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ABSTRACT Firefly algorithm (FA) is one of the swarm intelligence algorithms, which is proposed by
Yang in 2008. The standard FA has some disadvantages, such as high computational time complexity, slow
convergence speed and so on. The main reason is that FA employs a full attracted model, which makes the
oscillation of each firefly during its movement. To overcome these disadvantages, based on elitist strategy,
a randomly guided firefly algorithm (ERaFA) is proposed. In this algorithm, for improving the convergence
speed, an elitist attraction model is developed based on random selection from elite fireflies, which can lead
the firefly to a right direction. To deal with the possible failure of the elite guidance, opposite learning strategy
is adopted. Meanwhile, to strengthen the local search ability of our algorithm, and help our algorithm jump
out a local optimum position, a new mechanism is proposed, which is similar to the crossover operator in
GA. The performance of ERaFA is evaluated by some well-known test functions and applied to solve three
constrained engineering problems. The results show that ERaFA is superior to FA and some other state-of-
the-art algorithms in terms of the convergence speed and robustness.

INDEX TERMS Firefly algorithm, swarm intelligence, continuous optimization, elitist strategy, opposite
learning.

I. INTRODUCTION
Since optimization problems often arise in engineering
design, management science, economics and other fields, it
is of great practical significance to present methods to solve
these optimization problems. The method of solving opti-
mization problems can be divided into deterministic meth-
ods and stochastic algorithms in general. The convergence
of deterministic methods can usually be obtained, but these
methods require the continuity, derivative and other infor-
mation of the function, and can not get the global optimal
solution in finite time. In contrast, stochastic algorithms do
not require that functions are differentiable or continuous,
so they can be used to solve a wide range of optimiza-
tion problems. Swarm intelligence algorithms are a kind of
stochastic algorithms, which can use the information sharing
among groups to complete complex tasks, and attract the
attention of researchers. Thus, more and more researchers
pay attention to swarm intelligence algorithms, and presented
many effective swarm intelligence algorithms, e.g. Particle
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Swarm Optimization(PSO) [1]–[3], Artificial Bee Colony
(ABC) [4]–[6], Ant Colony Optimization(ACO) [7], [8],
Differential Evolution (DE) [9], Harmony Search(HS) [10],
Cuckoo Search(CS)[11], Genetic Algorithm (GA) [12], [13],
Firefly Algorithm (FA) [14]–[16].

FA algorithm was first proposed by Yang in 2008 [14],
which simulates the moving behavior of fireflies. Since FA
was put forward, researchers have developedmany variants of
FA, and have applied them to solve many problems success-
fully appeared in many fields, including structure design [17],
stock forecasting [18], and production scheduling [19], water
resource [20] and cancer diagnosis [21], and so on. These
variants of FA can be divided into the following categories.

� Improvement based on modified strategy
In FA, parameters play a very important role, and how to

adjust them is difficult. Twomainmechanisms and five differ-
ent strategies were proposed to adjust the control parameters
in FA [22]. In order to improve the adaptability and overcome
the shortcomings of FA, an adaptive firefly algorithm (AFA)
was proposed in [23]. In this method, three strategies were
presented. For solving continuous optimization problems,
a modified MSA-FFA is developed based on the memetic
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self-adaptive firefly algorithm (MSA-FFA) [24]. By selecting
control parameters, the purpose of self-adaptation is achieved
in this method. By studying the control parameters of FA,
a modified FA called FA with adaptive control parameters
(ApFA) was presented [25]. To jump out of the local optima
and weaken the effects of the maximum iterations, a self-
adaptive step firefly algorithm(SASFA) was developed [26].
The core idea of this method is to vary the step size with the
number of iterations based on the information of individual
and the current population. To improve the performance of
FA, by dynamically adjusting the control parameters and
employing an alternative search strategy, an adaptive FA with
alternative search (AFAas) was proposed [27]. To stabilize
the moving behavior of fireflies and increase convergence
speed of FA, a new FA was proposed [28]. In this method,
if there is no better fireflies in the vicinity of each firefly,
a directed behavior that moves to the optimal solution of
the current population is proposed. In addition, to increase
convergence speed, it advise that all fireflies should move to
global best in each iteration by using Gaussian distribution
[28]. By using the Levy flights move strategy, a new meta-
heuristic FA (LFA) was developed [29]. To escape from local
minima, a modified FA was presented by combining FA
and chaotic map, and applied to solve reliability-redundancy
optimization [30]. To increase the global searching ability
of FA, 12 different chaotic maps were introduced into FA
(CFAs) [31]. Based on neighborhood search and dynamic
parameter adjustment mechanism, a randomly attracted FA
was proposed in 2017 [32]. By using Tidal Force formula,
a modified firefly algorithm was proposed, which brought a
new strategy into the optimization field [33].

