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ABSTRACT In this paper, we propose a novel human body posture representation based on Geometric
Algebra to extract the angles and orientations of the most informative body joints to describe human body
postures. As a motion usually consists of a number of postures, which are different even in the same type of
motion. We treat the postures of a motion independently. For each posture, a new Geometric Algebra based
skeleton posture descriptor is used to construct the feature vectors as the input for the Support VectorMachine
classifier to decide its motion type. To get the type of the whole motion, we choose the most frequent class
from the sequence of predictions of the motion postures using a simple voting scheme. We have tested the
method on a public benchmark SYSU-3D-HIO and an in-house dataset of human exercises. The results have
demonstrated the effectiveness of our method.

INDEX TERMS Geometric algebra, motion recognition, support vector machine.

I. INTRODUCTION
A. INTRODUCTION
Skeleton-based human motion recognition is one of the
hottest research topics in computer vision due to its wide
range of applications, such as human-computer interac-
tion [1]–[3], surveillance [4], virtual and augmented real-
ity, motion sensing games [5] and humanoid robot control.
To tackle the problem of skeleton-based humanmotion recog-
nition, one critical step is to extract consistent and discerning
features from the human body data to describe human body
postures or motions. The consistence means the features used
to represent human body postures or motions must adapt to
different persons, when they are doing the same or similar
motions. On the other hand, to be discerning means the
feature has distinct characteristics for different human body
postures or motions. With the release of Kinect depth sensor,
skeleton data provided by Kinect is used in more and more
research and applications. Compared to the 2D image data,
the 3D skeleton data contains depth information that can
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help describe human body postures more effectively. The
3D skeleton data in every frame of human motion contains
the 3D coordinates of key body points with respect to the
Kinect as the coordinate system origin. There exists several
different methods that have been proposed for 3D action
representation. The survey of [5] categorized the 3D motion
representation methods into three categories:

1) joint-based representations that extract feature repre-
sentations from the skeletons in order to capture the
correlation of the body joints. And these methods can
further categorized into spatial descriptors, geometric
descriptors and key-pose based descriptors.

2) mined joint based descriptors that is trying to discover
which body parts are involved to discriminate among
actions.

3) dynamics-based descriptors that treat the skeleton
sequence as 3D trajectories and model the dynamics of
such time series.

In terms of motion recognition or classification, there are
plenty of algorithms that have been proposed for this pur-
poses, for example, traditional machine learning methods
such as neural network, SVM (Support Vector Machine) [6],
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Random Forest [7] and deep learning methods like stacked
Restricted Boltzmann Machines (RBM) [8] and deep convo-
lutional neural networks (DCNN) [9]–[13]. Although these
algorithms have significantly improved the accuracy of
human motion recognition, there still exists large room to
improve. As pointed out in [5], one of the biggest challenges
of using posed-based features for action recognition is that
semantically similar motions may not necessarily be numer-
ically similar.
In this paper, we propose a novel human body posture repre-
sentation based on Geometric Algebra using the most infor-
mative body joints angles and joints orientations to describe
human body postures, and we treat the postures of a motion
independently. Specifically, we select the arms and legs
which are the Most Informative Parts (MIP) [6] of human
body and construct a 24D feature vector for each of the frames
in a motion, namely, 16D for joint angles and 8D for bone
orientations. Then for each frame, the extracted 24D feature
vector is input to an SVM to predict themotion type. By doing
so, for a motion, we obtain a sequence of classification
results. To decide the type of the whole motion, we adopt
a voting scheme to select the most frequent class from the
prediction sequence. Fig.1 illustrates the procedure of our
skeleton based human motion recognition. On the other hand,
public datasets such as MSRAction3D [14], MSRC-12 [15]
and UTKinect-Action [16] are almost skeleton data based
on Kinect V1, which contains only the position coordinate.
To test the method, in this work, we create dataset using
Kinect V2 which contains 12 different exercise motions per-
formed by 10 people, each motion sampled 3 times.

FIGURE 1. Method overview. Features are extracted from each posture
using the skeleton data provided by Kinect V2. Predicted motion type of
the postures are combined by a voting scheme to determine the overall
motion type.

In summary, the major contributions of our work are the
following three aspects:

1) We propose a novel skeleton-based human body pos-
ture representation based on geometric algebra using
the most informative body joints angles and joints
orientations.

