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ABSTRACT Solving the forward kinematics of parallel robots efficiently is important for real-time
applications. However, it remains a difficult problem due to its high nonlinearity. This paper combines
artificial neural networks and the Global Newton–Raphson with Monotonic Descent (GNRMD) algorithm
to decrease the training sets of neural networks while avoiding divergence problem. Furthermore, simplified
Newton iteration is introduced to reduce the duration of solution time. The proposed method is demonstrated
taking a Stewart platform as an example and the nonlinear equations are established with the geometrical
method. Based on the continuous characteristic of real-time applications, the result of the previous solution
cycle is used as the initial value of the current solution cycle. Moreover, a threshold adjusting the effective
scope of GNRMD algorithm and simplified Newton iteration is set to balance the efficiency and number of
iteration. The performance of the algorithm is verified in the environment of Microsoft Visual Studio 2013
based on the continuous feedback of the Stewart platform. Besides, it is compared with GNRMD algorithm
and a higher-order numerical method. The results indicate that the proposed algorithm can improve the
efficiency of solving the forward kinematics problem.

INDEX TERMS Parallel robots, forward kinematics, numerical method, real-time application.

I. INTRODUCTION
Parallel robots have been extensively studied for decades and
have been widely applied to various fields due to the fol-
lowing advantages: high rigidity, accuracy, and load-bearing
capacity [1]–[5]. The kinematics problem is fundamental
for parallel robots because it provides the mapping between
Cartesian space and joint space. The inverse kinematics prob-
lem (IKP) can be easily solved geometrically. Compared with
the IKP, the forward kinematics problem (FKP) is more dif-
ficult due to the high nonlinearity and the various structures
of parallel robots [6] and the efficiency for solving the FKP
is important for real-time applications.

Many researchers have made their contributions to solve
the FKP of parallel robots. The existing methods can be
classified into four categories: analytical approaches, numer-
ical methods, intelligent algorithms, and adding extra sen-
sors. Analytical approaches tend to find the closed-form
solution [7]–[9]. It is only useful for specific structures and
the derivation is sophisticated. Compared with analytical
approaches, numerical methods can get an iterative solution
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without suffering the problem ofmulti-solution. Besides, they
are more suitable in practice because the methods are simple
and can be extended to various structures of parallel robots
[10]–[13]. But the convergence performance is a key issue,
e.g., convergence ability and convergence speed, impacting
the behavior of control systems. Recently, intelligent algo-
rithms for the FKP such as artificial neural networks (ANNs)
[14] and Support Vector Machines (SVM) [15] are applied
and can meet the accuracy requirement. But the training
process weakens efficiency even under high-performance
computer condition. Compared with other methods, adding
extra sensors is the simplest method to obtain a unique solu-
tion with the least computational burden [16]. Unfortunately,
the application range of this method is limited due to the
economic cost together with the measurement and assem-
bly error. In summary, the existing approaches for the FKP
still have many limitations, especially in terms of balanc-
ing efficiency and accuracy. Among the methods mentioned
above, the numerical method has the unique advantage in
generality and simplicity so that it has received considerable
attention [17].

Newton–Raphson (NR) algorithm is a widely used numer-
ical method. It can approach the solution with high
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convergence speed. But it has the divergence problem if the
initial value is far from the solution. Various improvements
have been carried out to overcome the shortcoming of the
NR method to make it more suitable for solving the FKP. To
generate suitable initial value for the NR method, a hybrid
strategy which combines ANNs with the NR method was
proposed by Parikh and Lam [18]. The well-trained ANNs
restrict the initial value to a certain domain so that the con-
vergence is guaranteed and the number of iteration is reduced
compared with traditional NR method. However, large sam-
ple sets are required for training of ANNs and the training
process is time-consuming. The Global Newton–Raphson
withMonotonic Descent (GNRMD) algorithm which is inde-
pendent on the initial value was proposed by Yang et al. [19].
It can achieve global convergence of the NR method, but the
efficiency is weakened due to the lack of limitations of the
initial value. NR method is also combined with homotopy
methods [20]–[22] to solve the FKP, but the long calcula-
tion time makes them not suitable for real-time applications.
Therefore, the balance of accuracy and efficiency is still a
challenge for solving the FKP.

