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ABSTRACT With the increasing number of electric vehicles and the emergence of vehicle-to-grid
technology, electric vehicles have become distributed loads and power sources with random movement
characteristics in the distribution network. In order to evaluate the reliability of the distribution network
incorporating electric vehicles, firstly, this paper uses the trip chain theory to describe the travel of electric
vehicles. Based on the static traffic flow distribution, a high efficiency quasi-dynamic travel simulation
method is proposed to consider the influence of traffic congestion on the path selection. Then, the simulation
time advancement of the Monte Carlo method is improved, which makes the reliability assessment of the
distribution network containing a large amount of electric vehicles’ charging and discharging behaviors
realizable. Finally, the practicality of the method is verified by the modified IEEE-RBTS Bus-6 test system.
The effects of electric vehicles penetration, discharging threshold, and battery capacity on reliability of both
distribution networks and electric vehicles are studied.

INDEX TERMS Electric vehicles, reliability, quasi-dynamic travel, Monte Carlo method.

I. INTRODUCTION
In recent years, environmental and energy problems have
become increasingly severe. Electric vehicles (EVs) with
environmental protection and energy-saving advantages have
been proved effective to alleviate energy shortage, environ-
mental pollution and global warming [1]. Electric vehicles
have already found scale markets in Japan [2], Europe [3],
China [4] and other regions. Under the situation of Energy
Internet, energy is flow flexibly for transmission and can
be transported to every energy user via electric vehicles [5].
At the same time, the increasing number of EVs becomes a
common challenge to maintain the operation of microgrid,
which attracts people’s attention [6].

As backup power source, electric vehicles can supply
power to the grid when a distribution network fails to improve
the reliability [7]–[9]. Nowadays, many researches have
focused on the reliability assessment of distribution net-
works with electric vehicles, where analytical methods and
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simulation methods are used primarily. In [10], an analytical
method is proposed to investigate the large scale integration
impact of EVs on the grid reliability. Another analytical
approach is proposed in [11], through which the reliability
impacts of electric vehicles under battery-exchange mode in
the distribution level can be assessed. With the improved
minimal path method, reliability indices are calculated for
various vehicle-to-grid (V2G) and grid-to-vehicle (G2V) to
estimate the impact of different level of power exchange on
system reliability [12]. Computational efficiency and calcu-
lation accuracy are the advantage of the analytic method.
However, the electric vehicles have the characteristic of ran-
dom movement, it is difficult to use the analytical method
to calculate its random spatiotemporal state. Based on the
statistical modeling method, the V2G-G2V model and time-
varying load model of electric vehicles under different con-
trol patterns are established in [13], and the sequential
Monte Carlo method is used to access the reliability of
the distribution system. In [14], V2G and vehicle-to-home
(V2H) technologies are used to supply power in the case
of power failure with island mode operation. The sequential
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Monte Carlo method is adopted to evaluate the network
reliability. However, the literatures above ignore the spatial
distribution characteristics of electric vehicles, and there is
no research on the relationship between power system and
transportation system.

In order to take into account of the mutual coupling rela-
tionship between the two systems and maintain a good calcu-
lation speed, Ref. [15] uses the vertical coordinate system to
represent the road network, and cooperates with the sampling
of the travel location to complete the spatial distribution
simulation of the electric vehicles. The Monte Carlo simu-
lation method is employed to calculate the reliability index.
Although the Cartesian coordinate method can maintain a
good calculation speed, the model is too simplified for the
road network to consider the impact of traffic congestions on
the path simulation.

In the field of intelligent transportation, the static path sim-
ulation deems that the traffic congestion of the road section
does not change with time. As a result, the simulation accu-
racy is poor. Meanwhile, the dynamic path simulation takes
the real-time changing traffic congestion into consideration.
Methods in [16] and software provided by [17] are mature
ways for dynamic driving simulation. However, the reliability
assessment of the distribution network is to be simulated for
decades or even hundreds of years, the calculation of the
existing dynamic traffic flow allocation method requires a
large amount of calculation time, such techniques are unduly
inefficient for reliability assessment. Thus, this paper aims
to solve the contradiction between path simulation accuracy
and calculation speed and proposes a quasi-dynamic traffic
distribution method.

In addition, since a large number of electric vehicles are
connected to the grid as load and backup power, their status
changes at any time and any place. The simulation time of
the traditional Monte Carlo method is no longer applicable
at equal intervals, because the time interval should set as
short as possible to timely update the status of each electric
vehicle, which contains a large amount of invalid calculation
when electric vehicles’ status stay unchanged. To speed up the
Monte Carlo simulation, this paper simulates a single electric
vehicle as a unit in which the simulation time advances
directly to the start time of the next activity.

