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ABSTRACT Quorum planted (l, d) motif search (qPMS) is a challenging computational problem in
bioinformatics, mainly for the identification of regulatory elements such as transcription factor binding sites
in DNA sequences. Large DNA datasets play an important role in identifying high-quality (l, d) motifs, while
most existing qPMS algorithms are too time-consuming to complete the calculation of qPMS in a reasonable
time. We propose an approximate qPMS algorithm called APMS to deal with large DNA datasets mainly by
accelerating neighboring substring search and filtering redundant substrings. Experimental results on them
show that APMS can not only identify the implanted (l, d) motifs, but also run orders of magnitude faster
than the state-of-the-art qPMS algorithms. The source code of APMS and the python wrapper for the code
are freely available at https://github.com/qyu071/apms.

INDEX TERMS Quorum planted (l, d) motif search, large DNA datasets, transcription factor binding sites.

I. INTRODUCTION
Transcription factors bind with specific sites in DNA
sequences to initiate gene transcription and to control the
transcription efficiency of genes. These sites, typically from
5 to 20 base pairs (bps) in length, are called transcription
factor binding sites (TFBSs). Locating TFBSs is of great sig-
nificance for the research on gene expression regulation [1]
and disease-causing variants detection [2].

Quorum planted (l, d) motif search (qPMS) [3], [4] is one
of the well-known problem descriptions of locating TFBSs
in DNA sequences. For a particular transcription factor (TF),
there may be multiple TFBSs in DNA sequences. These
TFBSs are usually similar to each other and share the same
sequence pattern called a DNA motif. Each of these TFBSs
can be regarded as a motif instance, that is, a conservation
occurrence of the motif in DNA sequences. Based on the
information above, the qPMS problem is defined as follows.
Given a set of tn-length DNA sequences D = {s1, s2, . . . , st}
and three parameters l, d and q satisfying 0 < l < n, 0
≤ d < l and 0 < q ≤ 1, the task is to find a (l, d) motif
m, an l-length string that occurs in at least qt input sequences
with up to d mismatches.
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qPMS is a challenging computational problem. First,
finding all the (l, d) motifs present in D, i.e., solving qPMS
exactly, is NP-complete [5]. Second, the input of the current
motif discovery is large DNA datasets generated by next-
generation sequencing [6], which increases the computa-
tional challenge. For example, the ChIP-seq technique [7],
a combination of chromatin immunoprecipitation with high-
throughput sequencing, allows us to locate TFBSs at genome
level, but it generates thousands of or even more sequences
containing the binding sites of a certain ChIP-ed motif.

Over the past 10+ years, many qPMS algorithms have been
proposed [8]–[10]. Exact qPMS algorithms are always capa-
ble of finding the optimum (l, d) motif through brute-force
search, but they are time-consuming especially when deal-
ing with large datasets. Sample-pattern-driven exact algo-
rithms, such as PMSprune [4], StemFinder [11], qPMS7 [12],
TravStrR [13], PMS8 [14] and qPMS9 [15], usually contain
sample-driven phase and pattern-driven phase. In the sample-
driven phase, these algorithms adopt some selected reference
sequences as constraints to generate as few candidate motifs
as possible. In the pattern-driven phase, they verify whether
each candidate motif is a (l, d) motif. Such exact algorithms
outperform other exact algorithms when processing small
datasets, but they cannot process large datasets due to the
generation of too many candidate motifs. The suffix tree-
based exact algorithms, such as Weeder [16], RISOTTO [17]
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and FMotif [18], search all candidate motifs on a pattern
tree and speed up the verification of candidate motifs by
using the suffix tree indexes of the input sequences. Algo-
rithms of this kind can efficiently solve the problem instances
of small l and d on large datasets, but they fail to efficiently
solve the problem instances of large l and d , even for small
datasets.

Approximate qPMS algorithms aim to identify the
optimum or near optimum motif. They usually adopt an
optimization method, such as expectation maximization [19],
Gibbs sampling [20] and genetic algorithm [21], [22],
to refine a group of initial motifs. In these algorithms,
MEME-ChIP [19], which is based on expectation maximiza-
tion, emerges as one of the most famous motif discovery
algorithms. Such algorithms have good time performance in
processing small datasets. However, as both the number of
initial motifs and the computational complexity of refining
one initial motif increase with the dataset size, the total
running time of such algorithms grows rapidly with the
increment.

