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ABSTRACT Autism spectrum disorder (ASD) is a neuro dysfunction which causes the repetitive behavior
and social instability of patients. Diagnosing ASD has been of great interest. However, due to the lack
of discriminate differences between neuroimages of healthy persons and ASD patients, there has been
no powerful diagnosis approach. In this study, we have designed brain network-based features for the
diagnosis of ASD. Specifically, we have used the 264 regions based parcellation scheme to construct a brain
network from a brain functional magnetic resonance imaging (fMRI). Then we have defined 264 raw brain
features by the 264 eigenvalues of the Laplacian matrix of the brain network and another three features by
network centralities. By applying a feature selection algorithm, we have obtained 64 discriminate features.
Furthermore, we have trained several machine learning models for diagnosing ASD with our obtained
features on ABIDE (Autism Brain Imaging Data Exchange) dataset. With our derived features, the linear
discriminant analysis has achieved the classification accuracy of 77.7%, which is better than the state-of-
the-art results.

INDEX TERMS Brain network, feature, eigenvalue, network centrality, functional magnetic resonance

imaging, machine learning.

LIST OF ABBREVIATIONS

ABIDE  Autism Brain Imaging Data Exchange
ACC Accuracy

STDV  Standard Deviation
SVM  Support Vector Machine
TC Typical Controls

WM White Matter

AFNI Analysis Of Functional Neuroimages

ASD Autism Spectrum Disorder

AUC Area Under ROC Curve

CSF Cerebrospinal Fluid 1. INTRODUCTION

fMRI Functional MRI Autism spectrum disorder (ASD) is a neuro dysfunction
FSL FMRIB’s Software Library found in children. Children who are affected by ASD
FWHM  Full-Width Half Maximum have difficulties in their social life, verbal and non-verbal
KNN K Nearest Neighbor communications and sometimes have repetitive patterns of
LDA Linear Discriminant Analysis behaviors. According to the 2018 National Autism Spectrum
LR Logistic Regression Disorder Surveillance System report [1], 1 in 66 children
MRI Magnetic Resonance Imaging in Canada suffers from ASD. Apart from the behavioral
NN Neural Network abnormality, there are no other perceptible symptoms for
PCC Pearson Correlation Coefficient effectively diagnosing ASD. To diagnose ASD, patients tra-
ROC Receiver Operating Characteristic ditionally need to go through behavioral observation or
ROI Region of Interest interview such as Autism Diagnostic Observation Sched-
rs-fMRI  Resting State Functional MRI ule [2], Autism Diagnostic Interview [3]. However, recently,
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the use of machine learning classifiers to classify between
ASD patients and typical controls (TC) has been attractive.
The performance of machine learning algorithms depends on
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the features or biomarkers that are used for the classification.
Different features such as structural properties of brains [4],
phenotype information [5], [6], behavioral attributes [7] have
been used to classify between ASD and TC. However, in most
of the cases, these features are not sufficient enough to
diagnose ASD accurately. Machine learning classifiers can
perform well when information from neuroimage data are
used as features [8].

Magnetic Resonance Imaging (MRI) provides information
about the structure, functional activity, and composition of
brains [9]. The resting state functional MRI (rs-fMRI) images
are now very popular for studying brain diseases because they
can be obtained in a non-invasive way and also provide infor-
mation about interactions among brain regions [10], [11].
This helps understand the neural activities of a person’s brain,
which has neuro-developmental disorders [12]. Rather than
studying the rs-fMRI images a more powerful and flexible
way is the graph-theoretic or network approach [13], [14].
A network consists of nodes and the edges linking the pair of
nodes.

In network-based approaches for analyzing fMRI,
the whole brain is divided into a number of regions of
interest (ROIs), which are the nodes in a brain network.
Then time-series measurements of functional activities of
ROIs are used to compute the cross-correlation as the con-
nection strength among ROIs, which are the edges of a
brain network. A brain network can be represented by its
connectivity matrix, where each element of the matrix rep-
resents the cross-correlation of the time-series measurements
between the corresponding ROIs. The connectivity matrix
has been used in various ways to classify ASD and TC.
In the study [15], for the classification of ASD and TC,
the correlation values of all pairwise ROIs are used as features
for a probabilistic neural network. The intrinsic connectivity
of the brain of children is studied in [16] to detect the
marker ROIs of ASD. The group [17] have defined each gray
matter voxel as an ROI and have used their classification
algorithm on the connectivity matrix for the detection of
brain diseases. The connectivity matrix has also been used
to study the functional and structural properties of brains
in [18].

There have been many studies regarding the diagnosis of
ASD using machine learning approaches. The group in [19]
have achieved a classification accuracy of 75.3% by decom-
posing the ROIs of each subject with the double-density
dual-tree discrete wavelet transform into the time-frequency
sub-bands and then using generalized autoregressive con-
ditional heteroscedasticity to select features from the sub-
bands. However, out of the 1112 subjects over 17 different
sites in the Autism Brain Imaging Data Exchange 1
(ABIDE 1) dataset, the study has only included 468 subjects
from six different sites of ABIDE 1. In [20], a classification
accuracy of 72.6% and 71.4% is achieved with a sparse
multiview task-centralized ensemble classification method
for the NYU and UM1 dataset, respectively, from the ABIDE
1. There are only 183 and 96 subjects in NYU and UMI,
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respectively. Also, the study has only reported results for con-
ducting the experiments separately on individual sites. The
classification accuracy of as high as 96.5% is reported in [21],
using only the USM dataset containing 50 subjects. In [22],
the elements of the connectivity matrix is used directly in the
machine learning classifier for the diagnosis of ASD. To eval-
uate their method, they have used two datasets: ABIDE 1 with
88 subjects and a Japanese dataset with 181 subjects. The
results have shown that their method achieves a classification
accuracy of 85.0% and 71.0%, respectively.