In this paper, we establish an assessment method for
the reliability of distribution network and electric vehicles,
in which traffic simulation and Monte Carlo simulation are
improved. First, the trip chain theory is used to describe
the travel of electric vehicles. On the basis of static traffic
flow distribution, the temporal and spatial distribution and
real-time state of charge (SOC) of EVs are obtained by
efficient quasi-dynamic simulation method. Based on the for-
mer, the influence of electric vehicles penetration, discharge
threshold and battery capacity on distribution network and
electric vehicles’ reliability is studied.

The rest of this paper is organized as follows: Temporal-
spatial distribution of EVs based on quasi-dynamic traf-
fic flow model is proposed in Section II. Charging and

dischargingmodel of EVs is proposed in Section III. Distribu-
tion network reliability assessment is proposed in Section IV.
Numerical studies are demonstrated in Section V and conclu-
sions are drawn in Section VI.

II. TEMPORAL-SPATIAL DISTRIBUTION OF EV BASED
ON QUASI-DYNAMIC TRAFFIC FLOW MODEL
A. THE TRIP CHAIN OF EVS
This paper focuses on the modeling and analysis of private
electric vehicles for the reason they are principle members in
V2G [13]. The trip chain model can well describe the driving
path of private electric vehicles [18]. Travel destinations can
be classified into five types: Home (H), Work (W), Shopping
and Eating (SE), Social and Recreational (SR), and Other
family/personal errands (O). Based on the travel demands
of working days and non-working days, this article divides
the trip chain into the following four categories, as shown
in Table 1.

TABLE 1. Trip chain ratio of private cars on working days.

Electric vehicles start in the morning and return home
at night on working days. The origin and destination point
are fixed, but the trip in the middle is random. Therefore,
each vehicle trip chain C can be regarded as probability
distribution formula as follows:

P(C) = pi
s.t.p1 + p2 = 1

p3 + p4 = 1 (1)

where pi represents the proportion of each trip chain to the
total trip. The proportion of trip chain can be obtained from
NHTS survey [19].

Each trip chain consists of a number of trip segments cij.
Take the trip chain C1 as an example:

C1 = c11 + c12
c11 = H → w
c12 = W → H

(2)

where the subscript i denotes the trip chain number, j denotes
the number of trip segments under the trip chain.

The start time ts of each trip segment c obeys normal prob-
ability distribution [20], and its probability density function
is shown in formula (3):

f (ts) =
1

√
2πσ

exp
[
−
(ts − µ)2

2σ 2

]
(3)

where µ and σ are the mean and variance of travel time,
respectively. Different trip segments correspond to different
values.
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For (1) and (3), the type of trip chain and departure time
can be extracted by Monte Carlo simulation.

B. QUASI-DYNAMIC TRAFFIC FLOW MODEL
In the field of intelligent transportation, there are two simulate
methods: static traffic flow simulation And dynamic traffic
flow simulation. Static simulation holds that traffic conges-
tion on road sections does not change with time, and the
simulation accuracy is poor. Dynamic simulation takes into
account the real-time changing traffic conditions, but in order
to pursue the accuracy of simulation, the numerical iteration
process is very complicated, and the calculation amount is
unacceptable.

Inspired by the dynamic driving simulation calculations,
this paper divides the time interval on the static incremental
path simulation method and then distributes the traffic flow
to obtain the time-varying path simulation. Since the time
is divided into discrete time intervals, this method is called
quasi-dynamic traffic flow Simulatio.

1) OD MATRIX AND TRAFFIC IMPEDANCE
The traffic distribution is usually represented by the OD
matrix which describes the number of trips in the investigate
area. The electric vehicles included in the same trip segment
cij are counted into the same OD matrix, i.e. one type of trip
segment corresponds to an OD matrix, which is called the
‘‘trip segment’’ OD matrix, denoted as ODij. The sum of all
trip segmentODmatrices is called the total OD travel matrix:

q∑
i

p∑
j

ODij = ODA (4)

where p represents the number of trip segments under the
trip chain, q represents the number of trip segments and ODA

represents total travel matrix.
Traffic impedance is usually measured by time. The road

travel time function widely used by the Bureau Public
Road (BPR) is called the BPR function [21]:

ta = t0

[
1+ α(

qa
ca

)β
]

(5)

where ta is the impedance on segment a, t0 is the zero-current
impedance. qa is the traffic volume on segment a. ca is the
actual capacity of segment a, that is, the number of vehicles
that can actually pass through the road in unit time. α and β
are the blocking coefficients.

