Lane Extraction Precision): Geo-
Hash offers properties like arbitrary precision and the pos-
sibility of gradually removing characters from the end of the

code to reduce its size (and gradually lose precision) [32].
If we let the size of the GeoHash code (|Code|) of a grid
represent the precision of this grid, given a trajectory data set
in an area to extract marine lane, the mean precision of all the
grids in this area used to extract the marine lane is called the
marine lane precision. That is, Precisionlane =

∑
precisiong
|G| ,

where G indicates the grid set used to extract marine lane,
g is a grid in G.
Definition 6 (Marine Lane Network Node): A node ver in

a marine lane network is a lane centerline junction.
Definition 7 (Segment): A segment of a marine lane net-

work is an edge or arc e = (veri, verj), which is expressed
by two adjacent nodes veri and verj where there exists a
centerline between them. An edge with direction information
is called arc arc.
Definition 8 (Segment Curve):A segment curve of amarine

lane network is a curve formed by discrete points curve =
((c0, c1, . . . , ck ), (g0, g1, . . . , gl), where ci = (xci , yci ), xci
and yci are the longitude and latitude of a position point ci,
gi is the grid (Definition 3) which this segment curve passes.
Definition 9 (Maritime Road Network): A maritime road

network NET = (V ,E,C) is a 3-tuple graph, where V is a
set of nodes (Definition 6) on maritime road network, E is a
set of graph edges i.e. segments (Definition 7) and C is a set
of segment curves (Definition 8).

B. PROBLEM AND APPROACH OVERVIEW
Our goal in this paper is to extract rich marine lane network
information from massive crowdsourced trajectory data, that
is, given an AIS trajectory dataset {Tv}, we aim to extract the
marine lane network LaneG in a certain area.

As analyzed before in Section I, it is a very challenging
problem to extract rich marine lane network information from
the large-scale, high-noisy, and density uneven crowdsourced
AIS data. The approach has 3-phases:

The first phase is preprocessing. In this phase, we insert
missing trajectory points, delete erroneous or redundant data,
and reduce the data volume by clustering the trajectory data
using an algorithm based on GeoHash encoding. In this
phase, the quality of trajectory data is improved and volume
is reduced, the trajectory dataset {Tv} is transformed into a
set of grids {Grid}. Thus the problem of marine lane network
extraction is then transformed into a problem of filtering the
grids which is not on the marine lane in the first place and
then extract boundaries, centerlines and junctions based on
the grids.

The second phase is marine lane boundaries extraction.
As the density of trajectory data is uneven in the open
sea and nearshore regions, we cannot use a global unified
threshold to filter the grids. Therefore, the key is finding an
adaptive thresholding method to filter them. The main idea
to meet this challenge is to merge the sparse small grids
with different lower densities by a grid merging algorithm
based on QuadTree, and then use a sliding window filtering
algorithm with different thresholds for different windows to
filter the merged grids. After that, we triangulate the grids by
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FIGURE 1. MaritimeNET: A framework for maritime road network extraction.

Delaunay, filter the triangles not in lanes and generate poly-
gons as the lane boundaries.

The last phase is marine lane network building. Firstly we
smooth the marine lane boundaries, then construct the second
triangles, classify and filter them, extract and generate the
lane centerlines and junctions. After that, the maritime road
network is built up. Since the first two stages have been
introduced in another paper, this paper focuses more on the
third stage.

Figure 1 presents an overall framework called Mar-
itimeNET of this approach. The data storage layer is responsi-
ble for storing all raw AIS data and intermediate process data
as well as marine lane extraction results. The core algorithm
layer includes data preprocessing and GeoHash encoding
based on the MapReduce parallel computing framework. The
marine lane grid information is obtained by a grid merge
algorithm based on QuadTree and a dynamic sliding window
filtering algorithm based on merged QuadTree. Then in this
layer, we triangulate the marine lane grid by Delaunay and
extract the results using a boundary extraction algorithm
based on triangle circumcircle radius. After that, maritime
road networks are built up. The data visualization layer is
responsible for visualizing the intermediate and final results,
observing the data exception, and providing parameter guid-
ance for the algorithms.