2) We propose a new approach to recognize human
motions by predicting the motion type for each posture

using SVM, and then select the most frequent motion
class as the class for the entire motion by a simple
voting strategy.

3) We create amotion dataset usingKinect V2, which con-
tains 12 different human exercisemotions by 10 people.

The rest of this paper is organized as follows. Section II
presents the related work of invariant features or descriptors
of human motions and skeleton-based human body motion
recognition. In Section III, we explain how to describe
human body postures in GA theoretic framework and the
the skeleton-based human motion recognition procedure.
Section V presents the experimental results on two datasets.
And lastly, Section VI concludes this paper.

II. RELATED WORK
A. INVARIANT FEATURES/DESCRIPTORS OF MOTION
The skeleton data provided by Kinect V2 contains 3D coor-
dinate of 25 key joints with respect to the Kinect coordinate
system, in which the X axis is pointing right, Y axis is
pointing up, and Z axis is pointing towards the tester standing
facing the Kinect. Fig.2 shows the 25 key joints of a human
body. As the joint position coordinates are absolutely values
in the unit of meters, the coordinates will be different when
the tester stands at different angle or distance to the Kinect
sensor. Therefore, it is necessary to extract invariant features
from the raw skeleton data to represent human body posture
or motion.

FIGURE 2. The visualization of human body joint positions and the
corresponding orientation.

1) SPATIAL MOTION INVARIANT DESCRIPTOR
Some researchers simply transform the raw absolute joint
position coordinate into the distances between joints. Such
kind of representation discards all temporal and orientation
information, which may lead to inaccurate descriptions of
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the motions. To solve the problem, in [3], Ellis et al. repre-
sented the body postures using three types of distances: the
pairwise distance between all joints; the distance between
the joints in the current frame and the ones in the previous
frame, the distance between the joints in the current frame
and in a neutral or initial posture. Akhter et al. also used angle
angles to conduct 3D human pose reconstruction from 2D
joints locations [17]. and the work of [18] extracted the joint
angles relative to the torso. In the work of [19], the authors
used the joint angle features as well as the HOG [20] image
features for human action recognition. The joint angles and
the distance between the joints are intuitively simple and easy
to implement.

2) SPATIAL-TEMPORAL INVARIANT DESCRIPTOR
As a motion lasts for a period of time. Spatial motion descrip-
tors alone are unable to describe the motions accurately.
Spatial and temporal features are often used together repre-
sent human motion in space and time. Shao et al. proposed
invariant descriptor for multiple motion trajectories based on
the kinematic relation among multiple moving parts where
the trajectories are defined based on orientation and distance
changes [21]. In [6], Guo et al. described human motions
as the joint trajectories of the Most Informative Parts (MIP)
of a human body. Instead of using the entire skeleton data,
it decomposed the skeleton into five MIP parts, i.e. left arm,
right arm, left leg, right leg, and torso.

Inspired by the concept ofMIP, in our work, we extract fea-
tures from human arms and legs. Motions of different types
have different postures. However, we also observe that even
the posture frames of the same type of motion are different if
the motion is done differently or by different person. Based
on this consideration, in our work, we treat each frame in a
motion independently.

3) ORIENTATION-BASED INVARIANT DESCRIPTOR
Kinect V2 can capture the 3D coordinates of 25 key joints and
the orientation of body bones can be therefore derived. Fig.2
shows the 25 key joint orientations provided by Kinect V2.
The joint orientations are invariant to human body size,
the relative position and angle to the camera [22]. Therefore,
human body posture representation based on joint orienta-
tions are more robust and widely used in human motion
analysis. In [23], each human joint orientation with respect
to the camera was computed and transformed to the joint
rotation matrix with respect to the person’s torso. In our pro-
cedure, the raw joint orientation with respect to the camera is
converted into the Euler angles which is easier to understand
than the rotation matrix.