The recent years have witnessed the proposal of some
motif discovery algorithms based on new strategies aimed
at efficiently processing large datasets. PairMotifChIP [23]
discovers motifs by mining and merging pairs of similar
substrings in the input sequences. It spends a large portion of
running time on the former operation, which shows quadratic
growth as the dataset size increases. Some algorithms, such
as the web version of MEME-ChIP [19] and MICSA [24],
randomly select a portion of the entire dataset (e.g., 600 input
sequences) to discover motifs, which may result in the loss
of infrequent motifs. qPMS10 [25] and SamSelect [26] are
specialized algorithms for selecting sample sequences. They
select some sample sequences and then performmotif discov-
ery on the selected sample sequences by running the existing
qPMS algorithms. However, the running time required for
processing challenging problem instances is still relatively
long.

In summary, there is still significant room for improvement
in the time performance of solving qPMS on large DNA
datasets. For the traditional pattern-driven qPMS algorithms,
they utilize a portion of sequences (i.e., reference sequences)
to generate candidate motifs that cover the (l, d) motifs, but
the inefficient utilization of the entire dataset results in too
many redundant candidate motifs, leading to a considerable
amount of unnecessary candidate motif verifications. In this
paper, we employ the entire dataset to generate some high-
quality initial motifs (hereinafter referred to as seeds) and
design new pattern-driven methods for efficient refinement
of the seeds. In addition, considering that multiple seeds may
correspond to the same motif, we design a method to filter
redundant seeds with an aim to reduce unnecessary calcula-
tions. Based on these preconditions, we propose an approx-
imate qPMS algorithm called AMPS. APMS can not only
identify the implanted (l, d) motifs in large DNA datasets,
but also run orders of magnitude faster than the compared
algorithms.

II. METHODS
A. ALGORITHM OVERVIEW
Notations used in this paper are shown below. D =

{s1, s2, . . . , st} denotes a set of t input DNA sequences; each
input sequence si is an n-length string over the DNA alphabet
6 = {A, C, G, T}. s[j] denotes the jth character in a string s.
s[j..j’] denotes a substring of a string s from the jth position to
the j’th position. An l-mer denotes an l-length string. x ∈l y
denotes that a string x is an l-length substring of a string y.
In other words, x is an l-mer in a string y. dH (x, y) denotes
the Hamming distance between two strings x and y of equal
length. |x| denotes the length of a string x, the size of a set
x or the number of columns in an alignment x of a set of
strings. For two strings y and s satisfying |y| < |s|, dis(y, s)
denotes the distance between y and s, which is the minimum
Hamming distance between the strings y and z for z ∈|y| s.
The d-neighbors of an l-mer x is the l-mers with Hamming
distance less than or equal to d from x, represented as {y :
y ∈ 6|x|, dH (x, y) ≤ d}.
The process and basic ideas of APMS are described below:
a) Extract high-frequency substrings of some length k

from the dataset and store them in a set A. This step is the
preparation for the generation of seeds. For a large DNA
dataset D, there may be a common k-length substring x of
some instances of a specific motif, so that the frequency
of x in D is usually higher than that of a random k-mer
inD. Thus, a set of high-frequency k-mers may contain some
substrings of motif instances with high probability. We need
to elaborately determine the value of k and the high-frequency
threshold.

b) Generate a seed m’ by the k-mer x with the highest
frequency in A. We define the instances of x as the substrings
of length 2l – k in D derived by extending the occurrences
of x in D to both the left and to the right for l − k characters
separately. Suppose that x is a common substring of some
instances of a motif m. Then some instances of x will cover
the motif instances of m. Therefore, the basic idea for seed
generation is to select the l-length fragment with the largest
information content from the alignment of the instances of x,
and take the consensus sequence of this fragment as the seed
m’ generated by x.
c) Refine the seed m’ generated by x. m’ is expected to

be an instance of some (l, d) motif m. The refinement of
m’ is to find m by searching the d-neighbors of m’. Since
the number of d-neighbors of m’ grows dramatically with
the increase of l and d , the key to refinement is to design
efficient methods for searching d-neighbors and verifying
whether each d-neighbor is a (l, d) motif.

d) If a (l, d) motif m is obtained through the refinement of
m’, then filter out a portion of redundant k-mers in A usingm.
For a large DNA datasetD, the instances ofm inD can render
multiple high-frequency k-mers. Since m can be obtained by
refining the seed generated by each of these k-mers, most
of the k-mers are redundant. Filtering out redundant k-mers
helps to reduce the seeds for refinement, thereby effectively
improving the time performance of the entire algorithm.
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e) If A is not empty, return to step b), otherwise output the
obtained (l, d) motifs in a descending order according to their
consensus sequence score.

Steps of extracting high-frequency substrings, generating
seeds, refining seeds and filtering redundant substrings are
described in detail below.