IV. TRAJECTORY DATA PREPROCESSING
The aim of preprocessing is to improve the data quality.
According to the statistical analysis and observation, three
kinds of problems in the original AIS data can be solved in
the preprocessing phase: 1). Unsegmented trajectory points.
Trajectory points belonging to different trips but haven’t
been split into different segments; 2). Noisy trajectory points.
Those points that cause the calculated speed deviating from
normal reasonable ship speed and those too short trajectories
can be seen as noisy data; 3). Missing trajectory points. If the
time interval between two trajectory segments belongs to the

same trip is larger than the average time interval between
adjacent points, theremust exist somemissing points between
these two trajectory segments. For the unsegmented points,
we can segment trajectory data by setting a maximum seg-
mentation time interval threshold. If the time interval between
two adjacent points is less than this threshold, they belong
to the same segment. For the noisy data, we can delete the
noisy data directly instead of correct them. Deletion of some
points will not have apparent negative influence, because the
volume of AIS data is very large. For the missing points,
we use linear interpolation method to insert some missing
points. It is because different insertion methods don’t have
apparently different influence on the results of the next steps.
So we just choose a linear interpolation method.

After the above preprocessing, we propose a trajectory
point clustering method based on the GeoHash encoding
algorithm to simplify the AIS data. GeoHash encoding is a
classic method of encoding geographic data. This method
recursively divides the entire geographical space into multi
grids along the longitude and latitude direction separately,
and obtains a grid map. Each grid corresponds to a GeoHash
code. The AIS data points in the same grid have the same
GeoHash code, and we can use the location of the center point
of a grid to represent all the trajectory points in this grid.
As Definition 3 defined, we use the number of AIS points
in one grid to represent its density.

In this way, we can transform the trajectory points data
(or AIS data) into the grid data in form of tuples (Cx ,Cy, dsy).
We also borrow the modified median filtering algorithm
from image fuzzy processing to further remove isolated noise
points and make the density variation of all grids smoother
and more uniform.

V. THE ADAPTIVE AND PARALLEL MARINE LANE
BOUNDARY EXTRACTION ALGORITHM
The main idea of the adaptive marine lane boundary extrac-
tion algorithm is that to merge the grids of those areas where
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FIGURE 2. A grid merging example.

the overall average density is low, so that we can extract those
areas with high density using high extraction precision and
those areas with low density with low extraction precision.
Then filter the merged grids with different thresholds for
different windows using a sliding window filtering approach.
After that, transform the merged grids as triangles based on
Delaunay Triangulation, filter the triangles not in lanes and
generate polygons as the lane boundaries.

We create a QuadTree to store the grid data for efficiency.
Each node corresponds to a grid, stores a grid with the
GeoHash code and density value as two attributes (according
to Definition 3), except for the root node which does not
store the code and density value. The more layers of this
QuadTree, the smaller grid size and according Definition 5,
the extraction precision will be higher. Given a demand of
extraction precision range, the depth of this QuadTree can be
determined.

For grid merging, we should set three parameter values: the
highest marine lane extraction precision bitnummax the lowest
marine lane extraction precision bitnummin, and the merge
density threshold dsyt . Then, the entire geographic range is
divided into grids of the same size according to the highest
grid precision. After that, the algorithm begins the merging
process. The process is carried out with four sub-grids that
have the same parent grid as a unit. If all the density value of
the four sub-grids are lower than dsyt , the four sub-grids are
merged into one parent grid. And density value of the parent
grid is updated to the sum of the four sub-grids. Otherwise,
the merge operation will not be performed on the four sub-
grids. After the first layer traversal is completed, the sec-
ondary high-precision layer begins to judge and merge in the
same way. The algorithm thus traverses the QuadTree layer
by layer from bottom (e.g. from the layer where the girds
represent the highest precision) to up. The merging process is
completed when the grid has reached lowest extraction pre-
cision (e.g. bitnummin). Figure 2 shows a grid which satisfies
the merge condition and performs the merge operation. The
change of the data structure is also shown in Figure 2.
The parallel grid merging algorithm based on Spark [33] is

shown in Algorithm 1:

In line 3, the algorithm uses the first N bits of Geo-
Hash code as the key. According to the geographic char-
acteristics of the GeoHash algorithm, those grids that have
the same parent grid have the same prefix code. The par-
allel algorithm divides the geographic area into 2N/2 big
grids, and then computes parallelly for all the divided big
grids.