B. SKELETON BASED HUMAN MOTION RECOGNITION
With the descriptor defined, we can extract effective fea-
tures for human body posture to differentiate different type
of motions by machine learning algorithms such as hidden
markov model (HMM) and SVM. In [24], Zhang et al.
proposed to use the Dual Square Root Function (DSRF)

descriptors calculated from the raw joint position data.
An SVM classifier was trained to recognize the motion type.
In [23], the joint orientation features were input to a hierar-
chical maximum entropy Markov model, which considered a
person’s activity as composed of a set of sub-activities.
Most of the above classification methods extracted features
from the entire motion sequence and the classifier determined
the label for the whole motion. Although these methods
achieved good results, the input features were complicated
as they combined both spatial and temporal information
from the full length of the motion. In our proposed method,
we extract features from a single posture or a frame of a
motion and use the classifier to decide the motion type of the
frame. Therefore, a motion will have a sequence of motion
labels for each frame. The final motion type is decided by a
simple voting scheme which is the most frequent one in the
label sequence.

III. METHOD
A. GEOMETRIC ALGEBRA: AN OUTLINE
1) THE BASICS OF GEOMETRIC ALGEBRA
Geometric Algebra (GA)was proposed byWilliam K Clifford
in 1873, it is also called Clifford Algebra. GA is a pow-
erful mathematic language due to its universality and
convenience and has been successfully applied in both the-
oretical researches such as theoretical physics and practical
engineering applications, such as computer vision and the
inverse kinematics of robotics. For example, GA theories
have been widely used in feature extraction and represen-
tation of images [25]–[29]. In [27], GA was used to extract
features to register two multimodal medical images.
GA defines a new product called geometric product that
unites the Grassmann and Hamilton algebras into one single
structure. Let G (Rn) represent an n-dimensions GA graded
linear space, and u, v ∈ G (Rn) be two vectors. The geometric
product is defined as

uv = u · v+ u ∧ v (1)

where u ·v is the vector inner product or dot product and u∧v
is the outer product or wedge product.
The outer product of two linearly independent vectors is a
bi-vector, or a 2-blade, which can be regarded as an oriented
plane containing u and v. The orientation of a bi-vector is
clockwise along u and v. Outer product can be straightfor-
wardly generalized to higher dimensions. A k-vector or a
k-blade is the outer product of k linearly independent vectors,
which can be written as

A〈k〉 = a1 ∧ a2 ∧ · · · ∧ ak = 3k
i=1ai (2)

The grade of a blade is the number of vectors. Therefore,
the outer product can be considered as a grade-increasing
operation. Conversely, the inner product can be considered as
a grade-decreasing operation. Given two blades A〈k〉,B〈l〉 ∈
G (Rn), 0 < k ≤ l ≤ n, we have the inner product of the two
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blades as

A〈k〉 · B〈l〉 = a1 ·
(
a2 ·

(
. . . ·

(
ak · B〈l〉

)))
(3)

which is a (l − k)-blade.
In N-dimensional GA space G (Rn), any element of
G (Rn) can be represented by a set of orthogonal basis
{e1, e2, · · · , en} with the following properties

e21 = e22 = . . . = e2n = −1 (4)

ei · ej = 0, i 6= j and i, j ∈ [1, n] (5)

eiej = ei ∧ ej, i 6= j and i, j ∈ [1, n] (6)

eiej = −eiei, i 6= j and i, j ∈ [1, n] (7)

Let A be a multi-vector A ∈ G (Rn), A can be represented by
a linear combination of one scalar, n vectors ei, n(n − 1)/2
bi-vectors eij = eiej, and higher dimensional vectors until to
one n-vector I = e1e2 · · · en = e12···n as Eq. (8) shows.

A = a0 +
c1n∑
i=1

aiei +
C2
n∑

k=1

akeij + · · · + aI e12···n (8)

where a0, ai, ak , · · · , aI ∈ R, C i
n is the combination of order

n and I = e12···n is the unit pseudo-scalar of G (Rn).

2) REFLECTION: GRADE PRESERVING OPERATION
Asmentioned earlier, both the inner and outer product change
the grade of the subspace of GA. Reflection is a grade pre-
serving operation that does not change the grade of a blade.
Let a,n ∈ G (Rn) be two vectors, and ‖n‖ = 1, a = a‖+a⊥,
where a‖ is parallel to n and a⊥ is perpendicular to n, then
we have

nan = a‖ − a⊥ (9)

FIGURE 3. Illustration of reflection operation in GA. (a) Reflection of
vector a on vector n. (b) Reflection of bi-vector A〈2〉 on vector n.
(c) Reflection of vector a on bi-vector N〈2〉.

nan is the reflection of the vector a on the line through the
origin with direction n. Fig. 3(a) illustrates the reflection of
vector a on vector n. Reflection operation can be applied
to any blade with dimensions greater than 2. For example,
a bi-vector A〈2〉 ∈ G

(
R3
)
can be reflected on a normalized

vector n ∈ R3 via evaluating nA〈2〉n. Refection has the
following property

nA〈2〉n = (na1n) ∧ (na2n) (10)

which means the reflection of the outer product of two
vectors equals the outer product of vectors after reflection.