B. EXTRACTING HIGH-FREQUENCY SUBSTRINGS
First, probability analysis is employed to determine a suitable
value of k , so that we can better distinguish the k-mers in
background sequences from that in motif instances. Let fr (k)
denote the expectation of the frequency of an arbitrary back-
ground k-mer occurring inD. Let fm(k) denote the expectation
of the frequency of an arbitrary k-mer in an arbitrary motif
instance occurring inD. The greater the ratio of fm(k) to fr (k),
the more distinguishable the k-mers in background sequences
from that in motif instances. Therefore, we use (1) to deter-
mine the value of k , where kmin represents theminimum value
of k and ε is a factor to deal with the situation where fr (k) is
less than 1. According to empirical studies, kmin and ε are set
to 5 and 1, respectively.

k = argmax
kmin≤i≤l

fm (i)
fr (i)+ ε

(1)

The way of how to calculate fr (k) and fm(k) is introduced.
fr (k) can be calculated by (2). For a k-mer x1 at an arbitrary
initial position in an arbitrary motif instance m1 and a k-
mer x2 in an arbitrary motif instance m2 at the same initial
position as x1, let pk denotes the probability that x1 is equal
to x2. With pk , fm(k) can be calculated by (3), which indicates
the total frequency of an arbitrary k-mer in an arbitrary motif
instance occurring in the background sequences and the motif
instances.

fr (k) = t × (n− k + 1)×
1
4k

(2)

fm (k) = t × (n− k + 1)×
1
4k
+ t × q× pk − t × q×

1
4k
(3)

The way of how to calculate pk is further elaborated.
According to the Theorem of Total Probability, pk can be
derived from (4). Suppose that the motif is m. Pri and Prj
represent the probability of dH (m,m1) = i(0 ≤ i ≤ d) and
dH (m,m2) = j(0 ≤ j ≤ d), respectively. Pri and Prj can
be calculated by (5) [23], where g(0 ≤ g ≤ 1) denotes the
conservation parameter. pij represents the probability that x1
is equal to x2 under the condition that dH (m,m1) = i and
dH (m,m2) = j. As shown in (6), pij accumulates the product
multiplied by three factors when a takes value ranging from
0 to min{i, j}. The first factor represents the probability
that there are a mutations in an arbitrary k-mer x1 in m1.
Let x2 denote the k-mer in m2 at the same initial position
as x1. The second factor represents the probability that the
mutated positions in x2 are the same with that in x1. The third
factor represents the probability that the base at each mutated
position is identical for x1 and x2 under the condition that the

mutated positions in x2 are the same with that in x1.

pk =
∑

0≤i,j≤d

Pri × Prj × pij (4)

Pri =
(
d
i

)
× gi × (1− g)d−i (5)

pij =
∑

0≤a≤min{i,j}

(
k
a

)
×

(
l−k
i−a

)
(
l
i

) ×

(
l−k
j−a

)
(
l
j

) ×
1
3a

(6)

When the value of k is determined, the following method
is adopted to store the occurrence frequency of all k-mers in
D in an array F of size 4k . First, we initialize each element in
F to 0. Then, we traverse all the k-mers in D. For each k-mer
x in D, we increase F[stn(x)] by 1, where stn(x) denotes an
integer ranging from 0 to 4k – 1 converted from a k-mer x
by encoding the characters A, C, G, and T in x as the binary
numbers 00, 01, 10, and 11, respectively.

Finally, we take the k-mers with frequency greater than
or equal to a threshold ϕ as high-frequency k-mers and
store them in the set A. With the following aspects taken
into consideration, we employ (7) to derive the value of ϕ.
As mentioned above, fm(k) represents the expectation of the
frequency of an arbitrary k-mer in an arbitrary motif instance
occurring inD. If ϕ is directly set to fm(k), then we will obtain
multiple high-frequency k-mers corresponding to a specific
motif. In fact, only one high-frequency k-mer corresponding
to a specific motif is required for seed generation. Therefore,
we introduce a variable proportional to t to avoid obtaining
too many redundant high-frequency k-mers.

ϕ = fm (k)+ t × 0.1% (7)

We describe the overall process of extracting
high-frequency substrings in Algorithm 1.

Algorithm 1 ExtractHighFrequencySubstring(D, l, d , q)
Input: the input dataset D and the parameters l, d and q
Output: a set A of high-frequency substrings
1: determine the substring length k by (1)
2: determine the high-frequency threshold ϕ by (7)
3: F ← an array of 4k zero
4: A← empty
5: for each k-mer x in D do
6: F[stn(x)]← F[stn(x)] + 1
7: if F[stn(x)] = ϕ then
8: A← A+ x
9: return A

C. GENERATING SEEDS
Given a k-mer x in the set A, Algorithm 2 describes
the process of generating seeds, including the following
three steps.