Apart from the single-site classification, there are studies
where the researchers use the data from all the sites in ABIDE
1. Combining the phenotypic information of the subjects with
the time-series information from the rs-fMRI images in [6],
a classification accuracy of 70.1% is achieved on the entire
ABIDE 1 dataset. A deep learning-based approach in [23]
has reported a classification accuracy of 70.0%. They have
used two stacked denoising autoencoder to pre-train a deep
neural network. The input of the network is the Pearson
correlation coefficient (PCC) of all pairwise ROIs. They have
also conducted experiments for single-site data and reported
an average classification accuracy of 52.0%. The classifica-
tion accuracy of 71.1% is reported in [8] where connectivity
matrices under the log-Euclidean and affine-invariant Rie-
mannian metrics are used in machine learning algorithms.
A more recent study [24] has used autoencoder to pre-train
a single layer perceptron for the diagnosis of ASD. They
have achieved the classification accuracy of 70.1% for the
entire ABIDE 1 dataset and an average accuracy of 63.0%
for individual sites.

The study in [25] has shown that the classification accu-
racy of the machine learning-based ASD diagnosis process
tend to be higher when the sample size (number of sub-
jects) is smaller. The classification accuracy decrease with
the increase of the sample size, which is evident from the
above discussion. The studies have low classification accu-
racy because the features used in the studies aren’t discrim-
inate enough to diagnose ASD. Therefore, it is necessary to
define discriminate features which can diagnose ASD with a
high classification accuracy using the entire ABIDE 1 dataset.

In this study, we propose the eigenvalues of the Lapla-
cian matrix of a brain network as new features to diag-
nose ASD (classify ASD and TC subjects) more accurately.
At first, we have adopted the 264 regions based parcellation
scheme [26] to divide a brain cortex into 264 ROIs and
extracted time-series measurements of these ROIs to create
the connectivity matrix. To create features for machine learn-
ing algorithms, we have extracted 264 eigenvalues from the
Laplacian matrix of a connectivity matrix and combined them
with three network centralities: the assortativity, clustering
coefficient, and the average degree. To avoid the overfitting
problem and select discriminate features for machine learning
algorithms, a sequential feature selection algorithm is applied
to these 267 features. Then to investigate the classification
capability of the newly defined features we have applied
them with different machine learning algorithms on ABIDE 1
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TABLE 1. Scanning parameters of different sites of ABIDE 1.

Sites MRI Scanner TR (ms) TE (ms) Flip Angle Voxel Size (mm)
(Degree)
A F A F A F A F

CALTECH SIEMENS 1590 2000 2.73 30 10 75 1.0x1.0x1.0 3.50x3.50x3.50
CMU SIEMENS 1870 2000 2.48 30 8 73 1.0x1.0x1.0 3.00x3.00x3.00
KKI PHILLIPS 8 2500 3.70 30 8 75 1.0x1.0x1.0 3.05x3.15x3.00
MAX_MUN SIEMENS 1800 3000 3.06 30 9 80 1.0x1.0x1.0 3.00x3.00x4.00
NYU SIEMENS 2530 2000 3.25 15 7 90 1.3x1.0x1.3 3.00x3.00x4.00
OLIN SIEMENS 2500 1500 2.74 27 8 60 1.0x1.0x1.0 3.40x3.40x4.00
OHSU SIEMENS 2300 2500 3.58 30 10 90 1.0x1.0x1.0 3.80x3.80x3.80
SDSU GE 11.08 2000 43 30 45 90 1.0x1.0x1.0 3.40x3.40x3.40
SBL PHILLIPS 9 2200 3.50 30 8 80 1.0x1.0x1.0 2.75x2.75%2.72
STANFORD GE 8.4 2000 1.80 30 15 80 0.8x1.5x0.8 3.12x3.12x4.50
TRINITY PHILLIPS 8.5 2000 3.80 28 8 90 1.0x1.0x1.0 3.00x3.00x3.50
UCLA SIEMENS 2300 3000 2.84 28 9 90 1.0x1.0x1.2 3.00x3.00x4.00
LEUVEN PHILLIPS 9.6 1656 4.6 33 8 90 0.9x0.9x1.2 3.59x3.59x4.00
UM GE 250 2000 1.8 30 15 90 1.0x1.0x1.0 3.43x3.43x3.00
PITT SIEMENS 2100 1500 3.93 25 7 70 1.1x1.1x1.1 3.10x3.10x4.00
USM SIEMENS 2300 2000 291 28 9 90 1.0x1.0x1.2 3.40x3.40x3.00
YALE SIEMENS 1230 2000 1.73 25 9 60 1.0x1.0x1.0 3.40x3.40x4.00

A: Anatomical, F: Functional, CALTECH: California Institute of Technology, CMU: Carnegie Mellon University, KKI: Kennedy Krieger Institute,
MAX_MUN: Ludwig Maximilians University Munich, NYU: NYU Langone Medical Center, OLIN: Olin, Institute of Living at Hartford Hospital,
OHSU: Oregon Health and Science University, SDSU: San Diego State University, SBL: Social Brain Lab BCN NIC UMC Groningen and
Netherlands Institute for Neurosciences, STANFORD: Stanford University, TRINITY: Trinity Centre for Health Sciences, UCLA: University of
California, Los Angeles, LEUVEN: University of Leuven, UM: University of Michigan, PITT: University of Pittsburgh School of Medicine, USM:

University of Utah School of Medicine, YALE: Yale Child Study Center.
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FIGURE 1. lllustration of the main steps of diagnosing ASD. MRI images
are processed to create brain networks for individual subjects. New
features are extracted from brain networks. After the feature selection,
discriminate features are determined for machine learning algorithms.

dataset to diagnose ASD. The Linear Discriminant Analy-
sis (LDA) with these features has reached a classification
accuracy of 77.7%, which is better than the state-of-the-art
methods [8], [6], [23], [27], [28], [29], [30]. The framework
of our method is illustrated in Fig. 1.