In this paper, we propose a method that combines ANNs
and GNRMD algorithm to solve the FKP of parallel robots
efficiently. The two methods can remedy each other’s short-
comings. ANNs can be trained with fewer sample sets
because GNRMD algorithm can avoid the divergence prob-
lem even when the initial value is far from the solution. On
the other hand, the initial value is limited within a certain
domain by ANNs so that the efficiency of calculation can be
improved. In the iteration procedure, frequent calculation of
the Jacobian matrix and its inverse is time-consuming but it
has attracted little attention [10]. On this account, we intro-
duce simplified Newton iteration [23] with the fixed inverse
of Jacobian to reduce the amount of calculation in each iter-
ation. Then a deviation threshold is set to adjust the effective
scope of GNRMD algorithm and simplifiedNewton iteration,
thus balancing the number of iteration and efficiency. In real-
time applications, the deviation of pose between adjacent
cycles is small due to the high sample rate. Therefore, the state
in the previous cycle can be used directly as the initial state
of the current cycle, which further simplifies the procedure of
solving the FKP. The proposed method in this paper is named
as deviation-driven algorithm and the performance is verified
with experiments.

This paper is organized as follows: Section II defines the
coordinate systems and establishes the nonlinear equations
of the FKP for the following analysis. The deviation-driven
algorithm is described in Section III. Then experiments veri-
fying the accuracy and efficiency of the proposed algorithm
are shown in Section IV. Finally, the discussion of results and
future work are given in Section V.

II. ESTABLISHMENT OF NONLINEAR EQUATIONS
The main components of the parallel robot are two platforms
connected by several links. The base platform is fixed to
the ground and the mobile platform usually works as the

FIGURE 1. 6-6 Stewart platform and coordinate systems at initial state.

FIGURE 2. Perspective planar view at initial state.

end-effector. Motions of the mobile platform can be achieved
by changing the displacements of links. In this paper, we take
the 6-6 Stewart platform as an example to demonstrate the
proposed algorithm.

A general structure of the 6-6 Stewart platform and its
coordinate systems at initial state are illustrated in Fig. 1. The
moving coordinate system {U} is fixed to themobile platform
and its origin is at the geometric center of the platform.
The base coordinate system {L} remains stationary in Carte-
sian space at the position of {U} when the displacements
of the actuators are zero (initial state). The parameter L0i
(i = 1, . . . , 6) is the length of the actuator between the
connection point Ai and Bi at initial state. The connection
points of the Hooke hinges on the mobile and base platform
are distributed on circles of radius r and R respectively. A
perspective planar view of the position of connection points
is given in Fig. 2. The motion of the mobile platform consists
of angular motions and linear motions, i.e., roll (q1), pitch
(q2), and yaw (q3) together with surge (q4), sway (q5), and
heave (q6). Therefore, the pose of {U} with respect to {L}
can be defined as

P = [ q1, q2, . . . , q6 ]T (1)

The transformation matrix of the mobile platform can be
represented by U

LR ∈ R
3×3
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FIGURE 3. Geometric transformation of i th actuator.

U
LR

=

 cq2cq3 −cq1sq3 + sq1sq2cq3 sq1sq3+cq1sq2cq3
cq2sq3 cq1cq3 + sq1sq2sq3 −sq1cq3+cq1sq2sq3
−sq2 sq1cq2 cq1cq2


(2)

where s( ) and c( ) represent sin( ) and cos( ) respectively.
The geometric transformation of the ith actuator in motion is
shown in Fig. 3.

As shown in Fig. 3, the displacement of ith actuator can be
solved with the geometric method and denoted as (3), which
is also the IKP formula of parallel robots.

Li = fi(P) =
∥∥∥ULRAi + LQ− Bi

∥∥∥− L0i (i = 1, 2, . . . , 6)

(3)

fi ( ) is the function mapping the pose from Cartesian
space to the displacement of ith actuator Li in joint space.
LQ = [q4, q5, q6]T denotes linear translation from the coordi-
nate system {L} to {U}. Ai and Bi are constant vectors of the
upper and lower connection points in the coordinate system
{U} and {L} respectively. L0i is the constant length between
the joint position of Ai and Bi when the displacements of
actuators are zero. Then we can obtain the nonlinear equation
set of the FKP.

Fi(P) = fi(P)− LiM = 0 (4)

LiM is the measured displacement of ith actuator. The set
of (4) forms the nonlinear equations for the FKP of parallel

robots. In matrix form, they can be written as

F(P) = 0 (5)

where F =
[
F1 F2 . . . F6

]T
∈ R6×1.