The first step (lines 2 to 4) is to obtain the instances of x in
D and store them in a set I (x). As we do not know the initial
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Algorithm 2 GenerateSeed(x, D)
Input: a k-mer x, the input dataset D
Output: a seed
1: I (x)← empty, MinPQ← empty
2: for each k-mer si[j.. j+ k– 1] in D do
3: if x = si[j.. j+ k– 1] and j− l + k ≥ 1 and j+ l–1
≤ |si| then

4: I (x)← I (x)+ si[j– l + k .. j+ l– 1]
5: for each instance y in I (x) do
6: MinPQ← MinPQ + y
7: if |MinPQ| > |I (x)| – fr (k) then
8: dequeue the instance with the minimum score from

MinPQ
9: align← the alignment of the instances in MinPQ
10: while |align| > l do
11: if r(align[1]) <r(align[|align|]) then
12: update align by deleting the first column
13: else
14: update align by deleting the last column
15: return the consensus obtained from align

position of x in the motif, we extend each occurrence of x in
D to both the left and right for l – k characters separately and
refer the obtained substring of length 2l – k as an instance of x
inD. For example, suppose that si[j..j+k– 1] is an occurrence
of x in D, and then the associated instance of x in D is
si[j−l + k..j+ l– 1]. By doing so, we expect that an instance
of x in D can cover a motif instance. For the convenience
of the alignment operation in the third step, we ignore such
occurrences of x inD that cannot be extended to the instances
of length 2l – k because the number of characters on the left
or right is less than l–k .
The second step (lines 5 to 8) is to filter out randomly

overexpressed instances in I (x). If an instance y of x inD does
not contain a motif instance, that is, y is composed entirely
of background bases, we call y a randomly overexpressed
instance. The k-mers in a randomly overexpressed instance
except for x normally do not have a relatively high frequency.
The randomly overexpressed instances affect the quality of
seeds by reducing the information content of the columns
in the seeds but not in x. We employ (8) to evaluate the
score scorei(y) of an instance y, representing the maximum
frequency of the k-mer in y with up to k – 3 overlapped
bases with x. We do not consider the k-mers adjacent to
x in y because their frequency may be affected by x. The
smaller the score of an instance y, the more likely y is to be
randomly overexpressed. As fr (k) indicates the expectation
of the frequency of an arbitrary background k-mer occur-
ring in D, we filter out fr (k) instances of the lowest score
from I (x).

scorei (y) = max
z∈ky[1..l−3] or z∈ky[l−k+4..2l−k]

f (z) (8)

The third step (lines 9 to 15) is to generate a seed using
the remaining instances in I (x). These instances can form an

alignment of length 2l– k . In this alignment, the part corre-
sponding to the motif is l continuous columns and the infor-
mation content of these columns is generally higher than that
of other columns. Let r(align[i]) represent the information
content of the ith column in an alignment align. The method
for computing r(align[i]) can be found in literature [27].
We repeatedly remove columns in the alignment with small
information content on both sides until we obtain an l-length
alignment, and then take the consensus sequence of this
l-length alignment as the generated seed.

D. REFINING SEEDS
Given a seed m’, it is too time-consuming for the refine-
ment of m’ by exhaustively searching the d-neighbors of m’.
In order to deal with this problem, we design a heuristic
search method.

As shown in Fig. 1, the d-neighbors of a seed m’ can be
represented as a binomial tree of depth d . The root node
of the tree represents m’. Any internal node or leaf node
v corresponds to a group of d-neighbors of m’ that differ
from m’ in the marked positions. Thus, the nodes of depth h
(0≤ h ≤ d) indicate all the d-neighbors ofm’ with Hamming
distance h from m’. The binomial tree in Fig.1 is a simplified
version, which shows the positions differing from m’ without
any indication of the expansion of the altered bases. The tree
mentioned later in this paper is fully expanded, that is, each
node corresponds to one d-neighbor.