Il. MATERIALS AND METHODS

A. ABIDE DATASET

Researchers on the diagnosis of ASD have not used a con-
sistent dataset to make their work compatible and compa-
rable with others. Also, the samples used in most studies
are not sufficient or diverse enough to validate their pro-
posed methods. To make our study comparable with the
available studies we have used the ABIDE 1 dataset [31].
The ABIDE 1 consists of rs-fMRI images, structural MRI
images (T1-weighted) and phenotypic information of the
1112 subjects, among which 539 are ASD while 573 are TC
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subjects. The data are collected from 17 different sites and
stored together. The ABIDE 1 dataset is a very complicated
dataset to work with because of the heterogeneity of the
subjects (samples). The variances between inter-site data are
pretty significant as different sites of ABIDE 1 acquired their
data independently and used different scanners or scanning
parameters. In Table 1, the details about the scanning param-
eters are given. To make our study consistent with existing
studies [8], [27], [29], we have used the same 871 samples
from the ABIDE 1 dataset. Out of 871 subjects, 403 are
ASD subjects while 468 are TC subjects. The phenotypic
information of 871 samples is given in Table 2. As we can see
from both Table 1 and Table 2, the ABIDE 1 dataset covers
a wide range of scanning parameters and subject ages. As a
result, there is very less similarity between intra-site data,
which makes it so hard to work with.

B. MRI DATA PREPROCESSING

Before any downstream analysis, some preprocessing should
be applied to rs-fMRI images. We have used AFNI (Anal-
ysis of Functional Neurolmages) [32] and FSL (FMRIB’s
Software Library) [33] for the image preprocessing. Both
of them have a wide range of toolboxes for the neuroimag-
ing analysis. Our preprocessing pipeline uses both structural
(T1-weighted) and functional (rs-fMRI) images. At first,
we have removed the spikes in time series measurements
caused by the sudden movements of subjects using an AFNI
function called 3dDespike. Then 3dAutomask and 3dSkull-
Strip of AFNI are used to remove the skull to acquire only
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TABLE 2. Phenotypic information of the 871 subjects.

Sites Age Count Total
(Years) ASD TC

CALTECH 17.0-56.2 5 10 15
CMU 19.0 - 40.0 6 5 11
KKI 8.0-12.8 12 21 33
MAX_ MUN 7.0 -58.0 19 27 46
NYU 6.5-39.1 74 98 172
OLIN 10.0 —24.0 14 14 28
OHSU 8.0-15.2 12 13 25
SDSU 8.7-17.2 8 19 27
SBL 20.0 — 64.0 12 14 26
STANFORD 7.5-12.9 12 13 25
TRINITY 12.0-25.9 19 25 44
UCLA 1 84-179 37 27 64
UCLA 2 9.8-16.5 11 10 21
LEUVEN 1 18.0 -32.0 14 14 28
LEUVEN 2 12.1-16.9 12 16 28
UM 1 82-19.2 34 52 86
UM 2 12.8-28.8 13 21 34
PITT 9.3-352 24 26 50
USM 8.8-50.2 43 24 67
YALE 7.0-17.8 22 19 41
Total 403 468 871

brain images from functional and structural MRI images,
respectively. After that, we have used the MCFLIRT func-
tion of FSL, to correct motions in the functional volumes
on specific time series and calculated the mean functional
volume. For MCFLIRT, the normalized correlation ratio is
used as the cost function, and the sinc interpolation is used
for resampling to increase the classification accuracy by
increasing the resolution of images [34]. FLIRT of FSL
is used to register rs-fMRI images to the standard space
MNI 152, which is a high-dimensional nonlinear average
registration of 152 T1-weighted MRI images. At first, an rs-
fMRI image is registered to its corresponding T1-weighted
image. Then the T1-weighted image is registered to the MNI
152 standard space [34], [35]. The full width half maximum
(FWHM) Gaussian kernel of Smm is then applied to make
the images smoother. To align the volumes of each time
series, images are rotated, translated, scaled, and skewed
in X, Y, and Z directions of the MNI 152 standard space.
We have then regressed out the six parameters of rigid body
movements, i.e., rotation and translation in the X, Y, and
Z directions, to minimize the effect of body movements.
We have also regressed out the average white matter (WM)
and cerebrospinal fluid (CSF). For this process, at first a T1-
weighted image is segmented using FAST of FSL [36] and
then 3dMaskave of AFNI is used to calculate the average
of the time-series measurements. After that, the regression of
six rigid body movements, WM and CSF are done by AFNI
functions 3dConvolve and 3dREML(fit. To decry the effects
caused by the heartbeat and respiration a bandpass filter with
the passband of 0.01Hz to 0.1Hz is applied to the image.