III. DEVIATION-DRIVEN ALGORITHM
The FKP of parallel robots aims to solve P in (5) with a
set of measured displacements of actuators. The deviation-
driven algorithm consists of three parts: ANNs, GNRMD
algorithm, and simplified Newton iteration. The iteration
process is divided into two effective scopes by a threshold:
convergence scope for GNRMD algorithm and first-order
convergence scope for simplified Newton iteration. First, the
ANNs generate an approximate solution corresponding to the
measured displacements of actuators. Then the initial value
is converged to the threshold with GNRMD algorithm. After
that, the inverse of Jacobian matrix is fixed and the simplified
Newton iteration proceeds until the required accuracy is sat-
isfied. Scheme of the deviation-driven algorithm is shown in
Fig. 4.

A. ANNS AND GNRMD ALGORITHM
Considering the convergence is guaranteed by the GNRMD
algorithm, the accuracy of ANNs’ output can be decreased
to shorten the training time and to simplify the sample
sets. Meanwhile, the initial value for GNRMD algorithm is
restricted so that the convergence efficiency is improved.
Therefore, we can obtain the balance between accuracy and
efficiency.

The research of [24] has made a comparison of ANNs with
different structures. Though the structure of ANNs applied
in [24] achieves the separate output of position and orienta-
tion, it increases the workload during the training phase and is
time-consuming because of the extra network. As a result, the
adopted structure of the network in this paper is an all class
one network (ACON) with six inputs and six outputs. The
structure of ANNs with one hidden layer is shown in Fig. 5.

The activation functions are generally selected as the sig-
moid function:

g(x) =
1

1+ e−x
(6)

In this paper, the network/data manager toolbox in
MATLAB is adopted to train the ANNs. Before the training
process, a certain number of poses within workspace should
be selected and the corresponding displacements of actuators
are obtained by solving IKP with (3). The two groups of
data together form the sample sets for training ANNs, then

FIGURE 4. The deviation-driven algorithm.
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FIGURE 5. Structure of ANNs with one hidden layer.

mappings of the two groups of data are inverted. In other
words, the calculated data in joint space are used as the inputs
of ANNs and the corresponding pose data in Cartesian space
are the expected outputs of ANNs. The network is trained
with the well-known backpropagation (BP) algorithm and the
details are referred to in [18].

Assume P0 generated by ANNs is the approximate solu-
tion of (5), then (5) can be expanded to (7) based on Taylor
polynomial.

F(P) ≈ F(P0)+ J(P0)(P − P0) (7)

J is the Jacobian matrix, i.e., the derivative of matrix F.

J =


∂F1
∂q1

. . .
∂F1
∂q6

. . . . . . . . .

∂F6
∂q1

. . .
∂F6
∂q6

 (8)

Substituting (7) into (5), we can obtain the iterative formula.

Pk+1 = Pk − J−1(Pk )F(Pk ) k = 0, 1, 2, . . . (9)

There exist multiple structures of parallel robots. For some
structures, such as redundant actuation, J is not a square
matrix so the inverse Jacobian matrix does not exist. To make
the proposed algorithm suitable for more structures, J−1 is
replaced with pseudoinverse of Jacobian.

Pk+1 = Pk − J+(Pk )F(Pk ) (10)

Equation (10) is the formula of the NR-type method. Since
its convergence is highly dependent on the accuracy of the
initial value, a monotonic descent operator λ is introduced to
ensure the convergence of iteration. Define P̄k+1 as the result
of (10), then a weighted average can be obtained:

P̄k+1 = Pk − J+(Pk )F(Pk ) (11)

Pk+1 = λP̄k+1 + (1− λ)Pk 0 < λ ≤ 1 (12)

Combining (11) and (12), we have

Pk+1 = Pk − λJ+(Pk )F(Pk ) 0 < λ ≤ 1 (13)

In each iteration, the selection of λ must satisfy the mono-
tone convergence:∥∥F(Pk − λJ+(Pk )F(Pk ))∥∥ < ‖F(Pk )‖ 0 < λ ≤ 1 (14)

An efficient method to select the appropriate value of λ
is binary search. λ is gradually halved from 1 until (14) is
satisfied.

It should be noted that the singularity of Jacobian matrix
can lead to failure of solving the FKP of parallel robots
and lose control of the hardware system. Therefore, the sin-
gularity problem is avoided in the mechanical design and
trajectory planning procedure. In this paper, it is assumed that
the pseudoinverse of Jacobian always exists in the workspace.
The terminal condition of the GNRMD algorithm is:

max |Fi(Pk )| < εmax (15)

where εmax is the threshold entering the effective scope of
simplified Newton iteration.