Suppose that the Hamming distance between the target
(l, d) motif m and m’ is d , then m is a node of depth d . For
each layer h(0≤ h < d) of the tree, we define the intermediate
motifs as such d-neighbors m’’ under the condition that for
any position j(1 ≤ j ≤ l), if m’’[j] 6= m’[j], then m’’[j]
= m[j].Therefore, the ancestor node of m in the hth (0 ≤
h < d) layer must be an intermediate motif in that layer.
Furthermore, the child nodes of the intermediate motifs in the
hth layer must contain the intermediate motifs of the h+ 1th
layer.We adopt (9), the score of consensus sequence under the
qPMS model, to evaluate the score of each node y in the tree.
As described in (10), D’(y) is a set of qt sequences selected
from D to calculate the score of y. Generally, the score of a
node corresponding to an intermediate motif is higher than
that of other nodes; moreover, the closer it is to m, the higher
the score of the intermediate motif.

scoren (y) =
∑

s∈D′(y)

l − dis (y, s) (9)


D′ (y) ⊂ D,∣∣D′ (y)∣∣ = qt,
min
s∈D′(y)

l − dis (y, s) ≥ max
s′∈D−D′(y)

l − dis
(
y, s′

)
.

(10)

Based on these considerations, we search the tree layer
by layer from the root node. First, we determine whether
the root node is a (l, d) motif and take the child nodes of
the root node as the extended nodes in the first layer. Then,
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FIGURE 1. Binomial tree representation of the d -neighbors of a seed.

for the ith layer (0 < i < d), we determine whether each
extended node in this layer is a (l, d) motif, select some
extended nodes with high score in this layer as potential
intermediate motifs, and take the child nodes of these selected
nodes as the extended nodes in the i + 1th layer. Let Nmm(i)
denote the number of selected nodes in the ith (0 < i < d)
layer. To avoid losing intermediate motifs, we utilize (11)
to calculate Nmm(i), indicating the number of intermediate
motifs in the ith layer multiplied by a security factor α
(α ≥ 1). In the implementation of APMS, we set α to 2 empir-
ically. Finally, for the d th layer, we determine whether each
extended node in this layer is a (l, d) motif. In this searching
process, if more than one (l, d) motif is obtained, we output
the one with the highest score and give its P-value [28], [29].

Nmm (i) =
(
d
i

)
× α (11)

Algorithm 3 describes the process of refining a seed.
We employ a minimum priority queueMinPQ to storeNmm(i)
selected nodes in the ith layer. It is important to note that,
the calculation of the score of a node (i.e., a d-neighbor) by (9)
can be simultaneously used to determine whether this node is
a (l, d) motif.

In addition, in the implementation of Algorithm 3,
we speed up the calculation of the score of a d-neighbor y
of the seed m’ (i.e., the calculation of verifying whether y is
a (l, d) motif). The key is how to quickly calculate dis(y,si)
for each sequence si(1 ≤ i ≤ t) in D. We sort l-mers z in si
in an ascending order according to dH (m’, z) and store these
l-mers in an array Ci. Given a position j (1< j ≤ |Ci|+ 1), let
dis(y, Ci, j) denote the smallest dH (y, Ci[j’]) for 1 ≤ j’ < j.
Let dis(y,Ci)= dis(y,Ci, |Ci|+ 1), and then dis(y, si)= dis(y,
Ci). We have the following three observations.

Observation 1. Given a seed m’ and Ci, for any position
j and j’ satisfying 1 ≤ j ≤ j’ ≤ |Ci|, dH (Ci[j’], m’)
≥ dH (Ci[j], m’).
Observation 2. Given a seed m’, a d-neighbor y of m’,

Ci and a positon j (1 ≤ j ≤ |Ci|), if dH (Ci[j], m’)

Algorithm 3 RefineSeed(m’, D)
Input: a seed m’, the input dataset D
Output: a (l, d) motif m
1: MinPQ← empty, score← 0, m← empty string
2: if m’ is a (l, d) motif and scoren(m’) > score then
3: m← m’, score← scoren(m’)
4: MinPQ← MinPQ +m’
5: for i← 0 to d– 1 do
6: MinPQ’← empty
7: while |MinPQ| 6= 0 do
8: dequeue a node from MinPQ
9: for each child node node’ of node do
10: if node’ is a (l, d) motif and

scoren(node’) > score then
11: m← node’, score← scoren(node’)
12: MinPQ’← MinPQ’+ node’
13: if |MinPQ’| > Nmm(i+ 1) then
14: dequeue a node from MinPQ’
15: MinPQ←MinPQ’
16: return m

– dH (y, m’) ≥ 0, then dH (Ci[j], m’) – dH (y, m’) is the
minimum value of dH (y,Ci[j]).
Observation 3. Given a seed m’, a d-neighbor y of m’,

Ci and a positon j (1 < j ≤ |Ci|), if dH (Ci[j], m’) – dH (y,
m’) ≥ dis(y, Ci, j), then for any j ≤ j’ ≤ |Ci|, dH (Ci[j’], m’)
– dH (y, m’) ≥ dis(y, Ci, j), and thus dis(y, Ci) = dis(y, Ci, j).
Based on these observations, given a seedm’, a d-neighbor

y of m’ and a sequence si in D, Algorithm 4 describes how
dis(y, si) is efficiently calculated.