� Improvement based on hybrid strategy
By combing the advantages of FA and DE, a hybrid

population-based algorithm, called hybrid firefly algorithm
(HFA), was proposed in [34]. In this algorithm, to promote
information sharing among the population, FA and DE are
executed in parallel. For solving constrained numerical and
engineering problems, a hybrid firefly algorithm was pre-
sented based onRosenbrocks local search andGood-point-set
method [35]. To strengthen the exploration and exploitation
abilities of FA, a new FA variant (HMFA) was proposed.
In this method, hybrid mutation strategies are employed [36].
Based on the combination of harmony search (HS) and fire-
fly algorithm (FA), a hybrid approach, called HS/FA, was
proposed [37]. This method utilized HS and FA to explore
and exploit, respectively. Through combining FA with DE,
a hybrid optimization method, named HEFA, was pro-
posed [38], which can improve the searching precision and
strengthen information sharing among the fireflies.

Although the aforementioned FA variants have a better
performance than the classical FA, there is still room for
improvement. For example, the time complexity of FA is
relatively high, the reason is that each firefly xi needs to be
compared with all the other fireflies, and move to a firefly
where its brightness is higher. Moreover, this movement may
cause oscillations in the iteration. In addition, in the basic FA,

it does not consider how to move xi when xi is better than the
another firefly chosen to compare.

The aim of this paper is to propose an improved FA algo-
rithm. The contributions of this paper are: (1) We assume that
each firefly is guided by elitist firefly, which can reduce the
time complexity, and improve the convergence rate. (2) To
cope with the case that elitist firefly selected is worse than
the firefly guided, the opposite learning strategy is adopted,
which can help the corresponding firefly escape from a local
position. (3) To enhance the local search ability of the pro-
posed algorithm, a new mechanism, which is similar to the
crossover operator in GA, is proposed.

The rest of the paper is organized as follows. FA algo-
rithm is summarized in Section 2. In Section 3, the pro-
posed algorithm ERaFA is developed. Benchmark problems
and the corresponding experimental results are given in
Section 4. Section 5 gives three practical problems. Finally,
Section 6 concludes the paper.

II. BASIC FA ALGORITHM
FA is one of swarm intelligence algorithms. In FA, each
firefly represents a point in the solution space. In initialization
phase, the position of each firefly is randomly generated.
After that, each firefly is compared with the rest of the
firefly by their fitness value, and moves toward a firefly with
relatively good fitness value, which is the phenomenon of
attraction in FA.

Assume that D is the dimension of the problem, N is the
population size, and xi is the i-th firefly in the population,
where i = 1, 2, · · · ,N . The attractiveness between two
fireflies xi and xj is calculated as follows [14]:

βij = β0e
−γ r2ij , (1)

where γ is the light absorption coefficient, rij is the distance
between xi and xj, which is computed by the following equa-
tion

rij =‖ xi − xj ‖=

√√√√ D∑
d=1

(xid − xjd )2,

where xid and xjd are the d-th dimension of xi and xj, respec-
tively.

In Eq. (1), β0 is the attractiveness at r = 0. Through
comparing the fitness values of xi and the other fireflies xj,
where j = 1, 2, · · · ,N and j 6= i, the firefly xi decides how
to move. If xj is brighter (better) than xi, that is f (xj) < f (xi),
then xi will be attracted and move toward xj by the following
formula:

xt+1i = xti + β0e
−γ r2ij (xtj − x

t
i )+ αεi, (2)

where εi ∈ [−0.5, 0.5] is a random number that obeys
uniformly distributed, and α ∈ [0, 1] is a step factor.