Fig. 3(b) illustrates the reflection of bi-vector A〈2〉 on vec-
tor n. And Fig. 3(c) shows the reflection of vector a on
bi-vector N〈2〉.

3) ROTATION
In GA, two consecutive reflections on normalized vectors n
and m are equivalent to a rotation of a with the angle of 2θ ,
where θ = 6 mn. Conversely, the rotation of vector a in the
plane m ∧ n by angle 2θ gives

b = mnanm (11)

Fig. 4 shows the rotation of vector a by consecutive reflec-
tions of a on n and m.

FIGURE 4. Rotation of vector a by consecutive reflections of a on n and m.

Let R = mn, then have

b = RaR̃ = e−θmnaeθmn (12)

where R is called rotor and the condition RR̃ = R̃R = 1 holds.
In GA, the rotor R can describe a blade rotation with respect
to another blade.
With the GA theories introduced above, we can employ GA
rotor to represent the rotations of human body bones in 3D
GA space. In 3D GA space G

(
R3
)
, the orthogonal basis is

(e1, e2, e3), and the rotor for vector v =
∑3

i=1 aiei ∈ G
(
R3
)

can be written as

R = w+ x (e2e3)+ y (e3e1)+ z (e1e2) (13)

wherew, x, y, z ∈ R. The rotor in the 3DGA space consists of
four components (1, e2e3, e3e1, e1e2). So we have the rotated
vector v 7→ RvR̃ = v′.

B. JOINTS ANGLE AND ORIENTATION HUMAN POSTURE
DESCRIPTOR BASED GEOMETRIC ALGEBRA
As mentioned earlier, in order to better recognize the human
motions, it is critical to ensure the extracted features are
consistent and discriminative. We propose to use the angles
and orientations of theMost Informative Parts of human body
to describe the body posture. Joint orientations and angles
are consistent because it is invariant to human position, body
size, and relative angle to the camera. On the other hand, joint
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FIGURE 5. (a) The selected body bones and joints. Bones are named by
the texts and the joints are denoted by the numbers. (b) Illustration of
the joint angles of the skeleton.

orientations and angles are discriminative as different body
postures have different joint orientations and angles. In this
paper, we use the angles with respect to torso, and the orien-
tations of human body MIP bones to describe skeleton-based
human body postures. And we assume that all human body
bones have same original state being straight up in Kinect
coordinate system, and all considered bones have the same
length namely unit vector v = (0, 1, 0). As for a certain body
posture, all considered bones are rotated from the original
state. Fig. 5(a) shows the bones and joints in arms and legs
considered in this work. The descriptor we use to describe the
human body posture is a 24D vector, i.e. 16 dimensions for
joint angles and 8 dimensions for bone orientations. Fig. 5(b)
illustrates the joint angles we use for the descriptor. For
instance, the four joint angles we calculate for left arm are
θABS , θDSE , θBSN , θBSE . The angle θABS satisfies the follow-
ing equation

tan θABS =
rej
(
vBA, vBS

)
proj

(
vBA, vBS

) (14)

where proj
(
vBA, vBS

)
is the projection of vBA on vBS , and

rej
(
vBA, vBS

)
means the rejection of vBA on vBS .

proj
(
vBA, vBS

)
=

vBA · vBS

vBS
=

(
vBA · vBS

)
vBS

−1
(15)

rej
(
vBA, vBS

)
= vBA − proj

(
vBA, vBS

)
=

(
vBAvBS − vBA · vBS

)
vBS

−1
(16)

According to Eq. (15) and Eq. (16), we have

tan θABS =

(
vBAvBS − vBA · vBS

)
vBS

−1(
vBA · vBS

)
vBS−1

=
vBA · vBS + vBA ∧ vBS − vBA · vBS

vBA · vBS

=
vBA ∧ vBS

vBA · vBS
(17)

So the angle θABS can be calculated as:

θABS = 180◦ × atan 2
vBA ∧ vBS

vBA · vBS
/π + 180◦ (18)

The rest of joint angles are calculated similarly. We can see
that for each arm and leg we have 4 angles, giving 16 joint
angles in total for a specific body posture.