E. FILTERING REDUNDANT SUBSTRINGS
For each obtained motif m, we employ m to determine
whether each k-mer x in A is a redundant k-mer. A redun-
dant k-mer x is a common substring of some instances
of m with the same initial position or there is a k’-length
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Algorithm 4 ComputeMinDis(m’, y, si)
Input: a seed m’, a neighbor y of m’ and a sequence si in

D
Output: dis(y, si)
1: minDis← l
2: for j← 1 to |Ci| do //Ci is precomputed according tom’

and si
3: if dH (Ci[j], m’) – dH (y, m’) ≥ minDis then
4: return minDis
5: else
6: if dH (y, Ci[j]) < minDis then
7: minDis← dH (y, Ci[j])
8: return minDis

Algorithm 5 FilterRedundancy(m, A)
Input: a motif m, a set A of high-frequency k-mers
Output: a set A of high-frequency k-mers after filtering
1: for eachk-mer x in A do
2: if there exists z ∈k m such that dH (z, x) ≤ e(k) then
3: A← A – m’
4: else
5: for k’← kmin to k – 1 do
6: if dH (pf(m, k’), sf(x, k’)) ≤ e(k’) or dH (sf(m, k’),

pf(x, k’)) ≤ e(k’) then
7: A← A – m’
8: break
9: return A

(kmin ≤ k’ < k) overlap between x and some instances of m.
kmin is set to 5 according to Section II.B.

Here is the formalized definition of redundant k-mers.
Let e(k) represent the expectation of the Hamming distance
between a k-mer x1 at an arbitrary initial position in an
arbitrary motif instance and a k-mer x2 in the motif at the
same initial position as x1. Let pf(x, k’) and sf(x, k’) repre-
sent the k’-length prefix and k’-length suffix of a string x,
respectively. For a given motif m, a k-mer x in A that meets
the following requirements is regarded as a redundant k-mer:
there is a k-mer z in m such that dH (z, x) ≤ e(k), or there is a
value of k’ within the range kmin ≤ k’< k such that dH (pf(m,
k’), sf(x, k’)) ≤ e(k’) or dH (sf(m, k’), pf(x, k’)) ≤ e(k’).
e(k) is calculated by (12). First, e(l) can be calculated

based on the Theorem of Total Probability. Second, for any
mismatch between a motif instance and the associated motif,
suppose that this mismatch occurs randomly at one of the l
positions, and then e(k) is equal to e(l) multiplied by k/ l.

e (k) =

(
d∑
i=0

Pri × i

)
×
k
l

(12)

Algorithm 5 describes the process of filtering out redun-
dant k-mers in A for an obtained motif m.

F. OVERALL ALGORITHM AND ANALYSIS
Algorithm 6 describes the overall process of APMS.

Algorithm 6 APMS(D,l, d , q)
Input: the input dataset D and the parameters l, d and q
Output: a group of (l, d) motifs
1: M ← empty
2: A← ExtractHighFrequencySubstring(D,l, d , q)
// Algorithm 1

3: while|A| 6= 0 do
4: x ← the k-mer with the maximum frequency in A
5: A← A – x
6: m’← GenerateSeed(x, D) // Algorithm 2
7: m← RefineSeed(m’, D) // Algorithm 3
8: if m is not an empty string then
9: M ← M + m
10: A← FilterRedundancy(m, A) // Algorithm 5
11: return (l, d) motifs inM in descending order according

to their consensus score

The space overhead of APMS mainly lies in storing the
array F of size 4k and all l-mers in D (t n-length sequences).
Each element in F is a 4-byte integer and each l-mer in D
takes up l bytes. Therefore, the space complexity of APMS is
O(4k+1+ tnl).
The time complexity TAPMS of APMS mainly depends

on seed refinement. Let β denote the number of seeds that
need to be refined. Considering the filtration of redundant
substrings, β is taken as O(n). The overhead for refining
a seed is equal to the overhead O(tnl) for verifying each
d-neighbor multiplied by the number of verified d-neighbors
of m’. According to Algorithm 3, the root node of the
tree, 3l d-neighbors in the first layer and up to Nmm(i–1)×
3l d-neighbors in the ith (1 < i ≤ d) layer of the tree need to
be verified. Therefore, we derive the following TAPMS, from
which a conclusion can be drawn that the time complexity
of APMS is linearly proportional to the number of input
sequences.

