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ABSTRACT Pseudo-random spread spectrum photon counting (PSSPC) is a well-established technique for
three-dimensional (3D) imaging. Based on the pseudo-random spread spectrum photon counting system,
a fast imaging technique that is able to accurately recover multiple depths at individual pixels is presented.
Firstly, a pre-filtering algorithm is used to denoise the original data. Then the accelerated Richardson–Lucy
iterative deconvolution algorithm is introduced. Themethod is based on the principles of vector extrapolation
and does not require the minimization of a cost function. For multi-depth estimation in the presence of
moderate background light, we experimentally demonstrate that our imaging technique outperforms the
existing method. We have successfully improved the range resolution from 21cm to 8cm, thus breaking the
Full Width at Half-Maximum (FWHM) resolution limit. The separation Root Mean Square Error (RMSE)
has been reduced to 3.82cm by the proposed method for the surface-to-surface separation of 8cm. This is
a factor of 4 improvement over the conventional method for multi-depth recovery. Also, our imager has
achieved 0.5cm lateral resolution by distinguishing two squares closely placed 0.5cm apart from each other.

INDEX TERMS Pseudo-random spread spectrum photon counting, deconvolution, accelerated Richardson–
Lucy, separation RMSE.

I. INTRODUCTION
The Pseudo-random Spread Spectrum Photon Counting
(PSSPC) is the combination of two popular and well-
established techniques, namely the Time Correlated Photon
Counting technique and the Pseudo-randomSpread Spectrum
technique [1]–[4]. This technique has the ability to acquire
three-dimensional (3D) structure of a scene in many appli-
cations, such as biometrics [1] and TOF cameras [2], [3].
Shen et al. [5] demonstrated that the 2.5GHz random pattern
bit-stream was well suited for implementation in the one-
dimensional time-of-flight ranging system and the range error
due to different echo energy was calibrated. The PSSPC
technique indeed has some unique benefits compared to
other techniques such as phase shifting, heterodyne, and
frequency modulated imaging technique [6]. These benefits
involve long unambiguous range, the ability to resolve mul-
tiple targets and low mutual interference between devices.
For example, instead of the sinusoidal modulation method,
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applying the PSSPC to the TOF camera solved the range
aliasing problem. B. Buttgen et al. [2] employed eight
such cameras to enhance the range resolution to 12cm at a
range of 7.5 meter. The range resolution is determined by a
pseudo-random binary sequence (PRBS) bit width [7]–[9].
For instance, a bit width of 0.4ns would normally produce a
system with a resolution limited to 6cm under high signal-
to-noise ratio (SNR) assumption and long enough integration
time regardless of systematic transient distortions, if not, this
resolution can be reduced by orders of magnitude. Besides,
objects have complex patterns of light being reflected at
different depths even at a single pixel shown in Fig.1. Each
example of scene indicates that one surface return signal
(the blue dashed line) and the other surface return signal
(the orange dashed line) are collected by the detector shown
in Fig.1 (a) and (b). Then the range profiles are calculated
shown in Fig.1(c). As the surface-to-surface separation of the
squares from the flat board in Fig.1(a) or the gap between
the two squares is small in Fig.1(b), one of the reflections
is obscure (red circle) shown in Fig.1(c). We fail to distin-
guish the two depths estimated from the one-dimensional
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FIGURE 1. Examples of the PSSPC technique imaging scenes in which the
scene response is a sum of responses from multiple reflectors. The
orange dashed line is the reflection of the target 1. The blue dashed line
is the reflection of the target 2 and target 3. (a) Imaging scene with two
objects. (b) Imaging scene with three objects. (c) One-dimensional
multi-depth profile.

range profiles simply by peak detection method. To sum up,
the ability to accurately resolve multiple targets is limited by
several factors, such as high flux of the noise photons, system-
atic transient distortions and complex patterns of light being
reflected from targets. Hence, the imaging accuracy evaluated
by Standard Deviation (STD) or Root Mean Square Error
(RMSE) degrades. Different methods have been devised to
analyze multiple light returns to overcome this problem. This
is known as the problem of multi-depth recovery from full-
waveform measurements [10]–[13].