The GNRMD algorithm is equivalent to the NR method at
λ = 1 and has high convergence rate [25]. In comparison
with GNRMD algorithm, simplified Newton iteration has
first-order convergence rate. It results in more iteration steps
but requires less computational cost in each iteration. By
changing the value of εmax, the effective scope for the two
kinds of iteration can be adjusted, thus keeping a balance
between the number of iteration and calculation efficiency.

B. SIMPLIFIED NEWTON ITERATION
Although the GNRMD algorithm has higher convergence
rate in comparison with simplified Newton iteration and can
approach the solution with fewer number of iteration, the
advantage in terms of efficiency is no longer obvious when
dealing with high-dimension nonlinear equations. In fact, fre-
quent calculation of the Jacobian alongwith its pseudoinverse
is time-consuming and slows down the solution procedure.
To remedy this shortcoming, simplified Newton iteration is
introduced to proceed the following iteration after (15) is
satisfied:

Pk+1 = Pk − CF(Pk ) (16)

C = J+(Pε) (17)

Pε is the first iterative result satisfying (15). C is the fixed
pseudoinverse of Jacobian when Pk is at Pε.

A monitor checking the convergence after each iteration
is necessary to avoid the divergence problem caused by the
inappropriate selection of pseudoinverse of Jacobian:

‖F(Pk+1))‖ < ‖F(Pk )‖ (18)

The value of C remains fixed when the convergence mon-
itor is satisfied. Otherwise, renew C with J+(Pk ) and substi-
tute it to (16). The terminal condition of simplified Newton
iteration is:

max |Fi(Pk )| < εmin (19)

k ≤ N (20)
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FIGURE 6. The scheme of parameter transfer among control cycles.

where εmin is the permissible error (required accuracy level)
of the final solution and N is the total number of iteration in
one control cycle.

It should be noted that solving the FKP in real-time is more
practical for parallel robots in a dynamic situation. The con-
trol cycle and sampling interval are usually at the millisecond
level to continuously send commands and receive feedback.
Therefore, the solutions of the FKP between adjacent control
cycles are close to each other.

Define Ppre as the FKP solution of the previous control
cycle. Ppre can be directly used as the initial value for the
current cycle, thus saving the time of calling ANNs. If (21)
and (22) are satisfied, Ppre can be treated as the initial value
within the effective scope of simplified Newton iteration in
the current cycle.

1Lmax = max
∣∣fi(Ppre)− LiM

∣∣ (21)

1Lmax < εmax (22)

1Lmax is the maximum deviation of actuators’ displacements
between adjacent control cycles. LiM is the measured dis-
placements of actuators in the current cycle. A small change
in joint space causes a small change of solution, so the
solution for the current cycle is within a neighborhood of
the previous one. In practical applications, the steep changes
of velocity in both joint space and Cartesian space between
adjacent control cycles are not allowed in case of hardware
damage. Therefore, the simplified Newton iteration in the
current cycle can proceed using the same pseudoinverse
of Jacobian transferred from the previous cycle, thus sav-
ing calculation resources. Once the deviation is larger than
the threshold, GNRMD algorithm can bring the result back
to the effective scope of simplified Newton iteration and
repeat the above procedure. The convergence monitor also
ensures the proper settings of the fixed pseudoinverse of
Jacobian.

From the overall perspective of the real-time solution pro-
cess, the iteration in each control cycle is driven by the devia-
tion in joint space. The scheme of transferring pose Ppre and
fixed pseudoinverse of Jacobian C among calculation cycles
is shown in Fig. 6.Lm is the vector ofmeasured displacements
of actuators in the current cycle.

IV. EXPERIMENT AND RESULTS
To verify the performance of the deviation-driven algorithm,
experiments were carried out based on a 6-DOF Stewart
platform as shown in Fig. 7. The geometrical parameters of
the Stewart platform are given in Table 1. The performance
of the deviation-driven algorithm was tested in terms of accu-
racy, the influence of threshold, and time consumption. The
terminal iteration step N was set to 10 and the permissible
error was 10−6 cm. The following experiments were carried
out in the environment of Microsoft Visual Studio 2013 and
the operating system was Windows 7.

FIGURE 7. The experimental Stewart platform.

TABLE 1. Parameters of the experimental platform.
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TABLE 2. Mean square error with different number of neurons.