In line 12, the algorithm establishes a QuadTree T to store
the grid data.

In lines 13 - 17, the algorithm traverses the QuadTree T
from bottom to top layer by layer. If the precision of a node is
not below the minimum precision threshold and not above
the maximum precision threshold, the node is added to a
queue Q.

In lines 18 - 23, the algorithm traverses the queue Q
in reverse order, that is, starts from the second bottom
layer, determines whether all the density values of the four
sub-nodes of a node are smaller than the merge density
threshold dsyt . If it is true, set the density value of the node
to the sum of all sub-node’s density values and delete these
four child nodes. Otherwise, do nothing.

Algorithm 1 The Parallel Marine Lane Extraction Algorithm
Input: G: grid data
Output: Polygons: lane boundary information
1: for each grid g in G do
2: function mapToPair(g)
3: k=g.getNprefix(g.code)
4: Out(k , (g.code, g.dsy))
5: end function
6: end for
7: function reduceByKey(k , (g.code,g.dsy))
8: Out(k , putAll(g.code, g.dsy))
9: end function
10: function map(k , (g.code, g.dsy))
11: for each g in partition do
12: T = initGeohashTrie(g)
13: for each node T do
14: if node.depth in range(accuracy) then
15: Q.add(node)
16: end if
17: end for
18: for q in Q do
19: if g.subnodes.dsy < dsyt then
20: g.dsy = sum(g.subnodes)
21: del(g.subnodes)
22: end if
23: end for
24: Ret = AdaptiveSpatialNiBlack(T )
25: saveAsTextFile(Ret , outputPath)
26: end for
27: end function
28: generate Polygons based on Delaunay Triangulation
29: filter Polygons with an area threshold
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FIGURE 3. Framework for lane polygon preprocessing.

After the grid merging process, we get a set of grids satis-
fying our restrictions of extraction precision. Then we design
an algorithm to distinguish which grids are on the marine
lane and which are not. Instead of using a global threshold
to filter all the grids, the idea is to filter the grids with
different thresholds for different sets of grids. So we borrow
the idea of the NiBlack binary filtering method [34] which is
an image processing algorithm. We call it AdaptiveSpatial-
NiBlack algorithm (line 24). We look on each grid as a pixel
with the density value as the pixel value, and then use a sliding
window filtering similar with NiBlack to separate the grids as
two categories that are inside lanes and that are outside lanes.

In AdaptiveSpatialNiBlack algorithm, we filter the grids
in a sliding window based on the NiBlack equation. Let
T represent the filtering threshold, which means if the density
of the center grid is greater than T , keep it, otherwise filter
it. The calculation equation of the filtering threshold T is as
follows:

T = avg+ alpha× var (1)

In equation 1, avg represents the average density value of
all the grids in a sliding window, var represents the variance
density value of all the grids in the window, and alpha repre-
sents the variance correction factor.

Details of the algorithm AdaptiveSpatialNiBlack are intro-
duced in our previous paper [35].

After the above steps, the result grid data is all the grids
inside marine lane. Before we start to extract the boundary
of the marine lane, we use the mean value of density of the
surrounding grids to replace the density value of the center
grid-unit. This can further remove the clutter of result grid
data and smooth the density distribution of the result grid
data.

Thenwe can extract boundary information based onDelau-
nay Triangulation model. In line 28 and line 29, we firstly
construct the Delaunay triangles for the result grid data.
Because the triangles inside the lane are denser and thus
has shorter circumscribed circle radius, we set a threshold
to filter the edges of the result triangles. At last, we extract
the boundary edge set using a classic algorithm for polygon
generation, and filter those small polygons.

VI. MARITIME ROAD NETWORK EXTRACTION
In this section, we describe the core strategy and algorithms
for solving the problem of maritime road network extraction.
We first focus on extracting the inflection points, deleting
jagged edges, inserting points and smoothing lane bound-
ary (VI-A). We then analyze how to generate, filter and
classify the triangles inside lanes based on the smoothed
lane polygons (VI-B) and finally, we develop a centerline
extraction method based on the classified triangles and the
corresponding maritime road network extraction algorithm,
we also introduce how the maritime road network can be used
to transform trajectories into meaningful road segment series
for further various applications (VI-C).