C. BRAIN NETWORKS
As mentioned, a network consists of nodes and edges while
nodes are connected by edges. To construct a network
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representing a human brain from MRI images, one of the
common problems is defining nodes and edges [37], [38] on
which the complexity of a network depends. If nodes and
edges are not defined properly, the network might become too
complex to analyze [39]. Two of the most popular approaches
to define a network are voxel-based approaches [34], [35] and
ROI based parcellation schemes [23], [27]. In a voxel-based
approach, each voxel of an MRI image is considered as
a node and the connection between each voxel is as an
edge [42], [43]. However, in this approach, it is ignored that
ROIs rather than very small portions (voxels) contribute to the
functionality of brain [44], [45]. In an ROI based parcellation
scheme, a brain is divided into a number of ROIs. Each
ROI is considered to be a node, and connections between
ROIs are edges. ROIs can be defined anatomically, which
means ROIs are based on some anatomical part of a brain,
i.e. amygdala, cortex, sulci, gyri, and so on [34], [43]-[45].
There is also some predefined anatomical atlas popular in
studies of neuroimages, where the cortex is partitioned based
on the anatomical features. Desikan atlas containing 34 cor-
tical ROIs in each hemisphere [48], Automated Anatomical
Labeling atlas [49] containing 116 ROIs, DKT 40 atlas [50],
Destrieux atlas [51] are some of the predefined atlases. These
atlases work well to build structural networks based on the
structural property of brains [50]-[53]. Also, these atlases
cover large brain regions in their mentioned ROIs, and large
brain regions contain multiple functional regions which can
make the network complicated and distort the actual property
of brain networks [26], [39]. In this study, we adopt the
264 ROIs based parcellation scheme, as proposed in [26].
These 264 regions are selected because these regions are
found active in fMRI images when participants were asked
to perform specific tasks. With this parcellation scheme,
we have divided a brain into 264 ROIs, and each ROI is
defined as a Smm sphere centered at the MNI coordinate point
of 264 regions. Using the FSL FLIRT they are then registered
to the functional space. These 264 ROIs consists of all the
nodes of a brain network.

In a brain network, an edge indicates a particular relation-
ship between a pair of nodes. In the structure network derived
from T1-weighted images, an edge between two nodes is
weighted by the number of fibers between two ROIs [18].
In a functional brain network derived from rs-fMRI images,
an edge between two ROIs is typically weighted by the PCC
of the time series measurements [56]. The PCC, ry, between
two time series x and y is calculated as follows

S
2. b =) =)
b=1
I'xy = (1)
3 -2 [ 2
\/Z (xp — X) \/Z b =)
b=1 b=1
where s is the length of time series, x;, and yj are the b-th
component of x and y, respectively, X and y are the means

of x and y, respectively. The PCC ranges from +1 to —1.
The positive PCC value is interpreted as both the ROIs are
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similarly active at the same time for the same neural cause.
The more the similarity of the activation, the larger the PCC
value is. On the other hand, a negative PCC value means
the activation of ROIs are different, i.e., one ROI is more or
less active than the other one [57], and it increases with the
dissimilarity of the activation of ROIs.

To represent a brain network we have derived a 264 x
264 connectivity matrix, where each row or column corre-
sponds to a node in the network, and each element is the edge
weight between two corresponding nodes.

D. FEATURE EXTRACTION AND FEATURE SELECTION

Rather than analyzing a connectivity matrix directly, a com-
mon approach is to threshold the connectivity matrix and
remove edges with negative PCC values. The biological sig-
nificance behind this approach is that positively correlated
ROIs tend to cluster together, which gives information about
ROIs responsible for neural functions [58], [59]. However,
it is shown in [58]-[60], negatively correlated ROIs can be
incorporated into the study to get a better understanding of
neural activities. In our study, we have taken into account
the contribution of both the positive and negative edges,
i.e., edges representing positive PCC values and negative
PCC values, respectively. Because a negative correlation
doesn’t mean that there is no connection between ROIs.
Instead it indicates ROIs have an anti-correlation [61]-[63].
Further, the thresholding can be applied to the connectivity
matrix to remove weak edges, i.e. edges with small absolute
PCC values. In practices, thresholding a connectivity matrix
to remove weak edges plays a significant role in how a
network is going to be defined, which affects the features
that are extracted from the network. If no thresholding is
applied to the connectivity matrix, then all the regions are
connected with each other. The contribution of a weak edge
and a strong edge (edges representing large absolute PCC
values) is considered the same, which may not be reasonable.
Thresholding the weak edges disconnects some ROIs from
each other. Increasing the threshold value, more ROIs are
disconnected from each other. In this study, for n nodes,
we have computed an adjacency matrix, A = (a;;),,, by
thresholding the elements of the connectivity matrix, CM =
(cmy ), using different threshold values T > 0, as follows

1, lf cm; j >T
—1, lf cm; j <-T

ajj = 0. ifizj (2)
0, otherwise

From the adjacency matrix, we have calculated the degree
matrix, D = (d; ), , as follows

n
aii, ifi=j
dij = 2w iz 3)
0, otherwise

The Laplacian matrix, L = (I;),,,, which is the difference

between the degree matrix D and the adjacency matrix A and
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it is calculated as follows

d;j, ifi=j

lij= e “
—aij, fiF#]

Features are extracted from these matrices for training the

classifiers. Specifically, eigenvalues are calculated with the

Laplacian matrix and all the other features are calculated with
the adjacency matrix.