FIGURE 8. Training performance.

A. ACCURACY AND EFFICIENCY IMPROVEMENT
It is known that the initial value can determine the efficiency
of the NR-type method. However, the required sample sets
and training time increase with the improvement of ANNs’
performance in terms of accuracy. To balance training time
and accuracy of outputs, we selected ANNs with one hidden
layer and the number of sample sets was 100. The hidden
layer was activated by sigmoid functions and the output layer
was activated by linear activation functions. Table 2 shows
the mean square error of ANNs with different number of
neurons in the hidden layer. The training process cost around
30 seconds. It can be seen that when the number of neurons
reaches 25, there is little space for further decrease of mean
square error. Therefore, we adopted the ANNs with 6-25-6
structure. The training performance is given in Fig. 8.

To verify the accuracy of the deviation-driven algorithm,
400 random sets of pose (P test) within the workspace of the
Stewart platform were generated. They were mapped from
Cartesian space to joint space via the inverse kinematics,
acting as the inputs of the deviation-driven algorithm. The
threshold was set to 10−6 cm, the same as the permissible
error. Fig. 9 shows the test diagram. The error between out-
puts of the deviation-driven algorithm and the expected pose
P test are shown in Fig. 10.

It can be seen that the maximal errors are 1.58×10−6◦

in roll and 7.86×10−7 cm in heave. The result confirms
that the solution of the deviation-driven algorithm is of high
accuracy and the divergence problem is avoided even when

FIGURE 9. Diagram of accuracy verification.

FIGURE 10. Errors of outputs. (a) Orientation error; (b) Position error.

the ANNs are trained with fewer sample sets. To demonstrate
the improvement of the deviation-driven algorithm, the data
in joint space corresponding to the above 400 sets of pose
were used as inputs for only GNRMD algorithm and the
comparison of efficiency is shown in Table 3. The initial value
of GNRMD algorithm was set to [0 0 0 0 0 0]T. It can be seen
that the number of iteration and calculation time are both less
than GNRMD algorithm when the initial value is restricted
by ANNs.

Likewise, the performance of the proposed algorithm in the
dynamic situation was also tested. A compound movement of
the mobile platform consisting of roll (q1) and sway (q5) was
simulated as the desired trajectory. Similar to the diagram in
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TABLE 3. Comparison of efficiency.

FIGURE 11. Comparison of the desired pose and calculated pose: (a) roll;
(b) sway.

Fig. 9, the points on the trajectory were converted to displace-
ments of linear actuators and transferred to the deviation-
driven algorithm. The solution of jth point is directly used
as the initial value for j+ 1th point.{

q1 = 4 sin(2π t) (unit :◦)
q5 = 5 sin(π t) (unit : cm)

(23)

The comparison of the desired trajectory and the calculated
results are shown in Fig. 11. It can be seen that the result of
the deviation-driven algorithm is consistent with the expected
trajectory. Fig. 10 and Fig. 11 together demonstrate that the
deviation-driven algorithm is an effective method to solve
the FKP.

TABLE 4. Performance with different thresholds.

B. INFLUENCE OF THE THRESHOLD
In this subsection, the experiments are based on real-time
feedback from the Stewart platform. The displacements of
linear actuators were measured by the embedded sensors in
each actuator and were sent to the industrial computer in real-
time. Actuators numbered 1 and 3 were driven by a sinusoidal
motion command (6 cm/0.5 Hz) in joint space to generate
dynamic displacements. Displacements of all actuators were
set to 17.02 cm at the beginning of the motion to avoid
joint limits. The feedback interval of the displacements of
actuators was 2ms. The FKP corresponding to the continuous
feedback was solved on a PC with a 2.1 GHz processor and
8 GB RAM.

The threshold determines the effective scope of GNRMD
algorithm and simplified Newton iteration. Due to different
convergence rates of the two kinds of iteration methods,
the calculation efficiency can be adjusted by the threshold.
Therefore, experiments were carried out with different thresh-
olds to test their influence on the efficiency of solving the
FKP. Table 4 shows the average number of iteration and the
required time to obtain the solution.