A. MARINE LANE SMOOTHING
As introduced in the above Section V, we can extract lane
boundaries which are a set of polygons. However, most of
the boundaries are not smooth. We can see sawtooth bound-
ary shown in Figure 3(a), a part of lane extracted from the
AIS data in Bohai Sea on the coast of Northeastern China.
The centric line extracted from such sawtooth-shaped bound-
ary will be jagged or serrated, unlike an ordinary road line.
Therefore, lane polygon boundaries extracted from Section V
should be smoothed before the lane centerline extraction is
performed.

As shown in Figure 3, the whole lane boundary smooth-
ing process includes inflection points extraction, short sides
deletion, points interpolation, and line smoothing.

Firstly, we extract the inflection points of each lane poly-
gon boundary. Equation 2 can be used to determine if a
point is an inflection point on a lane boundary. Suppose pi−1,
pi, pi+1 are three adjacent vertices on a lane boundary, si,
the degree of bending (sinuosity) of point pi can be calculated
as Equation 2:

si =
dis(pi−1, pi)+ dis(pi, pi+1)

dis(pi−1, pi+1)
(2)

In this equation, dis(pi, pj) is the distance between pi and pj.
The value of s is always greater than or equal to ‘‘1’’. When
s is equal to ‘‘1’’, the three points are on the same straight line.
The greater the value of s, the higher the degree of sinuosity.
If s is greater than a threshold ThresS, the point pi can be
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determined as an inflection point. Inflection points are kept
and others are left out. Since the target of extracting inflection
points is to smooth them, the threshold can not be set too
great, or else much details will be omitted from the beginning.
In our experiment, ThresS is set to ‘‘1.03’’.
Secondly, we delete jagged edge segments from the lane

boundary. After the above processing, now the vertices of the
lane polygon are composed of inflection points (As shown
in Figure 3(b). Considering that the length of jagged edge
segments is generally shorter than ordinary edges, we can
make the boundary smoother by just deleting the short edges.
So we calculate the length of each edge segment of a channel
polygon, if the length an edge segment is less than a threshold
ThresDis, delete this segment.

The threshold values of ThresDis can be determined by
Equation 3, whereMean is the average value of all lengths of
edge segments in that lane polygon, StdDev is their standard
deviation values and α is an adjustment factor. The greater
the value of α, more local variance be reduced, but if too
great, too much points or edge segments will be deleted and
the kurtosis of lane boundaries may be hidden.

ThresDis = Mean+ α ∗ StdDev (3)

Thirdly, after extracting the inflection points and deleting
the jagged edge segments, the vertices of the lane polygons
become sparse, as shown in Figure 3(c), which is not con-
ducive to centerline extraction, so interpolation is required.
Insert one or more points linearly between two adjacent
vertices, in which the step length is the mean of the lengths
of the polygon edge segments. The example result is shown
in Figure 3(d).
After the operations described above, the jagged edges of

the lane polygon are reduced a lot, finally, Moving Average
(MA) algorithm and its variants can be used to further smooth
the lane boundary. Here, for algorithm efficiency and at the
same time taking account of the effectiveness, Simple Mov-
ing Average (SMA) algorithm is adopted. The principle of
SMA is: start from the first vertex of the lane polygon, take
the current vertex as the center vertex, generate a window
of length WinSize, calculate the mean value of all vertex
coordinates in the window, and use it to replace the coordinate
of the center vertex, loop such replacement operation until
all vertices in the polygon are traversed. The equation to
calculate the coordinates of center vertex pi is as Equation 4:

pi =
1

WinSize
∗

i+WinSize/2∑
j=i−WinSize/2

(pj) (4)

To determine the value of parameter WinSize, two met-
rics are introduced to assess the quality of smoothing
effect. The first metric is to quantify the degree of smooth-
ing. Given a lane boundary Plane = (p0, p1, ldots, pn)
(Definition 2), the first difference of sinuosity of Plane is
1S = (1s0,1s1, . . .), where 1si = si+1 − si, and si
is defined in Equation 2, the roughness of a lane bound-
ary can be defined as the standard deviation of 1S shown

in Equation 5:

Roughness = σ (1S) (5)

The greater the value of roughness, the lower the degree of
smoothness, a straight line has roughness value of 0.