The pseudo code description of the basic FA is given
in algorithm 1, where ItMax is the maximum number of
iterations.
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Algorithm 1 Pseudo-Code of FA
01:Initialize the population size N , the maximum number
of iterations ItMax.
02: while t <= ItMax do
03: for i = 1 to N do
04: for j = 1 to N do
05: if f (xj) < f (xi) then
06: Move xi toward xj according to (2).
07: Compute the fitness value of the new xi.
08: end
09: end
10: end
11: Rank the fireflies and find the current best
12: t = t + 1
13: end

As pointed out in [39], the basic FA is the full attraction
model (see Fig. 1 (a)). In this model, each firefly is attracted
by all other brighter fireflies. The advantage of this model is
that it is likely to find better candidate solutions, but it should
be pointed out that too many attractions may result in oscil-
lation during the search process and high computational time
complexity. Let O(f ) be the computational time complexity
of the fitness evaluation function f (·). Reference [39] pointed
out the computational time complexity of the full attraction
model(basic FA) is O(ItMax ∗ N 2

∗ f ), where ItMax is the
maximum number of generations.

III. PROPOSED APPROACH
Since there are so many attractions in the search process
of FA, the phenomenon of oscillation occurs during the
moving process, and the time complexity is high. To reduce
attractions, a random attraction FA (RaFA) was proposed in
[40]. In RaFA (see Fig. (b)), for each firefly xi, a firefly
xj(j 6= i) is selected randomly from the current population
firstly. Then, by comparing the fitness values of xi and xj,
the movement of xi is determined. If xj is brighter than xi,
xi will move toward xj. Thus, the number of attractions for
each firefly is not greater than 1. Although random attraction
can effectively reduce the computational time complexity and
accelerate the search, it may result in premature convergence.
To overcome this problem, both the random and Cauchy
mutation have been used in RaFA. Recently, to achieve a
trade-off between full attraction and random attraction, a new
FA variant called NaFA (see Fig 1. (c)) was developed [39],
which employs a neighborhood attraction model inspired by
the k-neighborhood concept [41].

In RaFA, since xj is chosen randomly from the current
population, it is not necessarily superior to xi, that is, xj may
not be a good guide for the movement of xi. In NaFA, k-
neighbor concept was introduced, which can guide xi better
than RaFA, but it’s not doubt that this method increased the
time complexity. Moreover, in both two methods, the case is
not considered that xi how to move when xi is brighter than

FIGURE 1. Different attraction models.

xj, that is they do not take full advantage of the information
contained by xi.

In order to reduce the computational complexity, and well
guide the movement of fireflies, an elitist attraction model
(see Fig. 1(d)) is developed based on randomly selecting a
firefly from elite fireflies, which lead each firefly to a better
direction with greater probability. Meanwhile, if the firefly
xj selected randomly from elite fireflies is worse than xi,
the opposite learning strategy is adopted to make better use
of the information xi.

A. RANDOMLY GUIDED FA BASED ON ELITIST
STRATEGY(ERAFA)
In ERaFA, we first give a proportional value ρ, which is used
to determine the number of elite fireflies. Assume that N is
the population size, then a firefly xj is selected randomly from
[ρ ∗ N ] elite fireflies, and compared with xi, where [·] is a
integral function. If xj is brighter than xi, then xi moves to
xj, else xi uses opposite learning strategy to move to a new
position. The equation of motion is as follows:

xt+1i

=

{
xti + β0e

−γ r2ij (xj(t)− xi(t))+ αεi, if f (xj) < f (xi),
l + u− xti , else,

(3)

where l and u are the lower bound and upper bound of the
search region, respectively.

B. ENHANCED LOCAL SEARCH ABILITY
To enhance the local search ability of our algorithm near the
current optimal solution x∗, a new mechanism is proposed,
which is similar to the crossover operator in GA, and is
used to generate new positions. This process is accomplished
by crossing x∗ with another feasible solution. In the early
stage, x∗may have a long distance to the real optimal solution,
while in the later stage, the distance between of x∗ and the
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real optimal solution is getting closer and closer. Therefore,
we hope that, the weight of x∗ is smaller in the early stage,
and become greater in the later stage. The process can ensure
that our algorithm searches for a wide range in the early stage,
and later concentrates on the neighborhood of x∗. In addition,
considering chaotic search has a stronger searching ability,
chaotic search is used to generate the feasible solution for
cross operation. Next, we give the details.