As Table 4 shows, the total number of iteration and thresh-
old present a synchronous growth trend. When the threshold
is higher than 0.05, the total number of iteration tends to be
constant. Besides, the proportion of simplified Newton iter-
ation in the total number of iteration also increases with the
threshold. This trend proves that simplified Newton iteration
can result in more iterations due to its lower rate of con-
vergence compared with GNRMD algorithm. The required
time shows downward trend firstly, and then upward with the
increase of threshold. This phenomenon indicates that sim-
plified Newton iteration can improve calculation efficiency
while increasing the number of iteration if the threshold is
small. Otherwise, the performance of the deviation-driven
algorithmwill beweakened due to a large number of iteration.

To further verify the improvement of the deviation-driven
algorithm in terms of efficiency, NR algorithm, GNRMD
algorithm and a 3rd-order numerical algorithm [24] were
used as comparisons under the same environment and data.
The solution of the previous cycle is used as the initial guess
for the current cycle for NR algorithm. The initial value of
the GNRMD algorithm was set to [0 0 0 0 0 −23.1]T, which
is close to the pose corresponding to the starting position
of the mobile platform. Meanwhile, the neural networks in
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TABLE 5. Performance of the comparative methods.

FIGURE 12. Improvement of efficiency.

[24] were trained with the same sample sets as in this paper.
The permissible error of the above methods was also set to
10−6 cm to solve the FKP in the same precision level as the
deviation-driven algorithm. Table 5 shows the average num-
ber of iteration and the required time of the two comparative
methods.

Table 4 and Table 5 together confirm the efficiency of
deviation-driven algorithm for real-time calculation. Fig. 12
shows the improvement of efficiency over the other three
methods with different threshold. It can be seen that when
the threshold is around 0.01, the deviation-driven algorithm
shows the best performance.

V. DISCUSSION
The main contribution of the paper is the new deviation-
driven algorithm for FKP which combines GNRMD algo-
rithmwith ANNs. Compared with only GNRMDmethod, the
ANNs can provide the initial value for iteration so that reduce
the calculation time. Compared with the hybrid strategy [18],
sample sets for training can be simplified sufficiently by
global convergence ability guaranteed by GNRMD algo-
rithm. In the method of this paper, two important innovations
are proposed:

1). SimplifiedNewton iteration is introduced to balance the
efficiency and the number of iteration by the fixed inverse
of Jacobian at an intermediate state of the convergence
procedure so that the time consumption for updating the
inverse of the Jacobian is reduced. It’s important for real-time
applications.

2). In the proposed algorithm, the forward kinematics and
inverse of Jacobian of the previous configuration can be
used directly as that of the current configuration in real-time
applications if the deviation between previous and current
configuration in joint space is less than a threshold, so that
the ANNs calculation for obtaining initial values is needed
only in the first cycle and can be simplified in later cycles.

In this paper, we solve the FKP of parallel robots with
Newton-type numerical iteration. The errors of results with
random inputs indicate that the proposed method can obtain
the accurate solution of the FKP without divergence problem
even with reduced training sets for ANNs. This is due to the
global convergence guaranteed by the GNRMD algorithm.
The comparison with only GNRMD algorithm proves that
the efficiency is improved by restricting the initial value
with ANNs. Besides, the results with both random inputs
and dynamic inputs show good accuracy performances of
the deviation-driven algorithm. Experiments confirm that
threshold can influence the calculation time by adjusting the
effective scope of GNRMD algorithm and simplified Newton
iteration. Therefore, a reasonable threshold can achieve the
best performance of the deviation-driven algorithm. Though
the simplified Newton iteration saves computing resources
in each iteration step, it will weaken the efficiency of the
proposedmethod if the number of iteration is excessive due to
a large threshold. Despite this, the required time is still shorter
than that in [24] thanks to the initial value and fixed inverse
of Jacobian are directly transferred from the previous cycle.

The deviation-driven algorithm is simple and easy to
implement, making it convenient to extend to parallel robots
of other structures. The comparative results indicate that the
proposed method is more efficient even without the best
performance. This method can free more computer resources
for other tasks with high real-time requirements or high
computational loads such as visual tracking and cooperative
motion with other robots. Besides, it allows for more timely
feedback in closed-loop control, thus achieving better per-
formance in position control. The principle of the deviation-
driven algorithm also provides potential methods for solving
IKP of serial manipulators without closed-form solutions.
The proposed method will achieve faster calculation speed
in the real-time operating system as in [19]. In future work,
singularity analysis will be added to the proposed method to
make it suitable for parallel robots of more structures. In this
paper, the threshold is manually chosen. A method adjusting
threshold automatically so that the proposed algorithm can
work with the best performance is valuable and will be inves-
tigated in future studies.
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