1) EIGENVALUES
The eigenvalues A of a matrix M can be obtained by solving
its following characteristic equation

PO) =det(M —Al) =0 5)

where [ is an identity matrix with the same size of M. The
spectrum (set of all eigenvalues of a matrix) is a represen-
tation of the key information in a matrix. The spectrum is
unique for any given matrix. It is shown in [66] that spectra
can be used to measure the similarity. Specifically, if the
spectra of the two matrices are strongly correlated, then the
matrices are very similar or strongly correlated.

The connectivity matrix is a representation of a brain net-
work of a subject. All brain networks of subjects with ASD
should be more similar than those with TC, and vice versa.
Therefore, spectra calculated from connectivity matrices of
all ASD subjects are more similar than those with TC sub-
jects, and vice versa.

In [18], [67], different centralities are studied for the diag-
nosis of ASD, but the classification accuracy is poor. It indi-
cates a more discriminant set of features can increase the
classification accuracy. In this study, we have defined the
spectra of Laplacian matrices as a large part of raw features
for machine learning algorithms to establish a better ASD
diagnosis process with a higher classification accuracy.

2) TOPOLOGY CENTRALITIES

Besides the spectra of the Laplace matrix, we have also used
the topological properties of a network as features. We have
calculated several topology centralities of brain network such
as global and local efficiency, average path length, graph
strength, assortativity, clustering coefficient, and the average
degree of a network. However, after the feature selection
algorithm (in Section 3) along with the part of spectra, only
the assortativity, the clustering coefficient, and the average
degree are included in the final feature set. Therefore, in the
following, we only describe how to calculate these three
centralities.

a: ASSORTATIVITY

The assortativity (denoted by p) evaluates the propensity of
nodes to associate with each other based on their degree inside
a network [68], and it is calculated as the cross-correlation
of the degree of every pair of the nodes connected through
an edge. To measure the assortativity at first the adjacency
matrix A for n nodes is transformed to A = (@ij), s, s
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follows

l,ifa,',j >0

aii = 6
" {0, otherwise ©)

Then the assortativity is calculated as follows
LS jer dis) = [ K ey )|
k i,jeV “i-%j k i,jevV 2\%*-%y

2
e 3@ +d2) = [ (Zigev 3+ )|
)

where V is the set of nodes and E is the set of edges, i and
j are any two nodes in the upper triangle of A connected
through anedge and i, j € V, k is the number of total non-zero
elements in the upper triangle of A, d; and d; are the respective
degrees of nodes i and j. The assortativity is calculated using
the MATLAB function defined in [67].

In some networks, nodes that have some similarity tend
to have more connections [69]. There are different indices
to measure the similarity, but most nodes connect to nodes
that have a similar degree [70]. Therefore, the assortativity
is a measurement of how nodes in a network are associating
with each other. If there is similarity in the brain functional
activity of ASD subjects, the association of ROIs with each
other should also be similar and so is the assortativity for ASD
subjects. However, due to the difference in the functional
activity, the assortativity of TC subjects should be different
from ASD subjects.

b: CLUSTERING COEFFICIENT

The clustering coefficient of a node is the fraction of triangles
around it [71], and it measures the local connectivity of a
network. For the calculation of the clustering coefficient, the
adjacency matrix A is transformed to A, similar to the assor-
tativity. Then the number of triangles of each node (denoted
by Bg) is calculated as follows

Bc = diag(A x U(A) x A) (8)

where diag is the MATLAB function which returns the diag-
onal elements of the matrix and U(A) is the upper triangular
matrix of A. Finally the clustering coefficient, C is calculated
as follows

1 ,8G ®
= gz ixa=n) ©)

where for a network G = (V, E), f is the total number of
nodes in the network and d; is the degree of node i.

The high average clustering coefficient of a network is
interpreted as densely connected local clusters [72]. The clus-
tering coefficient is more evident in the network that shows
small-world properties. As brain networks have small-world
properties, the clustering coefficient could help exploit if the
regions tend to cluster more or less together in ASD than
TC [73], [74]. Also, as mentioned in [18] ASD subjects have
lower clustering coefficient than those TC subjects.
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¢: THE AVERAGE DEGREE OF A NETWORK

The average degree (denoted by Q) of a network is the ratio
of the number of all the edges to the number of all nodes in
a network and it can be calculated from the adjacency matrix

A = (aij),, as follows

2 . .
Q = f X Z/;:l Z;:l ai,j (10)

where f is the total number of nodes in the network.

The adjacency matrix is a representation of the correlation
and anti-correlation between different regions of a brain. For
a particular subject type (say ASD or TC), there should be
similarity in the functional activity of brain regions and the
average degree of a network is expected to capture it.

We have normalized the topological centralities before
applying the feature selection algorithm. We have separately
normalized the centralities as follows

;L z — min(z)
" max )

(1)

— min(z)

where z is an original value and z is the normalized value.

3) FEATURE SELECTION

The efficiency of a machine learning algorithm greatly
depends on features. The more discriminant the features are,
the better machine learning algorithms can perform. Unnec-
essary features can make models complicated and overfitted
while reducing the efficiency of machine learning algorithms.
These problems can be addressed by using a feature selection
algorithm [75]. The primary purpose of feature selection
algorithms is to find the minimal subset of the most discrimi-
nate features [76] while improving the prediction accuracy of
models [77].

The sequential feature selection is a very popular and
straightforward feature selection algorithm. There are two
variants of feature selection algorithms. One is the forward
selection, where features are sequentially added to a subset of
features selected from the original feature set until adding any
further features doesn’t increase the classification accuracy.
The second one is the backward feature selection, where the
unnecessary features are removed sequentially from the orig-
inal feature set until removing any further features doesn’t
increase the classification accuracy. We have used the back-
ward sequential feature selection algorithm in this study.
Specifically, MATLAB function “sequentialfs” is used to
perform the backward sequential feature selection algorithm
with LDA and the 10 fold cross-validation.