2) STATIC INCREMENTAL ALLOCATION
The static incremental allocation method is an essentially
incremental allocation of the shortest path, the detailed steps
are as follows:

Step 0: Divide the OD matrix into N layers, set k = 1,
x0a = 0, xa denotes the traffic volume of the OD matrix
allocated to the road segment a.
Step 1: Calculate impedance of each segment, tka =

ta(xk−1a ).

Step 2: The shortest path allocation method is used to
allocate the k-th layer traffic volume of each OD point pair
to the shortest path between them, set as wa.
Step 3: Accumulate the traffic volume newly allocated for

each road segment from step 2 : xka = xk−1a + wka.
Step 4: Stop calculating if k = N , otherwise, set k = k+1,

and return to step 1.

3) QUASI-DYNAMIC PATH SIMULATION METHOD
The static incremental allocation method does not consider
the change of road resistance with time and the withdrawal
process of EVs from the road network. To solve the problems
and maintain a good computational efficiency, this paper
proposes a quasi-dynamic traffic distribution method.

a: PERIODIZATION OF OD MATRIX
The departure time of the electric vehicles described above
obey the normal distribution shown in formula (3). Each
trip segment OD matrix corresponds to a normal distribution
curve of the corresponding departure time. We divide a day
into N shares. The time interval (hour) can be expressed as:

period =
24
N

(6)

Fig. 1 shows the departure time probability density curve
corresponding to a trip segment OD matrix, which is divided
into N shares in one day:

FIGURE 1. OD matrix departure time probability density curve.

Assuming that the traffic impedance in each time interval
does not change. During each time interval period, part of the
cars in each segment OD matrix will enter the road network.
This section is marked as ODijk , k denotes the time period
number. If the extracted departure time falls in the k-th period,
the electric vehicle belongs to ODijk , and satisfy:

ODij =
N∑
k=1

ODijk (7)

All OD matrices for the k-th period are added to ODAk ,
which is called the period OD matrix:

ODAk =
q∑
i

p∑
j

ODijk (8)

N∑
k=1

ODAk = ODA (9)
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That is, ODA k represents all cars that start in the k-th
period.

b: ALLOCATION OF OD MATRIX
This paper assumes that the EVs enter the road network
2 hours before will completely withdraw from the road net-
work. A layer ofODmatrix will add and a layer ofODmatrix
will exit in each time interval. The traffic volume in i-period
can be expressed as:

qia = xa + qi−1a − q
i− 2

period
a (10)

Corresponding to the road resistance of each time inter-
val, the driving speed of each road section can be obtained
by (5) based on departure time and path simulation results.
Then temporal-spatial distribution of electric vehicles can
be obtained, and the SOC of each electric vehicle at each
moment can be calculated. And then based on temporal-
spatial distribution of electric vehicles, distribution network
reliability could be assessed.

III. CHARGING AND DISCHARGING
CIRCUMSTANCE SETTINGS OF EV
A. CHARGING AND DISCHARGING PROBABILITY
The electric vehicles are divided into six types as shown
in TABLE 2.

TABLE 2. Types of electric vehicles.

‘‘Full’’ means that the owner owns charging equipment,
which can fully meet the charging requirements. ‘‘Part’’
means that there are common slow charging piles in the place
of residence or workplace, but there is a probability of being
occupied by other vehicles, and fast charging is required.
‘‘None’’ means no slow charging devices, only fast mode
available. The probability of slow charging pa is defined to
indicate the probability of charging when slow charging is
required.

If the electric vehicle is the ‘‘Part’’ type in parking place,
there is a probability pa that it is connected to the grid.

B. CHARGING BEHAVIOR
1) WHEN THE DISTRIBUTION NETWORK
IS OPERATING NORMALLY
When electric vehicle i reaches the place of resi-
dence or workplace, if the state of charge satisfy formula (11)
and the slow charging pile is not occupied, the electric vehicle
will be charged with slow mode:

SOCi <
1.5 · Emaxi

Ealli
· 100% = Si (11)

where Si is the charging threshold of vehicle i, SOCi is the
state of charge; Ealli is the battery capacity; Emaxi represents
the maximum of daily power consumption. A scaling factor
of 1.5 is set to prevent the car from running out of power on
the road caused by emergencies.

If the battery is fully charged before the next travel,
the charging duration can be expressed as (12):

Tc =
Ealli − Ei
Pslowc

(12)

where Tc is the charging duration, Pslowc is the slow charging
power.