TAPMS = O

(
β ×

(
1+ 3l +

d−1∑
i=1

Nmm (i)× 3l

)
× tnl

)

= O

(
d−1∑
i=1

(
d
i

)
× 3tn2l2

)
(13)

III. RESULTS AND DISCUSSION
A. RESULTS ON SIMULATED DATA
The experiments on simulated data are mainly to test the
efficiency of APMS by comparing the running time of APMS
with that of existing algorithms, and to validate whether
APMS can identify the implanted motif. We use mPC,
the performance coefficient at motif level, to measure the
similarity between the predicted (l, d) motif mp and the
implanted (l, d) motifmk, where lenoverlap(mp,mk) represents
the length of the overlapped part of mp and mk.

mPC =
lenoverlap

(
mp,mk

)
2l − lenoverlap

(
mp,mk

) (14)
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TABLE 1. Results on the first group of simulated datasets.

TABLE 2. Results on the second group of simulated datasets.

We generate the simulated data as follows [3], [4]:
randomly generate an l-length motif m and a dataset D of
t n-length DNA sequences; then, randomly select qt
sequences from D; for each selected sequence s, implant a
random instance m’ of m at a random position j (1 ≤ j <
|s| – l+ 1) of s. We generate a random instance of m as
follows [23]: randomly select d positions from m, and then,
for each selected position j, vary m[j] to a different character
with probability g.

In order to carry out a comprehensive testing, three groups
of simulated datasets are generated by controlling values of
t , n, l, d , q and g. The first group of simulated datasets
corresponds to the datawith different (l, d) motifs obtained by
fixing t = 3000, n = 200, q = 0.5 and g = 0.5 and varying
(l, d) from (9, 2) to (21, 8). The second group of simulated
datasets corresponds to the data with different motif signal
strength obtained by fixing t = 3000, n = 200 and (l, d) =
(15,5) and taking q / g as 0.2, 0.5 and 0.8. The third group of
simulated datasets corresponds to the data at different scales
obtained by fixing n = 200, (l, d) = (15, 5), q = 0.5 and
g = 0.5 and varying t from 3000 to 30000.
The compared algorithms include FMotif [18],

PairMotifChIP [23], GADEM [22] and MEME-ChIP [19].
FMotif is the most efficient exact qPMS algorithm for pro-
cessing largeDNAdatasets; PairMotifChIP is an approximate
qPMS algorithm proposed recently with an ability to handle
large DNA datasets; GADEM is designed for motif discovery
on large DNA datasets by combining a genetic algorithm and
an EM algorithm; MEME-ChIP is one of the most famous
motif discovery algorithms. All these algorithms are imple-
mented in C/C++. We execute them on an environment with
a single 2.7GHz CPU and a 12GB memory. For each setting
of t , n, (l, d), q and g, we randomly generate three datasets

and take the average of the results on the three datasets as the
reported result.

We show the results on the first, second and third
groups of simulated datasets in Tables 1, 2 and 3, respec-
tively. As FMotif is limited to perform a maximum number
of 3000 sequences, it is absent from the comparison on
the third group of datasets. Since the value of the reported
mPC is 1.0 on each dataset, all these algorithms are able
to identify the implanted motifs exactly. The main reason
for this phenomenon is that the large datasets contain quite
sufficient motif information, even when the signal strength
of the motif is relatively weak (q is small while g is large)
as shown in Table 2. However, some compared algorithms
(FMotif and MEME-ChIP) fail to make predictions on some
datasets because their running time exceeds 48 hours. There-
fore, the running time is regarded as a critical factor in
evaluating algorithms for motif discovery on large DNA
datasets.

We compare the running time of these algorithms as
follows. On the whole, APMS can complete the calculation
in the shortest time on all these datasets, and it is orders
of magnitude faster than the compared algorithms. It just
takes two minutes even when processing the largest dataset
(30000 sequences). In processing 3000 sequences, APMS is
15 times faster or even more than PairMotifChIP, and is much
faster than FMotif, GADEM and MEME-ChIP. More impor-
tantly, in processing 6000 or more sequences, the advan-
tage of APMS increases with the increase of the number of
sequences. As shown in Fig. 2, the running time of APMS
shows linear growth, which is consistent with the time com-
plexity of APMS, while the running time of PairMotifChIP
and MEME-ChIP shows approximately quadratic growth as
the number of sequences increases. Although the running
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TABLE 3. Results on the third group of simulated datasets.

FIGURE 2. Increasing trend of the running time of the compared
algorithms with data scale. R is the ratio of running time to that on
6000 sequences.

time of GADEM also shows linear growth, it is already rela-
tively long (close to 3 hours) in processing 6000 sequences.