Let x∗ be the best solution of the current iteration. Firstly,
utilize the following equation (4) to generate chaotic vari-
able σi:

σi+1 = 4 ∗ σi ∗ (1− σi), 1 ≤ i ≤ k, (4)

where k is the length of chaotic sequence, σ0 ∈ (0, 1) is a
random number. Then map σi to a chaotic vector xi in the
interval [l,u]:

xi = l + σi ∗ (u− l), i = 1, · · · , k, (5)

where l and u are the lower bound and upper bound of
variable x, respectively. Finally, a new candidate solution x̂i
is obtained by the following equation:

x̂i = λ ∗ x∗ + (1− λ) ∗ xi, i = 1, · · · , k, (6)

where λ is a shrinking factor, which is defined as follows:

λ =
t

ItMax
, (7)

where ItMax is the maximum number of iterations, t is the
number of iterations.

Based on the above discussion, the pseudo code of ERaFA
is provided as follows:

Algorithm 2 Pseudo-Code of ERaFA
01:Initialize the population size N , the maximum number
of iterations ItMax.
02: while t <= ItMax do
03: Select [ρ ∗ N ] elite fireflies from current population.
04: for i = 1 to N do
05: Select a firefly xj from [ρ ∗ N ] elite fireflies do
06: Move xi according to (3).
07: Compute the fitness value of xi.
08: end
09: Rank the fireflies and find the current best.
10: By using (4)-(7), to search near x∗, and update x∗(if
necessary).
11: t = t + 1
12: end

C. TIME COMPLEXITY
Let O(f ) be the computational time complexity of the fitness
evaluation function f (·). For the standard FA, its time com-
plexity is O(ItMax ∗ N 2

∗ f ). For RaFA, its time complex-
ity is O(ItMax ∗ N ∗ f ). For NaFA, its time complexity is
O(ItMax∗k∗N∗f ), where k is the number of neighbor. For our
method ERaFA, its time complexity isO(ItMax ∗(N+k)∗ f ),
here k is the number of the local search near the current

optimal solution x∗. As can be seen, the time complexity
of ERaFA and RaFA is not very different. On the whole,
the time complexity of ERaFA is little higher than that of
RaFA. Meanwhile, we can see that, the time complexity of
ERaFA is much lower than that of FA and NaFA.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we have done a total of four experiments.
In Experiments 1, 2 and 3, 32 benchmark functions are
selected to test the performance of ERaFA. The detailed
information of the test functions are displayed in Table 1. For
these functions, f1−f8 and f20−f21 are unimodal functions, f9
is a discontinuous step function, f10 is noise function, f11−f19
are multimodal functions, f22 − f23 are mis-scaled functions,
f24 − f29 are rotated functions, f30 is a shifted function, and
f31 − f32 are highly competitive problems, which are shifted
and rotated functions. In Experiment 4, the proposed algo-
rithm ERaFA is tested on some challenging benchmark func-
tions selected from CEC 2015 [42]. This test suite includes
different types of optimization problems, where f1 and f2 are
unimodal functions, f3 − f5 are simple multimodal functions,
f6 − f8 are hybrid functions, and f9 − f15 are composite
functions. The detailed information about this test suit is
given in Table 5. Among these four numerical experiments,
the first one is to determine the parameter ρ, which has a
great impact on the algorithm. The second one is to compare
the performance of ERaFA with some other FAs, including
FA, RaFA and NaFA. The third one is to comprehensively
compare the performance of ERaFAwith several state-of-the-
art algorithms, including ApFA [25], CFA [31], NaFA [39],
WSSFA [43], VSSFA [44], HPSOFF [45], FFPSO [46] and
HFPSO [47]. The fourth one is to further test the performance
of ERaFA. In this experiment, ERaFA is compared with some
algorithms proposed recently, including ABC [48], SaDE [9],
WWO [49], FWA-EI [50] and AEFA [51].