If the electric vehicle is not fully charged before the next
trip, the charging duration is expressed as (13), and the battery
power can be presented as (14):

Tc = Tl − Ts (13)

E li = Esi + P
slow
c · Tc (14)

where Tl represents the departure time, Ts represents the start
time of charging, E l represents the battery level of the electric
vehicle at the moment of departure, and Es represents the
battery level at the start of charging.

If the electric vehicle should be charged with slow mode,
but the charging pile is occupied, it has to be charged with
fast mode before next trip. If there are multiple fast charging
stations in the travel path, one of them is randomly selected
for energy supplement. If there is no charging station in the
travel path, the fast charging station closest to the starting
point is selected for charging. The battery is set to be fully
charged in fast mode, and the charge duration is represented
by (15):

Tc =
Ealli − Ei

Pfastc
(15)

where Pfastc represents the fast charging power.

2) WHEN THE DISTRIBUTION NETWORK FAILS
When the distribution network fails, the slow charging and
fast charging behavior of EVs under the condition are shown
in Fig. 2.

C. DISCHARGING BEHAVIOR
1) DISCHARGING PROBABILITY AND DISCHARGING ENERGY
If the electric vehicle is the ‘‘Part’’ type in parking place, there
is a probability pa that it is connected to the grid. When the
distribution network fails and a V2G operation performed by
electric vehicles is required, the electric vehicles connected
to the grid will perform V2G operation if their battery state
of charge satisfies (16):

SOCi > Sy (16)

where Sy represents the V2G discharging threshold. It is
assumed that V2G operation calls up to 25% of battery power
for a single electric vehicle.
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FIGURE 2. Slow charging and fast charging behavior of EVs.

2) THE EARLIEST DISCHARGING TIME AND
DISCHARGING END TIME
The earliest discharging time of an electric vehicle is denoted
as TDS ; the end time of discharging is denoted as TDE ; the start
time of fault is denoted as TGS ; and the end time of fault is
denoted as TGE . There are three kinds of relationships among
the four moments, as shown in Fig. 3.

FIGURE 3. The earliest discharging start time and discharging end time.

Due to the actual scheduling, the electric vehicle may
not keep discharging all the time during TDS and TDE .
The discharging power is recorded as Pd . For each vehicle,
the remaining battery power after V2G is:

ETDEi = ETDSi −

∫ TDE

TDS
Pd · C(t)dt (17)

where C(t) is a 0-1 variable, where 1 means the electric
vehicle is discharging, and 0 means remaining time.

IV. DISTRIBUTION NETWORK RELIABILITY ASSESSMENT
The temporal-spatial distribution and real-time SOC of elec-
tric vehicles are obtained above. Based on this, the reliability

of the power system and the charging and discharging relia-
bility of electric vehicles can be analyzed.

A. RELIABILITY PARAMETERS
Since electric vehicles have V2G capabilities, they are both
power source and load. Their V2G and G2V have close
relationship with their temporal-spatial characteristics, so it is
necessary to consider this particularity and define some new
parameters for the reliability of electric vehicles.

1) ELECTRIC VEHICLE RELIABILITY PARAMETERS
(1) Average Interruption Frequency of EV Charging Index
(EAIFI , times/year):

EAIFI =

N∑
i=1
λi

N · Y
(18)

where λi is the number of charge interruptions during the
simulation time for electric vehicle i; N is the total amount
of electric vehicles; Y is the number of simulation years.

(2) Average Interruption Duration of EV Charging Index
(EAIDI , hour/year):

EAIDI =

N∑
i=1

ti

N · Y
(19)

where ti is the total charging interruption time of the electric
vehicle i within the simulation time.
(3) Average Extra Length for Charging (EAELC , km/year)

EAELC =

N∑
i=1
1li

N · Y
(20)

where 1li is the total distance of electric vehicle i to search
for a new charging station due to a blackout when SOCi < Si
within the simulation time.

(4) Average Extra Time for Charging (EAETC , min/year)

EAETC =

N∑
i=1
1tEi

N · Y
(21)

where 1tEi is the total time of electric vehicle i to search for
a new charging station due to a blackout when SOCi < Si
within the simulation time.

(5) Average Frequency of EVParticipating inV2G (EAFPV ,
time/year):

EAFPV =

N∑
i=1

ci

N · Y
(22)

where ci denotes the total number of times that electric vehi-
cle i participated in V2G within the simulation time.
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(6) Average Amount of Energy for EV Participating in
V2G (EAEPV , kWh/year):

EAEPV =

N∑
i=1

eai

N × Y
(23)

where eai represents the total energy provided by the electric
vehicle i in V2G during the simulation time.