If we simply minimize roughness, lane boundary may be
over-smoothed and straight lines may be produced, but we
want to preserve some apparent road bending information.
Therefore, the second metric is to quantify the degree of
preservation of large scale deviations within the lane bound-
ary. Given a series of S of Plane with its mean µ and standard
deviation σ , kurtosis of Plane is defined as the fourth stan-
dardized moment as Equation 6:

Kurt[P] =
E[(S − µ)4]
E[(S − µ)2]2

(6)

Suppose P′ is the smoothed lane of P, if Kurt[P′] is greater
than or equal with Kurt[P], the large deviation are strength-
ened after smoothing. Since S can be seen as a set of identi-
cally independently distributed random variables, roughness
linearly decreases with increased window size, and kurtosis
monotonically increases with window length for S with initial
kurtosis less than 3, and decreases with initial kurtosis larger
than 3. Binary search approach can be used to search the
largest window that can minimize roughness and at the same
time guarantee the kurtosis constraint [36].

After the above steps, we can finally get a smooth lane
polygon, as shown in Figure 3(e).

B. TRIANGLE CLASSIFICATION AND FILTERING
Based on the smoothed marine lane polygons, we can build
triangular network and classify the triangles, so that key
points in the triangles can be extracted and connected as
marine lane center lines. First, we use themethod of Delaunay
Triangulation to build a triangular network based on the
smoothed marine lane polygons (as shown in Figure 4 (a)).
Note that it is different from the triangular network built
in Section V, which is based on the merged and filtered
grid data and for the purpose of extracting the marine lane
polygons.

The triangles are distributed inside the lane (as shown in
Area(1) in Figure 4(a)), outside of the lane (as shown in
Area(3-5) in Figure 4(a)) and inside the cavity(as shown
in Area(2) in Figure 4(a)). Those triangles outside the lane
and inside the cavity are meaningless for the extraction of
center lines (called non-lane triangles), so we filter them
according to their barycentric coordinate, and the result is
shown in Figure 4(b).
In order to determine the key points on center lines,

the next step is to classify triangles. We can classify triangles
according to the number of edged shared by two triangles,
which is called common edges (represented by heavy lines
in Figure 5), into three categories: one-neighbor triangle,
two-neighbor triangle and three-neighbor triangle. As shown
in Figure 5, we can see each one-neighbor triangle has one
common edge and is located at the road polygon exit, each
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FIGURE 4. Triangulation and filter.

FIGURE 5. Triangle classification.

two-neighbor triangle has two common edges and is located
on the road trunk, and each three-neighbor triangle has three
common edges and is at the road intersection.

We build up three tables to maintain the triangle informa-
tion: vertex table, edge table and triangle table (Table 1). Ver-
tex table saves information of vertices such as ID, longitude
and latitude. Edge table saves the ID, two vertices, edge type
(private edge or common edge) of an edge. For the sake of
algorithm efficiency, for each common edge, the identifica-
tion list of the triangles that have this common edge are stored
in edge table as a field TrianglesList . Triangle table saves
information of triangles including ID, IDs of the three edges
triangle types, the set of adjacent triangles AdjTriList and the
number of visits to this triangle with an initial value of 0
VisitedNum. If a triangle is a one-neighbor triangle, Edge1
and Edge2 are private edges, and Edge3 is a common edge;
for a two-neighbor triangle, Edge1 is a private edge, Edge2
and Edge3 are common edges; and for a three-neighbor trian-
gle, Edge1 Edge2 and Edge3 are common edges. An example
triangle table is shown in 1.

TABLE 1. Triangle table.

FIGURE 6. An example maritime road network and data structure.

C. CENTERLINE EXTRACTION AND ROAD NETWORK
BUILDING
Themain idea of maritime road network extraction and build-
ing is to extract different key points from different kinds of
triangles generated from Section VI-B separately and connect
them into lane centerlines, and then extract the information of
nodes, segments and segment curves from the centerlines and
add them to the road network data structure.