A. EXPERIMENT 1: THE DETERMINATION OF
PARAMETER ρ
In ERaFA, the parameter ρ is used to change the proportion
of the optimal solution, which is closely related to the rate of
convergence of the algorithm. Thus, it is one of the key steps
to select the value of parameter ρ in ERaFA. To determine
the value of parameter ρ, we select 8 functions from Table 1:
f2, f4, f6, f7, f8, f14, f16 and f20, and run ERaFA 30 times for
each function with different values of ρ. In this experiment,
the population size is 40, the maximum iterations(ItMax) is
set to 2500, the initial β0, γ are set to 1, the dimensions of the
test functions are set to 30. The statistical results including
minimum, mean and standard deviation are given in Table 2.

From Table 2, we can see that the same results were
obtained for f2, f6, f8, f16 with different ρ; for f4, when ρ =
0.5, the result is the worst; for f7, the worst result was obtained
at ρ = 0.1; for f14, f20, the best results were calculated at
ρ = 0.3. Considering the above calculation results, ρ = 0.3
is the best choice. Therefore, in the following experiments, ρ
is set to 0.3.
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TABLE 1. Benchmark test functions.
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TABLE 2. The comparison for different value of parameter ρ.

B. EXPERIMENT 2: COMPARISON OF ERAFA, FA, RAFA
AND NAFA
In this subsection, to test the performance of ERaFA, it is
compared with FA, RaFA, NaFA. The parameters are the
same as that in the experiment 1. All algorithms run 30 times.
The comparison results are given in Table 3, and the best
solutions obtained by algorithms are marked in boldface. The
t test values were used to determine whether the results of
ERaFA are statistically different from the results of other
algorithms, where significant level is set to 0.05. In this test,
‘‘+’’ indicates that the performance of ERaFA is statistically
significantly better than of its competitor, ’’=’’ means that the
performance of the competitor is statistically comparable to
that of ERaFA, ‘‘−’’ implies that the performance of the com-
petitor is statistically significantly better than that of ERaFA.

FromTable 3, we can see that, for functions f1−f8, f10−f12,
f14 − f17, f9 − f26 and f28 − f32, the accuracy of the results
obtained by ERaFA is better than that of the other algorithms.
For function f9, all the algorithms have the same accuracy,
and can find the global optimal values. For function f13, both
FA and ERaFA found the optimal results, which are better
than that of RaFA and NaFA. For function f27, ERaFA and
NaFA have the best results with the same accuracy, which
is superior to that of the other two algorithms. For function
f18, the accuracy of the result obtained by ERaFA is lower
than that of FA and NaFA. From these results, we can see that
ERaFA is only defeated by other algorithms on function f18.
Further analysis, we find that, ERaFA almost can the optimal
values of all the unimodal functions, which means that it has a
strong search ability on unimodal functions. For multimodal
functions, ERaFA beat the other algorithms on almost all
these functions, except for function f18. This implies that
ERaFA is not easy to fall into local optimum. In addition,
for mis-scaled, rotated, shifted and rotated functions f22 −
f32, the results show that ERaFA has superior search ability,
because ERaFA can obtain the results with better accuracy
than that of the other algorithms, except for f27. In summary,
the accuracy of the results obtained by ERaFA are better than
that of the other algorithms for over 90% of all test functions.
The main reason is that ERaFA has a better balance between
global and local search ability.

By t test results, we can see that the performance of
ERaFA is superior or equal to the other algorithms on all the

functions, except for the functions f9, f18, and f27, which is
consistent with the above analysis.

In order to compare the convergence speed of these algo-
rithms, the convergence curves of all algorithms for functions
f1 − f30 are given in Figure 2. From Figure 2, it can be seen
that, for most test functions, the convergence rate of ERaFA is
very fast. For function f17, although ERaFA and NaFA have
the same solution accuracy, the convergence rate of ERaFA
slightly better than that of NaFA.

In conclusion, the performance of ERaFA is better than FA,
RaFA and NaFA, and ERaFA can obtain the best results for
most functions.