2) GRID SYSTEM RELIABILITY PARAMETERS
Since EVs are mobile and interruptible loads for the distribu-
tion network, the power outage has little impact on themwhen
battery level are sufficient. Therefore, the system reliability
index below refers to a conventional distribution network
system that removes electric vehicles.

(1) System Average Interruption Frequency Index
(SAIFI , time/(household3·year)):

SAIFI =

M∑
i=1

fi

M · Y
(24)

where fi is the total number of power interruptions for user
i within the simulation time, and M is the total number of
household.

(2) System Average Interruption Duration Index (SAIDI ,
min/(household·year)):

SAIDI =

N∑
i=1

tsi

M · Y
(25)

where tsi indicates the total duration of power outage of user
i during simulation time.
(3) System Expected Energy Not Supplied (SEENS ,

MWh/(household·year)):

SEENS =

∫ Y
0 Pc(t)dt

Y
(26)

where Pc(t) is the load curtailment of system at time t , Pc(t)
is 0 when the network is in the normal working condition.

B. ISLAND POWER SUPPLY MODEL
When a fault occurs in the distribution network, the total
power generation and load satisfy the power balance:

NdEV∑
i=1

Pid (t)+
NdDG∑
i=1

PiDG(t) ≥
NL∑
i=1

Li(t) (27)

where NdEV denotes the number of electric vehicles that can
participate in V2G at time t .NdDG is the number of distributed
power sources that can generate electricity in isolated islands
at time t . NL indicates the number of load points in the island.
Li(t) is the load of the i-th load point at time t . Pid (t) is the
discharging power of the i-th electric vehicle at time t . PiDG(t)
is the output of the i-th distributed power source at time t . The
charging load of EV in the island is set as the lowest power
supply level.

C. RELIABILITY ASSESSMENT BASED ON
MONTE CARLO SIMULATION
1) WHEN THE DISTRIBUTION NETWORK
IS OPERATING NORMALLY
According to the established model of temporal-spatial tran-
sition of electric vehicles, their travel and charging are sim-
ulated in a time-series manner. When the next activity begin,
the simulation time advances directly to the start time of the
activity. After completing the calculation of the first vehicle,
the next vehicle is cycled until the last car on the day is
calculated.

2) WHEN THE DISTRIBUTION NETWORK FAILS
For failures that do not cross days (Failure occurred at
0:00-24:00), a large simulation cycle is performed on a day-
by-day basis and a small simulation cycle is performed on a
single vehicle basis. The influence of the fault on the charg-
ing of the electric vehicle and V2G are taken into account.
As shown in Fig. 4.

FIGURE 4. Fault time simulation flow chart.

For electric vehicle i that suffered a blackout at worksite K
and satisfies the V2G conditions, its one-day timing event is
shown in Fig. 5.

FIGURE 5. EV i timing diagram during the fault period.

where ¬ means starts from home; ­ means arrives at
the company; ® means that there is a power outage at that
location, and electric vehicle i starts to participate in V2G;
¯ means that V2G ends due to satisfaction of constraints;
° means leaves the company; ± means returns home.

Because the simulation is based on a single vehicle cycle in
the V2G process, there are actually multiple electric vehicles
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FIGURE 6. (a) Island power shortage. (b)‘‘Post-fault settlement’’ V2G
schematic.

supplying power to islands at the same time. We propose a
method called ‘‘post-fault settlement’’ to calculate the par-
ticipation of multiple electric vehicles participating in V2G,
as shown in Fig. 6.

For electric vehicle i, the fault period is within the time
interval of its parking, and the time interval that can partici-
pate in V2G is TDS−TDE . In the actual schedule, this interval
can be moved to TGS − TGE and only a part of the interval
may be scheduled. During the simulation, the program only
calculates the earliest V2G time and maximum discharging
duration of electric vehicle i. For faulty node K , there are
different numbers of electric vehicles in the TGS−TGE period
that can participate in V2G, and the V2G start time and
maximum discharging duration of each electric vehicle are
different. The grey part in Fig. 6(a) shows the power shortage
except for the output of the distributed power in the island.
This part needs electric vehicles to participate in V2G to
supply.