As defined in Definition 9, we should extract information
from the triangles to build a maritime road network consist-
ing of three elements: nodes, segments and segment curves.
Figure 6(a) shows an example maritime road network, a node
in a maritime road network is a road centerline junction,
a segment is an edge expressed by two adjacent nodes, and a
segment curve is a curve formed by discrete points. Maritime
road networks can be maintained in an adjacency table as
shown in Figure 6(b). Algorithm 2 is designed to extract
a centerline and add the edge to this adjacency table one
by one.

In the algorithm, for a one-neighbor triangle, we extract
the midpoint of the common edge and the midpoint of the
longer edge of the other two edges (point o and p in Figure 7,
Lines 8-11 in Algorithm 2); for a two-neighbor triangle,
extract the midpoints of the two common edges (point p and
q in Figure 7, Lines 18-19); if it is a three-neighbor triangle,
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FIGURE 7. Center line of lane.

FIGURE 8. Centerline classification.

extract the midpoints of the three common edges and the
center of gravity (point c in Figure 7, Line 24).

As shown in Algorithm 2, first, we define the process-
ing methods for different types of triangles, processType1
(Line 3), processType2 (Line 15) and processType3 (Line 23)
for dealing with one-neighbor, two-neighbor and three-
neighbor triangles separately. For the three-neighbor triangle,
each time the algorithm add the number of visits with 1
(Line 25). Then, the algorithm determines whether the num-
ber of visits to this triangle is greater than 3, if so, delete this
triangle from the triangular network (Line 27).
According to the key points connection approach, center-

lines can be classified into two types. The first type starts
with a one-neighbor triangle and ends with a one-neighbor
triangle or a three-neighbor triangle (as shown in a,b,d,e
in Figure 8). The second type starts with a three-neighbor
triangle and ends with a three-neighbor triangle (as shown
in c in Figure 8). Algorithm 2 firstly traverses all the triangles
of one-neighbor and extracts the first type of segment curve
(Lines 31-51). Then traverses all the three-neighbor triangles
and extracts the second type of segment curve (Lines 52-66).

From Figure 9, we can see how the algorithm works on
an example triangular network 9(a). The algorithm starts to
traverse the adjacent triangles from one of any one neigh-
bor triangles, for example from a triangle with vertices
(p0, p1, p2), and c0, c1 is extracted. According to the com-
mon edge (p1, p2), determine the next triangle to visit is
the triangle (p1, p2, p3). Since this triangle is a two-neighbor
triangle, extract midpoints of two common edges c1 and c2,
and then determine to visit the triangle (p1, p3, p7). Since
this triangle is three-neighbor triangle, extract the center of
gravity g1. Now the traverse from the triangle (p0, p1, p2) is
finished, a segment curve r1 (in green color) is extracted and

Algorithm 2 Maritime Road Network Extraction and
Building Algorithm
Input: VT : vertex table
1: ET : edge table
2: TT : triangle table

Output: NET : road network
3: function processType1(triangle)
4: privateEdge1 = triangle.Edge1
5: privateEdge2 = triangle.Edge2
6: commonEdge = triangle.Edge3
7: longPrivateEdge = privateEdge1
8: if privateEdge2.length > privateEdge1.length then
longPrivateEdge = privateEdge2

9: end if
10: p1 = longPrivateEdge.midpoint
11: p2 = commonEdge.midpoint
12: TT .delete(triangle)
13: return (p1,p2)
14: end function
15: function processType2(triangle)
16: commonEdge1 = triangle.Edge2
17: commonEdge2 = triangle.Edge3
18: p1 = commonEdge1.midpoint
19: p2 = commonEdge2.midpoint
20: TT .delete(triangle)
21: return (p1,p2)
22: end function
23: function processType3(triangle)
24: p = triangle.centerpoint
25: triangle.visitedNum = triangle.visitedNum + 1
26: if triangle.visitedNum == 3 then
27: TT .delete(triangle)
28: end if
29: return (p)
30: end function
31: for triangle in TT .Type == 1 do
32: curve.add(processType1(triangle) )
33: for triangle.AdjTriList[t in TT ] != null do
34: triangle = t
35: if triangle.Type == 1 then
36: curve.add(processType1(triangle))
37: NET .addEdge(curve)
38: curve.clear
39: break
40: end if
41: if triangle.type == 2 then
42: curve.add(processType2(triangle))
43: end if
44: if triangle.type == 3 then
45: curve.add( processType3(triangle))
46: NET .addEdge(curve)
47: curve.clear
48: break
49: end if
50: end for
51: end for
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Algorithm 2 (Continued.) Maritime Road Network
Extraction and Building Algorithm
52: for triangle in TT .Type == 3 do
53: curve.add(processType3(triangle) )
54: for triangle.AdjTriList[t in TT ] != null do
55: triangle = t
56: if triangle.type == 2 then
57: curve.add(processType2(triangle))
58: end if
59: if triangle.type == 3 then
60: curve.add(processType3(triangle))
61: NET .addEdge(curve)
62: curve.clear
63: break
64: end if
65: end for
66: end for