Several full-waveform approaches in Ref [12] and in
Ref [13] were proposed to interpret the photon detection
data as samples from a distribution of the full-waveform
observation. Although the STMCMC method shows 5 times
faster than the RJMCMC method, it still takes 32s to
reconstruct each range profile for the surface separation of
20cm [13]. It is difficult to bridge both the accuracy and the
speed using such approaches.

Gao and NG [14] applied a blind deconvolution technique
to recover the signal from the multiple scattering effects.
In practice, Richardson–Lucy (RL) deconvolution is consid-
ered to be better than iterative blind deconvolution and has
been proved to be robust and reliable to maintain the profile
edge details [15], [16]. Joel F.et al. introduced the accelerated
RL deconvolution to greatly enhance the resolution of the
intensity modulated continuous wave (IM-CW) lidar [16].
However, RL deconvolution is known as better SNR but
with the risk of amplifying noise [17]–[19]. According to
this problem, Geert.et al. proposed Gauss pre-filtering RL
algorithm [19].

In this letter, we solved the multi-depth imaging prob-
lem using pre-filtering accelerated RL deconvolution method
(PARL) by transmitting pseudo-random bit-stream. Firstly,
Anscombe transformation [20] and wavelet denoising were
applied to the raw data as the pre-filtering stage. Then
the accelerated RL deconvolution (ARL) method [15] was
introduced to accurately recover the multi-depth profiles.
As detailed in Section III, our framework was successful in
accurately reconstructing the depth features of the square
mounted on the flat board with varying separations. The
separation RMSE has been reduced to 3.82 cm from one-
dimensional range profiles for the surface separation of 8cm.
The separation RMSE has been reduced to 3.2 cm for the
surface separation of 10cm.The separation RMSE has been
reduced to 2cm for the surface separation of 12cm. Finally,
the proposed method is succeeded in recovering the image
of the two squares, which are placed 0.5cm apart from each
other and are both 8cm above the flat board. The average per
pixel processing time of the proposed method is measured to
be 0.01 seconds. The computation is carried out by Matlab
and a computer with Intel(R) Core (TM) i7-7700HQ CPU@
2.80 GHz.

II. THEORY
A linear system could be modeled by a set of linear integro-
linear equations that correlates the system output to its input.
Such a system may bring signal distortions when subjected
to systematic transient distortions. Those distortions, often
expressed as system impulse response (SIR), could be cor-
rected by the deconvolution in Eq. (1).

Rxy = H ⊗ f + B (1)

where Rxy represents the Correlation Photon Distribu-
tion (CPD), which is calculated by correlating the refer-
ence sequence x(n) and delayed versions of the transmitted
sequence y(n), depicted in Fig.2 (a). H denotes the SIR and f
is referred to the recovered profile of targets. B indicates the
correlated noise photons.⊗ is the convolution operation. The
target features to be recovered can be expressed as f , which is
broadened by the convolution product of the detector impulse
response and TDC impulse response.

The recovered target profile f here in the conventional RL
method is given by

fk+1 = fk × (
Rxy

H ⊗ fk
∗ H ) (2)

where ∗ indicates the correlation operation.
The acceleration method here we used is premised on

vector extrapolation [15]. Our modified ARL algorithm
PARL is given in Algorithm 1. The accelerated RL (ARL)
method described in Ref [15] is originally used in gray-
scale images restoration and is capable of achieving lower
RMSE and fewer iterations than the conventional RLmethod.
Despite this, it continues to encounter the problem of noise
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FIGURE 2. (a) 3D imaging principle. (Top) The principle of the correlation to obtain the one-dimensional range profile. (Bottom) A bit-stream pulsed
optical source illuminates a pixel of the experimental scene that includes the squares and the flat board. The separation of the squares relative to
the flat board varied from 6cm to 12cm. The gap between the two squares is variable from 0.5cm to 1.5cm. Each square has dimensions 3 cm × 3 cm.
(b) Schematic diagram showing the key components of the imaging system. Two Single Photon Avalanche Diodes (SPADs) in connection with
Time-to-Digital Converter (TDC) were used to detect two channels’ photon stamps. The coaxial transceiver optics consist of the fiber coupler and the
circulator. The two-dimensional rail with the movement range of 30cm×30cm was used as the scanning mechanism.