C. EXPERIMENT 3: COMPARISON OF ERAFA WITH OTHER
FA VARIANTS
In this subsection, 14 functions are selected from Table 1 to
further test the performance of ERaFA. We compared the
performance of ERaFAwith eight other recently proposed FA
variants, which include CFA, WSSFA, VSSFA, RaFA ApFA,
HPSOFF, FFPSO and HFPSO. The detailed information of
these algorithms are presented as follows.
−CFA(FA with chaos), Gandomi et al.(2013)
−WSSFA(Wise step strategy FA), Yu et al.(2014)
−VSSFA(Variable step size FA), Yu et al.(2015)
−RaFA(FA with random attraction), Wang et al.(2016)
−ApFA(FA with adaptive control parameters), Wang

et al.(2017)
−HPSOFF(Hybrid PSO and FA), Arunachalam et al.(2015)
−FFPSO(Hybrid FA and PSO), Kora et al.(2016)
−HFPSO(Hybrid FA and PSO), Aydilek (2018)
−ERaFA, Our approach.
In this experiment, for functions f1 − f4, f9 − f13 and

f18 − f20, ERaFA is compared with VSSFA, WSSFA, CFA,
RaFA, ApFA. The population size is set to 20. The maximum
value of the function value is the termination condition, which
is set to 5e5 and is consistent with the comparison literature.
For functions f31 and f32, ERaFA is compared with FFPSO,
HPSOFF and HFPSO, the population size is set to 30. The
maximum value of the function value is the termination
condition, which is set to 1.5e3 and is consistent with the
comparison literature. The other parameters are the same as
that in the experiment 1. The results are taken from [39] and
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TABLE 3. Computational results of FA, RaFA, NaFA, and ERaFA.
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TABLE 3. (Continued.) Computational results of FA, RaFA, NaFA, and ERaFA.

[46] directly, except for that of our algorithm ERaFA. The
comparison results are shown in Table 4.

The results in Table 4 show that, the mean values obtained
by VSSFA and WVSSFA are worse than those of the rest of
algorithms for all the test functions. The results obtained by
ERaFA are better than those of the other algorithms except
for function f18. For function f18, as seen from Table 4,
the result obtained by ApFA is the best, followed by CFA,
and ERaFA in third palce. In addition, for functions f31
and f32, the accuracy of the results obtained by ERaFA is
better than that of the other algorithms. Based on the above
analysis, it is clear that the overall performance of ERaFA is
the best.

D. EXPERIMENT 4: COMPARISON OF ERAFA WITH SOME
STATE-OF-THE-ART ALGORITHMS
In this experiment, we compare ERaFA with the following
state-of-art algorithm on CEC 2015 benchmark set:
−Artificial bee colony (ABC), Karaboga et al.(2007)
−The self-adaptive DE (SaDE), Qin et al.(2009)
−The Water Wave Optimization (WWO),
Zheng et al.(2015)
− The FWA-EI, Zhang et al.(2017)
−AEFA, Sajwan et al.(2019)
−ERaFA, Our approach.
30-dimensional test functions were used and all results

were obtained from 25 independent runs. In each run, the pop-
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TABLE 4. Computational results of ERaFA and five other FA variants.
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FIGURE 2. Convergence curves of f1-f30.

FIGURE 2. (Continued.) Convergence curves of f1-f30.

ulation size and themaximum number of function evaluations
(MaxFES) are 20 and 10000 × 30 respectively, which is
consistent with the comparison literature. These results are
taken from [50] directly, except for that of the proposed algo-
rithm ERaFA. The comparison results are given in Table 4,
including the best, worst and standard deviation. In Table 4,
the best fitness and median value among the algorithms are
marked in bold.

From Table 6, it can be seen that ERaFA, except for F7
and F13, ERaFA outperformed or equally performed in com-
parison with all the other existing algorithms. The detailed
comparison results are as follows:

(1) Unimodal functions F1 − F2. Compared with the five
other algorithms, ERaFA can achieve the best performance
on F1. Regarding F2, ERaFA, SaDE and FWA-EF have the
same minimum and mean, which are superior to the results
of the other algorithms. However, the deviation of SaDE is
too large.

(2) Simple multimodal functions F3 − F5. ERaFA obtains
better results than the other algorithms on F3 and F4 in terms
of the minimum and mean. For F5, the results of ERaFA are
slightly better than that of ABC, but much better than that of
the rest algorithms.