After the end of the simulation of all electric vehicles,
all electric vehicles that can participate in V2G in islands
are sorted according to the earliest possible V2G time. The
simulation first dispatches the top-ranking electric vehicle,
and then the rear-ranked electric vehicle until they meet the
load power shortage. The number of electric vehicles that are
dispatched can be expressed as equation (28):

min NdEV

s.t.
NdEV∑
i=1

Pid (t)+
NdDG∑
i=1

PiDG(t) ≥
NL∑
i=1

Li(t)

NdEV−1∑
i=1

Pid (t)+
NdDG∑
i=1

PiDG(t) <
NL∑
i=1

Li(t) (28)

where NdEV is the number of electric vehicles. If the power
shortage cannot be met, NdEV is the maximum available
number.

Fig. 6(b) is the schematic diagram of electric vehicles
dispatching. Each square represents the time zone and

discharging power of an electric vehicle participating in V2G.
Light colors indicate electric vehicles that are dispatched
first while dark colors indicate electric vehicles that are dis-
patched later. According to the energy consumed by each
electric vehicles participating in V2G, the battery power will
subtract the corresponding energy as equation (17). Finally,
we calculate the reliability parameters for each node of the
day. Since electric vehicles still have enough energy after
participating in V2G, V2Gwill not affect the travel of electric
vehicles on the day. Therefore, the simulation method results
are consistent with the real-time updating results.

For failures that cross days, we increase the cycle period
from one day to the number of days spanned by the fault,
and calculate reliability parameters on the day when the fault
ends.

V. NUMERICAL RESULTS
A. PARAMETER SETTINGS
Case studies are performed on an improved IEEE-RBTS
Bus6 Test System to examine the performance of the pro-
posed approach [22]. The system is shown in Fig. 7, including
1 section bus, 32 feeder sections, 26 nodes, 23 distribution
transformers, 23 load points (LP1 to LP23), and 21 isolation
switches.

FIGURE 7. IEEE-RBTS bus6 test system.

This article assumes that the isolation switch is 100% suc-
cessful each time. The distribution network is equipped with
two distributed power supplies, each distributed power supply
equipped with a total of 2010 kW wind power. Variations of
wind speed can be represented by Weibull distributions.

Traffic network takes the main road in a typical city as an
example, as shown in Fig. 8. It contains 17 nodes and 37 edges
with colors on each side which represent its road grade.
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TABLE 3. Quasi-dynamic path simulation results.

FIGURE 8. Traffic network.

Among them, nodes 1-6 are residential areas (H), nodes 7,
8, 9, 10, 11, 12, 14, 15, and 16 are industrial and commercial
areas (W), and nodes 8, 13 and 17 are entertainment shopping
and leisure areas (SR/SE/O). The geographically coupled cor-
respondence between traffic nodes and distribution network
nodes is given in Annex.

Based on the population distribution of the main urban
area of the city, the total travel OD matrix is obtained
through the unconstrained gravity model [23]. The electric
vehicle is based on Nissan LEFT EV with a battery capacity
of 40kWh, fast charging power of 25kW, slow charging power
of 6.6kW [24], and discharging power is set to 4.5kW. The
SOC of all electric vehicles is set to 100% at the start of the
simulation. The number of cars is to be 12,000. The number
of OD layers in each trip is 48, and the simulation time is
400 years. The studies are performed on a PC with Intel Core
i5 CPU 3.00 GHz and 6.00 GB RAM. The total CPU time
consumption is 2.132 × 105 seconds. This paper assumes
that each road network node is equipped with electric vehicle
charging and discharging facilities.

B. QUASI-DYNAMIC PATH SIMULATION RESULTS
Taking OD 1 to 12 as an example, the path simulation in the
morning is shown in Table 3. The time taken by the physical
shortest distance and the actual path of the electric vehicle at
different periods is shown in Fig. 9. The simulation results
reveal that the shortest distance path at the non-working peak
period (6:00-7.30 and 9:30-10.30) with relatively smooth
traffic is also the shortest time path. The arrival of the peak

FIGURE 9. The time taken by the physical shortest distance and the
actual path of the electric vehicle.

hours of work (7:30-9:30) caused the shortest distance path
to be congested, which increased the passage time. Electric
vehicle would choose other roads with shorter travel time.

In addition, the changes of traffic flow in each section of
a day were investigated, and the three sections, 2-3, 7-12
and 3-6, were taken as examples. The road traffic condition
of three sections within 24 hours is shown in Fig. 10.

FIGURE 10. Road traffic condition.

As can be seen from the simulation results, the road net-
work has two travel peaks every day, namely, going to work
and going home, and the evening peak is higher than the
morning peak, which is about 160% of the morning peak,
and lasts longer. The morning peak lasts about 4 hours, and
the evening peak lasts about 5 hours. The simulation results
are consistent with the real urban congestion. It is shown that
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the quasi-dynamic traffic flow simulationmethod proposed in
this paper can simulate the dynamic traffic situation by using
discrete method.