IV. SKELETON-BASED ENSEMBLE HUMAN
MOTION RECOGNITION
In the recognition stage, we extract the features mentioned
above from the input joint position and orientation data cap-
tured by Kinect V2. Thus we have 25 key joint positions
Jpi = (xi, yi, zi) , i ∈ [1, 25] and 25 key orientations Joi =
(wi, xi, yi, zi) , i ∈ [1, 25] as shown in Fig. 2. So, the feature
data for body posture of a motion is

Jpos =
[
Jpx,y,z (n)

T , Jow,x,y,z (n)
T
]T
, n ∈ [1, 25] (19)

With these features, we train a SVM to learn the motion
type of each body posture in a motion, which contains a
series of postures or frames. And we treat these postures
independently. So for a motion, we will have a sequence of
predictions from the classifier. To decide the motion type of
the entire motion, we adopt a simple voting scheme to choose
the most frequent class label. The procedure is summarized
in Algorithm 1 listed below.

V. EXPERIMENT
To demonstrate the effectiveness of our method, we test
the method on SYSU-3D-HIO [30] which is a pub-
lic skeleton-based dataset and in-house dataset, called
SZU-3D-SOEARD.

A. SZU 3D SKELETON AND ORIENTATION EXERCISE
ACTION RECOGNITION DATASET
SZU-3D-SOEARD is collected to study the action recogni-
tion of human exercises based on 3D skeleton and orientation
data. We utilize Kinect V2 to capture 12 different exercise
motions of 10 people. The frame rate is set to 30 fps. Each
exercise motion is tried and captured 3 times. So, in total,
there are 12×3×10 = 360 motion samples in the databases.
The 12 different motions are: squat, jumping jack, arm turn-
ing, walk in-place, arm pendulum, TW stretching, right leg
side lift, left leg side lift, bilateral leg press, shoulder turning,
shoulder right angle movement, and wave right hand.
To carry out the experiments, we split the dataset into two
parts, one for training and the other one for testing. Specifi-
cally, data from person 1, 3, 5, 7 and 9 are used for training,
and person 2, 4, 6, 8 and 10 for testing. In this work, we train
the SVM classifier using a linear kernel with tolerance for
stopping criterion being 0.001. The result of our method on
this dataset is shown in Fig. 6. In Fig. 6(a), the confuse
matrix shows the average motion recognition accuracy of
body postures. The overall prediction accuracy is 77.2%.
We can see that for some motions such as squat, arm pendu-
lum, bilateral leg press and shoulder turning, the recognition
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Algorithm 1 Human Motion Recognition Method

1 input body motion sequence: (N is the number of body posture in motion sequence)

M =
[
Jpos(t)

]T
, t ∈ [1,N],M ∈ R(3+4)∗25∗N

fetch joint angles and joint Euler angles :
2 foreach J pos inM
3 for the Jo in Jpos, convert it into Euler angle:
4 Jo ∈ R4∗25

→ Jex,y,z ∈ R3∗25

5 for the Jp in Jpos, calculate body joint angle:
6 Jp ∈ R3∗25

→ Jα ∈ R16

7 the body posture descriptor of Jpos :

8 J f =
[
JTey , J

T
a

]T
, J f ∈ R(8+16)

9 the body posture descriptor ofM :
10 F =

[
Jf (t)

]T
, t ∈ [1,N],F ∈ R(8+16)∗N

11 foreach J f in F :
12 feed J f into trained SVM and get the reference motion:( C is the number of motion type )
13 J f → SVM→reference motion type M̂ ∈ [1,C]
14 the corresponding results sequence :
15 R = [M̂(t)]T , t ∈ [1,N],R ∈ RN

16 assemble the results sequence by vote : ( ţi is the number of the motion type i )