In addition, we can analyze how the performance of these
algorithms is affected by the parameters t , l, d and q from
the experimental results. For PairMotifChIP, GADEM and
MEME-ChIP, their running time is mainly affected by the
number of sequences t . APMS is slightly affected by (l, d)
besides the influence of t . Specifically, as shown in Table 1,
the running time of APMS increases with the increase of
(l, d). The reason for this phenomenon is that, as (l, d)
grows, more d-neighbors need to be verified in the refinement
process of APMS. FMotif is heavily affected by (l, d), as the
number of candidate motifs of FMotif shows exponential
growth with the increase of (l, d). FMotif is also affected by q.
As q decreases, FMotif requires longer running time because
the pruning effect during the searching process is weakened.

APMS is an approximate qPMS algorithm. Since it only
records the detected (l, d) motif with the maximum score
in refining each seed and performs filtration of redundant
seeds, it usually just reports one (l, d) motif with high score
for the simulated data. It should be noted that, the (l, d)
motif reported by APMS is usually the desired motif, i.e., the
implanted (l, d) motif. Although exact qPMS algorithms can
report all (l, d) motifs present in the dataset, most of these

reportedmotifs are redundant. For example, for the first tested
dataset under the (9, 2) problem instance in Table 1, FMotif
(the exact qPMS algorithm) reports 36 (l, d) motifs, including
the implanted (l, d) motif m = AAACTCGAG. APMS just
reports m. The 35 (l, d) motifs missed by APMS consist of 8
motifs (e.g., CAAACTCGA) that overlap m by 8 bases and
27 motifs (e.g., AAACTCAAG) that differ from m in one
position.

B. RESULTS ON REAL DATA
Experiments on real data aremainly used to verify the validity
of APMS, that is, to verify whether APMS can efficiently
identify motifs in real biological data. We use the mouse
embryonic stem cell (mESC) ChIP-seq data [30] as the first
group of real datasets, which are widely used for the veri-
fication of the validity of motif discovery algorithms. The
mESC data contain 12 datasets, each of which is named after
the ChIP-ed TF. Moreover, we collect 149 ChIP-seq datasets
of the human species from the ENCODE database [31] as
the second group of real datasets. Each of these collected
dataset contains a TF-binding motif documented in JASPAR
database [32]. In the experiments, the first 3000 sequences
of each dataset are taken as the input. We run APMS on
different datasets by using uniform parameter settings, that is,
(l, d) = (13, 4), q = 0.3 and g = 0.5.
Fig. 3 shows the experimental results of APMS on the first

group of real datasets. For each dataset, we have shown the
running time of APMS, the published motif (the one on top)
and the predicted motif (the one below) in the form of the
sequence logo [27]. First, by comparing the predicted motifs
with the published motifs, we find that APMS can identify
the motifs similar to real motifs on all these datasets. Second,
the running time on all these datasets is within 6 minutes.

Table 4 shows the experimental results of APMS on
the second group of real datasets. These datasets cover seven
cell lines. For each cell line, we have shown the number of
collected datasets, the number of datasets with the real motif
found and the average running time. More detailed results of
APMS for each dataset (including the running time, the pre-
dicted motif in the form of both the sequence logo and PWM,
and the published motif in the form of both the sequence
logo and PWM) are included in detailedResults document at
https://github.com/qyu071/apms. APMS can find real motifs
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FIGURE 3. Results on the first group of real datasets (the mESC data).

TABLE 4. Results on the second group of real datasets (the datasets of human species collected from ENCODE database).

on the majority of the datasets for each cell line and on the
83.9% of all these 149 datasets. The average running time of
APMS is still within 6 minutes. Moreover, we take GADME
as a reference algorithm and run it by using default parameter
settings. Compared with GADEM, APMS can not only find
real motifs onmore datasets, but also requires much less time.
In summary, APMS can effectively and efficiently process
large datasets in reality.

IV. CONCLUSION
In order to efficiently solve the planted motif search on large
DNA datasets, we propose an approximate qPMS algorithm
calledAPMS by designing newmethods for generating seeds,
refining seeds and filtering redundant seeds. The running
time of the proposed algorithm shows linear growth with the
increase of the data scale. Experimental results show that
the proposed algorithm can not only successfully find the
implanted or real motifs, but also run much faster than the
compared algorithms. The source code of APMS, the python

wrapper for the code and the test data are available for down-
load at https://github.com/qyu071/apms. The limitations of
APMS are that the type of motifs it can search is the (l, d)
motifs and the parameters l, d and q need to be provided.
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