(3) Hybrid functions F6 − F8. Except for function F7,
ERaFA performs better than the other approaches according
to the minimum and mean. For F7, the results of ERaFA are
slightly worse than that of SaDE and AEFA, but better than
that of WWO and FWA-EF.

(4) Composition functions F9 − F15. Except for function
F13, ERaFA has better or equal performance among these
algorithms. For function F13, the performance of ERaFA is
slightly worse than SaDE, WWO, FWA-EF and AEFA, but
better than ABC. For function F9, ERaFA is slightly better
than ABC, but much better than the other algorithms. For
function F12, ERaFA, SaDE,WWO and AEFA have the same
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TABLE 5. IEEE CEC15 learning based benchmark test suite [42], with search range = [−100,100] D and fmin is minimum fitness value.

TABLE 6. Comparative results of objective function values for CEC15 30D.
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performance, which is better than that of ABC and FWA-EF.
For F15, the performance of ERaFA is the same as that of
SaDE, WWO, FWA-EF and AEFA, but is much better than
that of ABC.

In a word, the comparison results indicate that ERaFA is
superior or comparable to the other algorithms for most of
the problems.

V. APPLICATION OF ERAFA
In this section, ERaFA is used to solve three practical prob-
lems: Three-bar truss design, I-beam design problem and
Welded beam design problem. In order to further prove the
performance of ERaFA, we compare the results obtained by
ERaFA with other algorithms’s. In this paper, Deb’s rules
is utilized to solve constraint conditions for practical prob-
lems. The detailed description of Deb’s rules is given as
follows [52]:

(1) Between a feasible solution and a infeasible solution,
The feasible solution is preferred.

(2) The infeasible solution is regarded as a feasible solu-
tion, when the infeasible solution violates the constraints very
rarely.

(3) For two feasible solutions, the solution with better
objective function value is better.

(4) For two infeasible solutions, the solution violating
constraints very little is better.

A. THREE-BAR TRUSS DESIGN
Three-bar truss design(see Fig. 3) is a structual optimization
problem. To minimize the weight subject to stress, deflec-
tion, and buckling constraints, the two parameters A1(x1) and
A2(x2) should be optimized. Up to now, it has been studied by
many scholars. Likewise, in order to solve this problem, Chen
and Xu [53] proposed the balanced variant of WOA, that is
BWOA. Gandomi et al. [11] applied CS to solve it. Zhang
et al. [54] proposed an improved DE(DEDS). Sadollah et al.
[55] utilized Mine blast algorithm(MBA) to solve it.

The optimization problem can be written as follows:

min f (x) = (2
√
2x1 + x2)× l

subject to

g1(x) = P(
√
2x1 + x2)/(

√
2x21 + 2x1x2)− σ ≤ 0,

g2(x) = Px2/(
√
2x21 + 2x1x2)− σ ≤ 0,

g3(x) = P/(
√
2x2 + x1)− σ ≤ 0,

where

0 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 1,

l = 100cm, P = 2kN/cm2, σ = 2kN/cm2.

The results obtained by the above-mentioned algo-
rithms and ERaFA are shown in Table 7. Observing the
Table 7, the best result obtained by these algorithm is
263.8958433 when x1 and x2 are set as 0.788675594564431,

FIGURE 3. Three-bar truss design.

0.408246989474874, respectively, which is obtained by
ERaFA. And the results obtained by other algorithms are all
worse than ERaFA’s.

B. I-BEAM DESIGN PROBLEM
For I-beam design problem(see Fig. 4), its aim is to minimize
the vertical deflection of an I-beam. Meanwhile, The cross-
sectional area and stress constraints should be satisfied. there
are 4 variables: length(b), height(h), and two thick-nesses of
this problem(tw, tf ). For convenience, we set [b, h, tw, tf ] =
[x1, x2, x3, x4].
The optimization problem can be written as follows:

min f (x) = 5000/(x3(x2 − 2x4)/12+ x1x34/6

+ 2x1x4((x2 − x4)/2)2)

subject to

g1(x) = 2x1x3 + x3(x2 − 2x4 − 300 ≤ 0,

g2(x) = 18x2 × 104/(x3(x2 − 2x4)3 + 2x1x3(4x24
+ 3x2(x2 − 2x4)))+ 15x1 × 103/((x2 − 2x4)x33
+ 2x3x31 )− 56 ≤ 0,

where

10 ≤ x1 ≤ 50,

10 ≤ x2 ≤ 80,

0.9 ≤ x3 ≤ 5,

0.9 ≤ x4 ≤ 5.