FIGURE 9. The extraction process of centerline.

the corresponding edge and node are added to the adjacency
table of the existing maritime road network. For the unvisited
triangles in 9(e), take the triangle (p3, p4, p5) and (p1, p7, p8)
separately, find the corresponding centerline r2 and r3 and add
the corresponding nodes and segment curves to the adjacency
table.

Based on the maritime road network, ship trajectories can
be matched and transformed into a series of road network
elements. In Figure 10, the upper part of this figure shows
the grids which the segment curves pass. The lower part
shows when the trajectory is converted, the trajectory is first
converted into a grid sequence, and then converted into a
segment label sequence according to the segment label of

FIGURE 10. Trajectory transformation.

TABLE 2. Sample AIS data.

the grid. In this example, the trajectory is converted into a
segment label sequence {0,2}.

VII. EXPERIMENTS
A. DATASET AND EXPERIMENTAL ENVIRONMENT
The data used in this experiment is the AIS data of all cargo
ships from June 2016 to July 2016 including China,Malaysia,
Singapore, Indonesia and some important ports. AIS data
includes vessel’s name, call number, MMSI, IMO, ship type,
captain, ship width and other static information such as lati-
tude, longitude, direction, speed and status. The experiment
uses four columns of MMSI, time, longitude and latitude
from the dataset. A dataset sample is shown in Table 2. The
total amount of AIS data of global cargo ships collected from
June 2016 to July 2016 is over 510G. After pre-processing,
the total data volume is over 364G. After GeoHash encoding,
the data volume is reduced to about 5.5G.

The experiment runs in a cluster of nine server nodes
with CDH 5.11 and Spark 1.6.0 environment. The data pre-
processing introduced in Section IV is run under Hadoop
configuration. The parallel algorithms are run under Spark
configuration, and the standalone algorithms are run in a
CentOS release 7.0 environment.

B. EXPERIMENTAL RESULTS ON LANE BOUNDARY
EXTRACTION
Take the area of East China Sea as an example, Figure 11(a)
is a density visualization of the grid data after perform-
ing the preprocessing algorithm introduced in Section IV.

123044 VOLUME 7, 2019



G. Wang et al.: Extraction of Maritime Road Networks From Large-Scale AIS Data

FIGURE 11. Extraction results of the marine lane boundaries in East
China Sea.

Figure 11(b) is a density visualization of the grid data result
after performing the parallel merging and filtering algorithm.
Figure 11(c) is the marine lane boundary after performing the
lane boundary extraction algorithm.

We compare our marine lane boundary extraction method
proposed in Section V with OTSU based, NiBlack based lane
extraction approach, KDE method [28] and DT method [37].
Note that OTSU [38] method and NiBlack method [34] are
only image thresholding methods, we changed these methods
following the similar idea of this paper and implemented two
algorithms based on them, called OTSU-based and NiBlack-
based method. We also implemented KDE method and
DT method according to [28] and [28].
F1 score is used to evaluate the experimental results of

these five methods performed on the AIS data of five off-
shore areas near Qingdao, Shanghai, Jakarta, Singapore and
Sorong respectively. Qingdao and Shanghai are offshore
areas, Jakarta, Singapore and Sorong are open sea areas.
As shown in Figure 12, it can be found that F1 score is the
best no matter in offshore or open sea area. So our method
can adaptively extract more accurate marine lane results in
the offshore and near shore areas simultaneously.

FIGURE 12. F1 score of the five lane boundary extraction approaches in
different sea areas.