C. CHARGING AND DISCHARGING POWER OF
ELECTRIC VEHICLE DURING FAULT PERIOD
As shown in Fig. 11, one day during the process of simula-
tion of the distribution network nodes 18 (network node 1),
front line fault due to power outage, switch action after the
occurrence of fault movement, the node 18 and distributed
power form supply island. As an emergency power supply,
electric vehicles and distributed power supply to the island
except electric vehicles.

FIGURE 11. Fault circuit diagram.

FIGURE 12. Charging and discharging load of electric vehicle.

In order to intuitive display, suppose nodes 18 is a constant
load with 1000 kW (electric vehicle charging load is not
concluded). The charging and discharging power distribution
of electric vehicles at node 18 on that day is shown in Fig. 12,
where positive value represents charging load and negative
value represents discharging power. The fault starts at 8 AM,
ends at 13 PM, which lasts for 5 hours. It can be seen from
the figure that the charging power of EV at the same node
is less than the discharging power, because the proportion of
EV charging demand is small, a large proportion of EV can
provide power to the distribution network, andmost of EV are
parked at that time. Output of electric vehicles and distributed
power supply is shown in Fig.13. V2G and distributed power
supply can fully meet the power load of island node 18.

D. IMPACT OF V2G TECHNOLOGY
When there are 6000 electric vehicles (40% penetration rate)
in the power supply area, the chargeable probability is 0.9.

FIGURE 13. Electric vehicle V2G output and distributed power supply.

First, we consider a scenario that without V2G technology,
all electric vehicles are only considered as grid loads. Second,
scenario where all electric vehicles participate in V2G is
considered. The system reliability of the two scenarios is
shown in Table 4.

TABLE 4. Influence of V2G on reliability of distribution network.

It can be seen from Table 4 that in the case of V2G tech-
nology, SAIFI , SAIDI and SEENS are all significantly reduced
since the electric vehicles can supply power to the load as a
backup power source during a fault. It shows that the backup
power supply of electric vehicles has a strong capability in the
distribution network. It indicates that EV, as a backup power
source, has a strong power supply capacity in the distribution
network. In practical operation, if the stored energy of EV is
fully utilized, the power failure index value can be effectively
reduced and the operation condition can be improved.

E. IMPACT OF ELECTRIC VEHICLE PENETRATION
At present, electric vehicles are being vigorously promoted
around the world, but the penetration rate of electric vehicles
is at a relatively low level. Therefore, it is necessary to study
the impact of electric vehicle penetration on the reliability
of electric vehicles as technology development and continue
to deepen. Table 5 and Table 6 are simulation results of
the reliability parameters of the distribution network and the
electric vehicle, respectively. The SAIFI and SAIDI results are
drawn in Fig. 14.

From the above results, it can be seen that for the distri-
bution network system, the increase in the penetration rate
of the electric vehicles actually enhances the capacity of the
backup power supply of the distribution network, thus the
three indexes of distribution network reliability increase. For
electric vehicles, the reliability parameters increase with the
rise of the penetration. From the trend of the two frequency
reliability parameters of the grid and the electric vehicle,
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TABLE 5. Influence of electric vehicle penetration rate on distribution
network reliability.

TABLE 6. (a) Influence of electric vehicle penetration rate on electric
vehicle reliability. (b) Influence of electric vehicle penetration rate on
electric vehicle reliability.

FIGURE 14. Penetration rate of electric vehicles.

the reliability parameters change caused by the increase in
penetration from 20% to 60% is at a faster pace than the
increase from 60% to 100%.

F. IMPACT OF DISCHARGE THRESHOLD
The V2G discharge threshold of an electric vehicle is equiv-
alent to the activation condition of the standby power supply.
The lower the threshold is, the easier it is to be activated,
and the more significant the reliability of the distribution
network is. Table 7 and Table 8 are simulation results of
reliability parameters for distribution network and electric
vehicle respectively.

It can be observed from the simulation results that the
increase of the V2G discharge threshold has a significant
improvement on the reliability of the grid. Especially when

TABLE 7. Influence of electric vehicle penetration rate on distribution
network reliability.

TABLE 8. (a) Influence of electric vehicle discharge threshold on
reliability of electric vehicles. (b) Influence of electric vehicle discharge
threshold on reliability of electric vehicles.

FIGURE 15. Reliability of the distribution network and electric vehicles.