17 R
vote
−−→ Rv = [ε1, ε2, · · · , εC ]

18 output the motion recognition result:
19 M̃ = argmax

i
εi

accuracy is over 93%. However, for motions of jumping jack,
walk in-place, TW stretching and left leg side, the recognition
accuracy is only about 60%. One of the reasons for this is
these motions overlap each other to some extent in terms of
body postures. The second reason is the size of the training
dataset. We believe that the performance can be significantly
improved by adding more training data.
In Fig. 6(b), the confuse matrix shows the motion recognition
accuracy for motions. Although average recognition accuracy
at posture level is not high (77.2%), the motion average
recognition accuracy achieves 94.4%, which is the mean of
Fig. 6(b). All motions are predicted with average accuracy
over 80%. Except for arm turning and left leg side, all motions
are correctly predicted with accuracy are over 93%. Espe-
cially, motions such as squat, arm pendulum, right leg side
lift, bilateral leg press and shoulder turning are correctly
predicted with 100% accuracy.

B. SYSU 3D HUMAN-OBJECT INTERACTION DATASET
In order to further evaluate the effectiveness of our method,
we use the public dataset of SYSU 3D Human-Object
Interaction Dataset (SYSU-3D-HOI) to test and compare
to other existing methods. SYSU-3D-HOI is a collection
of 3D Human Object Interaction (HOI) data collected by
Hu Jianfang from SunYat-senUniversity (SYSU) iSEE Intel-
ligent Science and Systems Laboratory. In the dataset, there
are 12 actions performed by 40 different people interact-
ing with the mobile phone, chair, backpack, wallet, broom,

and mop, 480 action sequences in total. The 12 actions
are drinking, pouring, calling phone, playing phone, wear-
ing backpacks, packing backpacks, sitting chair, moving
chair, taking out wallet, taking from wallet, mopping and
sweeping.
In this experiment, we just extract the joint angle feature
as the data does not contain joint orientation information.
To carry out the experiments, we split the dataset into two
parts, 2/3 used for training, and the rest 1/3 for testing. The
SVM classifier is trained with a polynomial kernel. The
parameter gamma is set to 0.00001 and tolerance for stopping
criterion is set to 0.0001. The corresponding result is shown
in Fig. 7. In Fig. 7(a), the average recognition accuracy of
body postures is 55.5%. For the three actions of pouring,
packing and sweeping, the posture classification accuracy is
less than 37%, which is relatively low. But for the rest of
the actions, single posture classification accuracy is above
53%, even above 60%. Fig. 7 (b) shows the average motion
recognition of entire action samples in SYSU-3D-HIO. The
average recognition accuracy is 84.62%. As we can see
in Table 1, the performance is comparable to the best
result of [30].
In this test, we only use the skeleton data, but the other meth-
ods utilized the RGB data and/or depth data. However, our
method still achieves almost the best performance. In addi-
tion, our proposed motion classification method can be used
to classify human motions online in realtime manner. Our
method predicts the motion type of each body posture during
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FIGURE 6. The recognition performance on dataset SZU-3D-SOEARD.
(a) Average recognition accuracy of body postures. (b) Average
recognition accuracy of motions.

TABLE 1. Comparison results with the existing skeleton based methods
on SYSU-3D-HIO.

the motion, and decide the overall motion type at the end of
the motion. The recognition delay is thus greatly reduced.
To further improve the recognition accuracy, besides the
predictions of each body postures, we can utilize the depen-
dency between adjacent postures during a motion to improve

FIGURE 7. The recognition performance on dataset SYSU-3D-HIO.
(a) Average recognition accuracy of body postures. (b) Average
recognition accuracy of motions.

the overall motion recognition performance, using methods
like Hidden Markov Model or even more advanced machine
learning algorithms.

VI. CONCLUSION
We have proposed a novel method for human motion recog-
nition based 3D body skeleton data. In the method, we utilize
Clifford Algebra to represent the joint angles and orienta-
tions of the most informative body parts. With the proposed
skeleton posture descriptors, each posture is represented by a
feature vector calculated from 3D skeleton data provided by
Kinect V2. As a motion consists of a sequence of different
body postures, we use a trained SVM classifier to decide
the motion type of each posture and then decide the motion
type for the whole motion by a simple voting scheme which
selects the most frequent class label. The experiments on two
datasets have demonstrated the effectiveness of the method.
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