The “‘sequentialfs” algorithm divides the data only once
during the cross-validation step and tries to optimize the clas-
sification accuracy with those sets. This algorithm often stops
before reaching the optimal feature subset. To resolve this
problem, we have implemented an iterative method. During
each iteration, the “‘sequentialfs” is used to create a feature
subset by removing redundant features from the previously
remained feature subset. Then, the 10-fold cross-validation
with LDA 1is performed on the remained feature subset.

128479



IEEE Access

S. Mostafa et al.: Diagnosis of ASD Based on Eigenvalues of Brain Networks

The initial feature set = All
features
Previous_Accuracy =0

v

Feature_Set=Temp_Feature_Set (j)
Previous_Accuracy = Temp_Accuracy (j)

v

Remove features using
“sequentialfs”

v

v

New_Feature_Set = Remained features
after “sequentialfs”

Feature_Set = New_Feature_Set
Previous_Accuracy = New_Accuracy

v

. True
i=i+1
T

New_Accuracy = Average of the
accuracy of each step

Measure accuracy after

10-fold cross validation

with LDA on remained
features

True
J

New_Accuracy < Previous_Accurac

False—

Temp_Accuracy (j) >

D —

Previous_accuracy

False

@ False

Temp_Accuracy (j) =
Average of the accuracy of

True

Remove features using
“sequentialfs”

v

True
\ 4

each step
T

False!

Feature_Set

Temp_Feature_Set (j) = Remained
features after “sequentialfs”

Measure accuracy after 10-
fold cross validation with
LDA on remained features

End

FIGURE 2. Flowchart of the feature selection algorithm. Input of the algorithm is the feature vector containing all the features and output is the

minimum set of features with the maximum accuracy.

We have repeated the 10-fold cross-validation 10 times using
the same feature subset, and the average of the classifica-
tion accuracy of each step is considered as the classifica-
tion accuracy of that subset. Running the cross-validation
multiple times can ensure that the classifier isn’t biased by
any particular set of data. If the new accuracy, which is the
accuracy of the current step after the cross-validation, is lower

128480

than the accuracy of the previous step then, we have further
removed the features using ‘“‘sequentialfs” from the newly
remained feature subset. We have performed the removal of
feature three times, and each time ‘‘sequentialfs” is used
on the previously remained feature subset. We have used
this step to inspect the accuracy of the next three iterations.
Because, sometimes the accuracy of the next step is lower
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FIGURE 3. Change of the classification accuracy during each iteration of the feature selection algorithm.

than the current step, but the accuracy of the consecutive steps
is better than the current step. This can ensure the algorithm
wouldn’t stop before reaching a minimum subset of features
with the maximum accuracy. Again, the accuracy of the three
steps is measured by averaging the accuracy of 10-fold cross-
validation over 10 times. Now, if the accuracy of any of the
three steps is higher than the new accuracy, then the features
of that step are considered as the feature subset for the next
iteration. However, if the new accuracy is lower than the
previous accuracy and the accuracy of the following three
iterations are also lower than the new accuracy, the current
feature subset is considered to be the final set of features
for classifiers. The feature selection algorithm is illustrated
in Fig. 2.

One of the main reasons that machine learning algorithms
are overfitted is by using high dimensional feature sets [22].
Most times, the study of the neuroimages includes a high
dimensional feature set due to the use of a large number
of voxels, and ROIs. As a result, there are noise or unnec-
essary features in the feature set. The noise in the feature
set profoundly biases the performance of machine learning
algorithms. Machine learning algorithms try to find a pattern
in the feature set. However, if there are too many noises in the
feature set then machine learning algorithms search for a pat-
tern in the noise [78], which isn’t an actual representation of
data. Therefore, excessive features overfit machine learning
algorithms by introducing noise into the feature set.

It can be summarized from Table 3 that the number of
selected features has reduced significantly from the initial
267 raw features after applying the feature selection algo-
rithm. Fig. 3 shows the change of the classification accu-
racy during each iteration of the feature selection algorithm.
From Fig. 3, we can see that the classification accuracy
has increased by removing the noises from the feature set.
Fig. 4 shows a comparison of the classification accuracy
with the error bars before and after applying the feature
selection algorithm for different thresholding conditions.
From Fig. 4 we can say that the classification accuracy has
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TABLE 3. Number of features selected after using feature selection
algorithm.

Thresholding Condition Number Of Selected Features
After Feature Selection

All edges with positive PCC 88
All edges with negative PCC 76
T=0 66

T=01 103

T=02 62

T=03 78

T=04 77

T=05 111

T=06 37

W Accuracy Before FS W Accuracy After FS
100

90

80
0 T=01 T=0.2 T=03 T=04 T=05 T=06

Alledges Alledges  T=
with wih

positive  negative
pcC pcC

@
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ACCURACY (%)
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-
o

THRESHOLDING VALUES

FIGURE 4. The classification accuracy of LDA before and after applying
the feature selection (FS) algorithm.

increased for all the thresholding conditions after applying
the feature selection algorithm, which indicates that our pro-
posed method can avoid the overfitting problem.

Ill. RESULTS AND DISCUSSION

Starting with the full spectra and topology centralities from
brain networks of 871 subjects in ABIDE 1, we have applied
the feature selection method to select features and then train

128481



IEEE Access

S. Mostafa et al.: Diagnosis of ASD Based on Eigenvalues of Brain Networks

TABLE 4. Comparison of different thresholding values.