C. EXPERIMENTAL RESULTS ON LANE CENTERLINE
EXTRACTION AND ROAD NETWORK BUILDING
To evaluate the extraction results of maritime road network,
we take the area of Bohai as an example. Figure 13(a) is the
marine lane boundary visualization extracted by the approach
introduced in Section V. Figure 13(b) is the smoothed
marine lane boundary visualization after extracting inflection
points, deleting lagged edge segments, inserting points, and
smoothing boundaries, which is introduced in Section VI-A.
Figure 13(c) is the marine lane centerline visualization after
performing the lane centerline extraction algorithm. 13(d) is
the extracted maritime road network.

As introduced of the related work in Section II, only [31]
and [10] extract both boundary and centerline information.
The main differences between our MaritimeNET approach
and the approach introduced in [31] and [10] are: a). They
didn’t discuss how to apply their algorithms on massive AIS
data for a large area, which is very challenging when the data
volume is large, data density and quality are quite uneven;
b). They did not propose and build road network with rich
information including nodes, segments and segment curves;
c). The approach to smooth lane boundaries are different.
The smoothing approach introduced in [31] is through area
filtering, which may be effective for urban GPS data but is
not effective for AIS data analysis.

In order to verify the effectiveness of the proposed
approach in this paper, we first compare our approach with
Yang’s work from the visualization results of the extracted
centerlines, and then define somemetrics to assess the bound-
ary smoothing effectiveness to quantitatively compare the
two approaches.

Figure 14(b) shows the centerline visualization of Yang’s
work and Figure 14(a) shows the result of MaritimeNET
approach in this paper. From this figure we can see that
Yang’s approach based on filtering area filtered some trian-
gles in the lane that should not be filtered, and some trian-
gles outside the lane that should be filtered are not filtered.
This results in discontinuous centerlines with more burred
branches. In comparison, the centerlines extracted through
MaritimeNET approach is continuous and without burrs.

We define two evaluation indicators, namely average cur-
vature (C̄) and average sinuosity (S̄), to evaluate the smooth-
ness of the extracted centerlines as in Equation 7 and 8,
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FIGURE 13. Extraction results of the maritime road network in Bohai.

FIGURE 14. Comparison of the extracted marine lane centerlines in Bohai.

where n represents the number of centerlines in a road net-
work,mi represents the number of points of the ith centerline,
cj is curvature of point pj on a centerline, calculated by the
reciprocal of the radius of the circumferential circle of a
triangle consisting of three points (pj−1, pj, pj+1), sj is the
sinuosity of point pj (defined in Equation 2). The greater the
value of C̄ or S̄, the lower the degree of smoothness.

C̄ =
1
n
∗

n∑
i=1

∑mi−1
j=1 cj

mi − 2
(7)

S̄ =
1
n
∗

N∑
i=1

∑mi−1
j=1 sj

mi − 2
(8)

We evaluated C̄ and S̄ of MaritimeNET approach and
Yang’s approach in randomly selected five areas and five cen-
terlines in Bohai Sea area. The experimental results are shown
in Figure 15 and 16, we can see the average curvature and
average sinuosity of centerlines extracted by our approach

FIGURE 15. Comparison of C̄ and S̄ of the two approaches in five
different areas of Bohai.

FIGURE 16. Comparison of the C̄ and S̄ of the two approaches in five
different routes of Bohai.

TABLE 3. Quantitative evaluation with different parameters.

is less than Yang’s approach, which means the centerlines
extracted using the approach in this paper is smoother.

Our approach requires a important input parameters
WinSize introduced in Section VI-A. To determine the value
of parameterWinSize, twometrics are introduced to assess the
quality of smoothing effect, they are roughness introduced in
Equation 5 and kurt introduced in Equation 6. As shown in
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the table 3, we can see that the value of kurt before smoothing
is 99.15, the optimum value of WinSize is 11, because the
kurt(11) is 800.92 larger than the value before smoothing, and
the roughness value is the smallest.

VIII. CONCLUSION
We proposed a novel maritime road network extraction
approach for large scale area from AIS data. The approach
can not only handle the large scale, high noise problem, but
also adapt to very uneven density and quality of AIS data
in different areas. In addition, our approach is capable of
extracting continuous and smooth road network including
road boundaries, segments and segment curves, junctions and
their relationship. We evaluate the approach on real-world
AIS datasets in various areas, achieving effectiveness beyond
the most related work.
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