Algorithm 1 Pre-Filtering Accelerated RL Algo-
rithm (PARL)
Input: Rxy, H , k , kmax

Output: x̂(k)

Initialize: Rxy is denoised to obtain noise-free data set R′xy;
k = 1; α1 = α2 = 0; kmax = 5; x̂(0) = R′xy

Repeat: While k ≤ kmax

f̂ (k) = x̂(k−1) × (
R′xy

H⊗x̂(k−1)
∗ H );

dfk = f̂ (k) − x̂(k−1);
IF k > 2;
αk =

〈dfk−1,dfk−2〉

‖dfk−2‖
2
2

;

End IF;
x̂(k) = f̂ (k) + αk (f̂ (k) − f̂ (k−1));
k = k + 1;

amplification. Unless modified to cope with noise, it is usu-
ally difficult to determine when to halt the iteration at all the
pixels to prevent oscillations and divergence from the desired
results by excessive acceleration.

In order to solve this problem, in this letter, prior to the
deconvolution, the CPD data was denoised in three steps.
First, the noise variance was stabilized by applying the
Anscombe transformation. This step efficiently transforms
Poisson noise into white Gaussian noise. Second, the magni-
tude of the noise was reduced by applying wavelet denoising
using the MATLAB function wden with Coiflet wavelets of
order 1. Third, an inverse transformation (Anscombe inverse
exact unbiased transformation) was applied to obtain R′xy
as an estimate of the original noise-free data set. Then the
ARLmethodwas introduced to reconstruct the range profiles.
Algorithm 2 is Correlation Deconvolution Imaging. After

Algorithm 2 Correlation Deconvolution Imaging
Input: Rxy, H , ε

Output x̂opt
1. Deconvolution: Obtain x̂opt (i) : i ∈ [1, 2,

· · · , n] by the PARL.
2. Hard thresholding: For i = 1 : n

IF
∣∣x̂opt (i)∣∣ < ε

x̂opt (i) = 0;
End IF;
End For;
where ε is a small positive number.

3. Depth averaging: Identify the two-time bins’
indexes corresponding to two peaks of x̂opt
respectively and Replace each value by the
center of mass method [21].

solving x̂opt using Algorithm 1, we apply post-processing on
x̂opt that sets small residual nonzero elements to zero (ε =
0.8), detects two peaks by using the Matlab function find-
peaks and averages closely-neighboring nonzero elements
into a depth by the center of mass method (CM). This end-
to-end processing is summarized in Algorithm 2.

The CM method described in Ref [21] is expressed as:

dCM =

∑
T arg etbins

x(i)τ (i)

∑
T arg etbins

x(i)
(3)

where τ (i) is the time value corresponding to the i th
index, x(i) is the amplitude corresponding to the i th index.
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The separation between two objects is given by:

d̂ = (dCM1 − dCM2)×
c
2

(4)

where c is the speed of light.
Let d̂ be the estimated separation at a pixel obtained

by either the CM method or our proposed framework.
dactualseparation is defined as the true distance between two
separated targets. Then, the separation RMSE to quantify the
recovery performance of the two-path signal overmmeasure-
ments is expressed as:

RMSE =
c
2

√√√√ 1
m

m∑
n=1

(d̂n − dactualseparation)
2 (5)

The separation RMSE is used to assess the imaging accu-
racy and to determine when to discontinue the PARLmethod.
If d is defined as the average distance between two separated
objects. Then, the separation STD is expressed as:

STD =
c
2

√√√√ 1
m

m∑
n=1

(d̂n − d)
2 (6)