Sy changes from 75% to 65%, the change rate of the three
reliability parameters of the grid exceeds 30%. However, for
the reliability of the electric vehicles, as shown in Fig. 15,
the change of Sy mainly alters the energy of its participation
in the discharge of V2G, and the influence on the charging
reliability is not significant with respect to the reliability
parameters of the distribution network.

G. IMPACT OF BATTERY CAPACITY
The battery capacity is currently the most important fac-
tor restricting the development of electric vehicles. For the
charging reliability of electric vehicles, the increase in battery
capacity makes the cruising range increase. Electric vehicles
can choose to charge at a wider time scale, and the charg-
ing load of electric vehicles is distributed more evenly over
time. For grid reliability, a larger battery capacity of EV
means more energy that is callable. Table 9 and Table 10 are
simulation results of reliability parameters for distribution
network and electric vehicles, respectively.
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TABLE 9. Influence of electric vehicle penetration rate on distribution
network reliability.

TABLE 10. (a) Influence of electric vehicle discharge threshold on
reliability of electric vehicles. (b) Influence of electric vehicle discharge
threshold on reliability of electric vehicles.

FIGURE 16. Changes in reliability parameters.

Changes in reliability parameters are shown in Fig. 16.
It shows that the reliability parameters of the distribution
network are obviously improved when the battery capacity
of electric vehicles increases from 50 kWh to 60 kWh. When
the battery capacity is high, the improvement of the reliability
parameter is relatively limited. With the increase of the bat-
tery capacity, the charging reliability of electric vehicles is
improved. This is because the increase in the battery capacity
reduces the charging frequency, and the frequency of grid
outages during the charge of electric vehicles.

H. ANALYSIS OF INFLUENCE OF ROAD IMPEDANCE ON
RELIABILITY OF ELECTRIC VEHICLE AND
DISTRIBUTION NETWORK
The emergence of electric vehicles strengthens the coupling
relationship between road network and distribution network.
From the perspective of road network, the increase in the

number of cars on the road will aggravate the congestion and
increase the road obstruction. On the other hand, the change
of road resistance will directly affect the travel and charging
and discharging behaviors of electric vehicles, and then affect
the charging reliability of distribution network and electric
vehicles. Road impedance depends on the number of cars in
the road network. Therefore, this paper measures the road
resistance by the total number of cars. Table 11 and 12 show
the change of reliability index when the number of electric
vehicles remains unchanged and the total number of vehicles
keeps increasing.

TABLE 11. Influence of electric vehicle penetration rate on distribution
network reliability.

TABLE 12. (a) Influence of electric vehicle discharge threshold on
reliability of electric vehicles. (b) Influence of electric vehicle discharge
threshold on reliability of electric vehicles.

As can be seen from above results, with the increase of the
number of cars in the road network, the congestion degree
of the road network becomes worse. For electric cars, their
charging reliability decreases gradually, and the number of
times they can participate in V2G also decreases relatively.
Compared with electric vehicles, the distribution network is
less affected, and the number of power outages, duration of
power outages and load loss indexes have a small decline.

VI. CONCLUSION
The random movements and the large amount of charging-
discharging behaviors of electric vehicles generate huge cal-
culations in reliability assessment. This paper makes some
efforts to solve the problem of calculation efficiency and
accuracy. Considering the influence of traffic congestion on
path selection and computational efficiency, the static travel
simulation is time-divided to realize the quasi-dynamic travel
simulation. Temporal-spatial distribution and real-time SOC
of electric vehicles are obtained, based on which, power
system reliability and electric vehicle charging-discharging
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reliability can be assessed. Moreover, a high efficiency
Monte Carlo simulation method that improved the simulation
time advancement is proposed to simulate the large amount of
behaviors of electric vehicles. The results show that the quasi-
dynamic travel simulation method simulates the influence
of different congestion levels on path selection accurately.
Fully considering the behaviors and quasi-dynamic path sim-
ulation of electric vehicles, the simulation takes only about
1.5 seconds for one day, which demonstrate the effectiveness
of the proposed approach.

Analyses showed that the increase of the penetration rate
of EVs, charging probability and the battery capacity are
conducive to the reliability of the distribution network and
electric vehicles charging. The reduction of the discharge
threshold is beneficial to the improvement of the reliability
of the distribution network, which is not conducive to the
charging reliability of electric vehicles. When the number
of electric vehicles is small or the battery capacity is low,
increasing the number of EVs and battery capacity can effec-
tively improve the distribution network and EVs’ charging
reliability. In addition, the charging and discharging load can
be obtained through the proposed method, which can be used
in EVs’ charging load forecast.

APPENDIX
The geographically coupled correspondence between traffic
nodes and distribution network nodes:
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