Thresholdin LDA (%) LR (%) SVM (%) KNN (%) NN (%)
Condition & ACC _ AUC __ _ACC _ AUC _ ACC _ AUC _ ACC _ AUC _ ACC _ AUC
(stdv)  (stdv)  (stdv)  (stdv)  (stdv)  (stdv)  (stdv)  (stdv)  (stdv)  (stdv)

. ) 67.1 737 68.1 73.7 66.4 711 65.1 73.6 66.0 72.0

All edges with positive PCC 0.7) (0.5) (0.6) (0.8) (0.3) (0.3) (0.6) (0.8) (4.5) (4.2)
. . 68.8 73.5 68.1 73.4 65.9 70.3 632 712 64.4 68.7

All edges with negative PCC 0.7) (0.5) (0.8) (0.5) (0.5) (0.7) (0.8) (0.4) (5.9) (7.8)
- 69.5 75.5 70.0 75.7 65.5 70.2 62.0 70.5 66.0 73.0
04) (05  (0.8) (0.8 (0.5) (0.4) 0.9 (05 45 (28

o1 77.0 81.8 75.9 81.1 75.4 80.8 72.4 79.8 713 775

: 04)  (06) (0.5  (0.6) (0.8) (0.4) 03) (04 (58 (56

= o2 777 83.1 76.6 82.9 75.5 80.6 737 813 71.7 78.7

: 06  (03) (0.6  (03) (0.4) (0.5) 08 (05 (@9 (33

=03 74.1 779 738 778 71.3 78.2 71.5 78.1 68.3 745

: 05 (03 (07 (04 (0.3) (0.4) 0.8)  (0.6) (40  (33)

= o4 76.4 81.1 75.8 80.8 75.7 80.9 722 79.7 713 77.1

: 07 (06 (07  (04) (0.4) 0.3) 0.7 (05 (48 (@5

o 75.3 80.4 74.5 79.7 75.2 79.9 722 79.2 70.1 76.9

: 07 (05 (07 (05 (0.5) (0.3) 05 (04 3G (@0

e 06 76.8 81.4 76.6 80.9 75.6 80.8 73.0 80.5 68.4 75.5

: 05 (05  (02) (0.7 (0.4) (0.5) 0.6 (05 (48 (3.9

different machine learning algorithms with the selected fea-
tures. In this section, we discuss the experimental results of
our study.

The features we have used in this study are derived from
the connectivity matrix after removing weak edges. Actually,
it is crucial to find an optimal thresholding value which
removes most weak edges while losing least strong edges.In
our study, to find the optimal thresholding value we have
experimented with different thresholding values T from 0 to
0.6, with the increment of 0.1. To emphasize the necessity of
combining both the negative PCC values and positive PCC
values, we have also experimented with edges with only
positive PCC values and the edges with only negative PCC
values. To calculate the adjacency matrix, A = (g; ;) for edges
with only negative PCC values, formula (2) is modified as
follows

0, ifcmj>0

12
1, ifemij<0 (12)

ajj =

Note that all adjacency matrices derived with only positive
or only negative PCC values have an eigenvalue of zero,
which is discarded before applying the feature selection.

Our hypothesis is that the features selected with our pro-
posed method can improve the performance of all machined
learning method. Therefore, we have applied our selected fea-
tures to several commonly used machine learning methods,
which include LDA, logistic regression (LR), support vec-
tor machine (SVM), K-nearest neighbor (KNN) and neural
network (NN), to classify ASD and TC subjects. LDA, LR,
SVM, and KNN are implemented in MATLAB while NN is
implemented in PyCharm with the python.

KNN is implemented with the cosine as the distance met-
ric while SVM is implemented with the medium Gaussian
kernel. LR with the default value is implemented on the
classification learner app of MATLAB [79]. NN with one
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TABLE 5. Accuracy comparison of proposed method and state of the art
classification methods.

Methods Accuracy (%)
Wong et al. [§] 71.1
Dvornek et al. [6] 70.1
Heinsfeld et al. [23] 70.0
Eslami et al. [24] 70.1
Abraham et al. [27] 66.8
Khosla et al. [28] 73.3
Parisot et al. [29] 69.5
Xing et al. [69] 66.8
Proposed study with NN 71.7
Proposed study with KNN 73.7
Proposed study with SVM 75.7
Proposed study with LR 77.0
Proposed study with LDA 71.7

input layer, one hidden layer, and one output layer is built
with TensorFlow. In the input layer, the number of neurons
equals the number of selected features. ““Softmax” is used
as the activation function after the input layer. Then a fully
connected hidden layer with 2 neurons is used. Rather than
using the stochastic gradient descent, we have used the adam
optimizer to update the weights. For machine learning algo-
rithms, we have used the 10-fold cross-validation to measure
accuracy (ACC) and the area under the receiver operating
characteristic (ROC) curve (AUC). For NN we have split
the data into a training set (80%), a testing set (10%), and
a validation set (10%). We have used the training set and
testing set to create the NN model and the validation set
to measure the final accuracy. To show the stability of the
classification process, we have repeated experiments 10 times
for all machine learning algorithms. The average ACC and
AUC, along with the standard deviation (stdv) of experiments
are shown in Table 4.
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TABLE 6. Classification accuracy and AUC of the different sites of ABIDE 1.