FIGURE 4. I-beam design problem.

The results obtained by CS [11], MFO [56], WOA [57],
BWOA [53] and ERaFA are shown in Table 8, analysing the
statistical data shown in Table 8, the optimal value obtained
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TABLE 7. Comparison the best solution obtained by different algorithms for three-bar truss design.

TABLE 8. Comparison the best solution obtained by different algorithms for I-beam design problem.

TABLE 9. Comparison the best solution obtained by different algorithms for welded beam design problem.

by ERaFA is 0.00625958, which is the same as that of
BWOA, but is much better than others’.

C. WELDED BEAM DESIGN PROBLEM
Welded beam design problem was firstly proposed by Coello
[58], and it aims at minimizing manufacturing cost of the
welded beam, which is constrained on shear stress(τ ), end
deflection of the beam(δ), buckling load on the bar (Pc), and
bending stress(σ ). Moreover, there are four design parame-
ters: h(x1), l(x2), t(x3), b(x4).
The optimization problem can be written as follows:

min f (x) = 1.10471x21 x2 + 0.04811 x3x4(14.0+ x2)

subject to

g1(x) = τ (x)− τmax ≤ 0,

g2(x) = σ (x)− σmax ≤ 0,

g3(x) = x1 − x4 ≤ 0,

g4(x) = 0.10471x21 + 0.04811x3x4(14.0+ x2)− 5.0 ≤ 0,

g5(x) = 0.125− x1 ≤ 0,

g6(x) = δ(x)− δmax ≤ 0,

g7(x) = P− Pc ≤ 0,

where

τ (x) =

√
(τ ′)2 + 2τ ′τ ′′

x2
2R
+ (τ ′′)2,

τ ′ =
P

√
2x1x2

,

τ ′′ =
MR
J
,

M = P(L +
x2
2
),

R =

√
x22
4
+ (

x1 + x3
2

)2,

J = 2[
√
2x1x2(

x22
12
+ (

x1 + x3
2

)2)],

σ (x) =
6PL

x4x23
,

δ(x) =
4PL3

Ex33x4
,

Pc =
4.013E

√
x23x

6
4

36

L2
(1−

x3
2L

√
E
4G

),

P = 6000lb, L = 14in, E = 30e6psi,

G = 12e6psi, τmax = 13600psi,

σmax = 3000psi, δmax = 0.25in,

0.1 ≤ x1 ≤ 2.0, 0.1 ≤ x2 ≤ 10.0,

0.1 ≤ x3 ≤ 10.0, 0.1 ≤ x4 ≤ 2.0.

FIGURE 5. Structure design of welded beam design problem.

For this problem, ERaFA is compared with BWOA
[53], CPSO [59], RO [60] and HGA [61], and their
results are shown in Table 9. Observing the statistical data
in Table 9, we know that the best solution is 1.695247,
and its corresponding four variables are 0.205729, 3.253120,
9.036623 and 0.205729. which are obtained by ERaFA.
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VI. CONCLUSION
In this paper, in order to enhance the optimization accuracy
of FA, speed up the convergence, reduce computational time
complexity and avoid oscillation in the iteration, an improved
firefly algorithm (ERaFA) was presented. It mainly used an
elitist strategy, an opposite leaning strategy, and a local search
ability. Comparison with the standard FA and some other FA
variants show that the performance of ERaFA is superior to
the others on most benchmark test functions. Besides, ERaFA
is applied to three practical problem: Three-bar truss design,
I-beam design problem and Welded beam design problem.
And the results show that the ERaFA is efficient.

With the time going by, multi-objective optimization prob-
lems become more popular. In the future, ERaFA can be used
to deal with them. And from above simulation results, we can
see that, for some functions, ERaFA can not find their optimal
values. And ERaFA lacks knowledge of mathematical theory.
Thus, there are many works that we will do.
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