LDA (%) LR (%)
Sites Total Subjects Tgtal Features
Subjects After FS ACC AUC ACC AUC
ASD TC

PITT 24 26 50 15 100 100 100 100
OLIN 14 14 28 14 100 100 92.9 99.0
OHSU 12 13 25 2 100 100 100 100
SDSU 8 19 27 7 92.6 96.0 96.3 99.0
TRINITY 19 25 44 19 97.7 100 97.7 100
UM | 34 52 87 79 97.7 97.0 87.2 90.0
UM 2 13 21 34 14 100 100 97.1 99.0
UM 47 73 120 54 92.5 98.0 942 95.0
USM 43 24 67 24 98.5 100 97.0 99.0
YALE 22 19 41 5 100 100 100 100
CMU 6 5 11 3 100 100 100 100
LEUVEN 1 14 14 28 11 96.4 100 96.4 100
LEUVEN 2 12 16 28 13 100 100 100 100
LEUVEN 26 30 56 27 100 100 96.4 100
KKI 12 21 33 7 97.0 100 93.9 99.0
NYU 74 98 172 5 99.4 100 100 100
STANFORD 12 13 25 12 100 100 100 100
UCLA 1 37 27 64 13 100 100 96.9 100
UCLA2 11 10 21 9 100 100 100 100
UCLA 48 37 85 17 100 100 100 100
MAX_MUN 19 27 46 24 100 100 100 100
CALTECH 5 10 15 6 933 100 93.3 100
SBL 12 14 26 1 100 100 100 100

Machine learning algorithms perform better when the fea-
tures are discriminating. The more discriminant the fea-
tures are, the better machine learning algorithms perform.
The discriminate property of the proposed features can
be examined in Table 4. From Table 4, we can see that
removing the weak edges produce better results than either
all the edges with positive PCC values or all the edges
with negative PCC values. All machine learning algorithms
achieved their best performance with the thresholding value
of 0.2. LDA with the thresholding value of 0.2 outper-
formed the state-of-the-art diagnosis processes. Even ACCs
of LR, KNN, SVM, and NN are better than the state-of-
the-art methods. These results indicate that even using the
most straightforward machine learning algorithms, we have
achieved a better diagnosis process than the state-of-the-art
methods.

Table 5 shows the comparison of the classification accu-
racy of our proposed method and state-of-the-art methods.
One of the major problems of ASD studies is the inconsis-
tency of subjects used in the research projects, which makes
the comparison very hard. To be consistent, we have com-
pared our work with the studies that have used the entire
ABIDE 1 dataset. From Table 5, we can summarize that
with our proposed features all machine learning methods can
achieve a better classification accuracy than the state-of-the-
art methods.
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The inter-site variation of ABIDE 1 dataset is very promi-
nent, as it covers a wide range of age groups, sexes, scanning
parameters, and scanners (Table 1 and Table 2). This repre-
sents the real-world scenario, where the scanner or scanning
parameters cannot be controlled uniformly at different sites
or institutions. However, for a particular institution, they are
very unlikely to have a prominent difference in the scanner
or the scanning parameters. Therefore, the classification of
the intra-site classes is also important. We have also con-
ducted the experiments on the 17 sites of ABIDE 1 database
separately. For the intra-site experiments, we have kept the
threshold value T = 0.2 to be consistent. We have applied
the feature selection method to the dataset from each site,
separately. In all the cases, the number of selected features
is smaller than the number of subjects in the datasets, which
again illustrates the efficiency of the feature selection algo-
rithm to avoid the overfitting issue. ACC and AUC are calcu-
lated based on the 10-fold cross-validation with LDA and LR
and are shown in Table 6. UCLA, UM, and LEUVEN sites
have two different datasets. We have calculated the accuracy
based on each dataset separately and, as well as the entire
dataset. From Table 5, it can be seen that our defined and
selected features are greatly beneficial to classify ASD and
TC subjects in case of the intra-site datasets. Specifically, our
proposed process can diagnose ASD with an average ACC
of 98.5% =+ 2.5% and an average AUC of 99.6% =+ 1.1% for
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all the sites using LDA. At some sites, the accuracy and/or
the AUC have reached 100%. The efficiency of defined and
selected features is illustrated by not only LDA but also LR,
which also has the average ACC of 97.3% =+ 3.3% and the
average AUC of 99.1% =+ 2.3%. Using both LDA and LR,
the average ACC is much better than the average ACC of
63.0% reported in [23], and 52.0% reported in [24].

IV. CONCLUSION

In this study, we have proposed a set of new features for
machine learning algorithms to diagnose ASD based on
rs-fMRI images. We have constructed brain networks from
rs-fMRI images with 264 ROIs as nodes and the PCC values
of their pairwise time-series signals as the weight of edges.
In the next step, we have defined features from the connectiv-
ity matrix. Apart from the traditional network-based features,
such as topology centralities, we have proposed eigenvalues
of the Laplacian matrix of brain networks as new features.
Combining all these features, we have achieved higher accu-
racy than the state-of-the-art methods after applying a feature
selection algorithm, which has also helped to improve the
performance of machine learning algorithms.

To illustrate the effectiveness of the selected features we
have tested with several machine learning algorithms. The
classification accuracy is 77.7% for LDA. The acquired accu-
racy is based on ABIDE 1 dataset, which covers a wide
range of different parameters, which reflects the real-world
scenario. The high accuracy of intra-site data has illustrated
the effectiveness and robustness of our proposed features.
In summary, our proposed study can help diagnose ASD
more accurately and help lessen ASD patient’s burden for
the long run. In the feature, more advanced machine learning
techniques such as reinforcement and deep learning [80], [81]
should be used with our proposed features to build better
classification models.
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