III. EXPERIMENT
A. SYSTEM IMPULSE RESPONSE
Figure 2 (b) shows a schematic diagram of our experimental
imaging system using the PSSPC technique. Background
light using an incandescent lamp was injected. An ANALOG
DEVICE (ADI) series Vertical Cavity Surface Emitting Laser
(VCSEL) with center wavelength of 850 nm was driven by
2.5GHz bit-stream as the illumination source. The bit-stream
was in the form of m-sequence. Two SPADs in connection
with a Pico Quant 300 TDCwere used to detect two channels’
photon stamps. The two SPADs are Perkin-Elmer commercial
Single Photon Counting Modules with quantum efficiency
η = 0.45, timing jitter less than 600ps, and dark counts
less than 2× 102 c/s. The Coaxial Transceiver Optics consist
of the fiber coupler and the circulator. We observed that the
diameter of the laser spot cast on a planar object at about
7 m distance was around 6.8 mm. The two-dimensional rail
with the movement range of 30cm×30cm was used as the
Scanning Mechanism.

In Ref [16], the SIRwas derived from taking the theoretical
Maximum Length (ML) sequence, autocorrelation function,
then filtering it with a periodic Gaussian filter, regardless of
the detector and other system components’ transient distor-
tions. In this letter, the SIR was measured by our system we
presented in Fig.2 (b). Two fiber couplers were used. One of
the two was used to transmit the light beam attenuated by
fiber attenuators prior to being directly collected by the other
fiber coupler. With the dark counts less than 2 × 102 c/s,
two channels’ time stamps were collected and correlated.
By 50 measurements the average SIR was calculated and
depicted in Fig.3.

The average SIR in Fig.3 is fitted by the Gauss fit
method [22], [23]. The fitted SIR is about 1.4ns Full Width

FIGURE 3. The averaged SIR (blue solid line) and the gauss fitted curve
(red dashed line). An acquisition time of 0.004s was required and the
dark counts were 200 c/s (counts per second).

at Half-Maximum (FWHM), suggesting that 21cm surface-
to-surface resolution can be achieved without using any sig-
nal processing [24]. In the presence of moderate noise and
systematic transient distortions, two peaks may sometimes
be partly or entirely overlapped and the peak separation is
obscure. New signal processing methods should be intro-
duced to improve the range resolution.

B. ONE-DIMENSIONAL RANGE PROFILES RECOVERED
WITH VARYING SEPARATIONS
To validate the multi-depth estimation of our proposed
method, one of the two squares mounted on the flat board
shown in Fig.2 (a) was used as one-dimensional experimen-
tal scene. The scene was positioned at a range about 7m
from our system. The laser spot was projected on the depth
boundaries of the two reflective objects: the square and the
white flat board. The objects’ reflection principle is shown
in Fig.1 (a). The separation of the square from the flat board
varies from 6cm to 12cm. Two channels’ photon stamps
were acquired within 0.004s dwell time. The photon counting
rate was 1.5 × 106 c/s. An average of 6000 photon detec-
tions at each pixel were comprised of 600 noise photon
counts and 5400 signal photon counts. Then the CPD was
calculated.

After acquiring a particular scene’s CPD, Algorithm 2 was
applied. Besides, our initialization x̂(0) was chosen to be
R′xy and the parameter ε was chosen to be 0.8. The H is
set to be the average SIR we measured. The halting itera-
tion number was chosen based on the minimum separation
error. To illustrate the role played by the proposed method,
Fig.4 (b), (e), (h) and (k) show the intermediate PARL out-
put. According to the PARL output in Fig.4 (b), (e) and (h)
from 10ns to 20ns, two peaks have been separated. After
the hard thresholding, Fig.4 (c), (f), (i) and (l) show
the output of Algorithm 2. The display range of x-axis
in Fig.4 (c), (f), (i) and (l) is set from 8ns to 22ns. Each time
bin’s width is 0.4ns. It is observed that our proposedmethod is
capable of resolving the separation of 6cm shown in Fig.4 (c).
However, from Fig.4 (c), the estimated separation is 12.2cm
by the depth averaging in Algorithm 2, which is considered
an error of 6.2cm. Note that if the separation between the
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FIGURE 4. Three examples of raw CPD data collected from the square mounted on the flat board with variable separations of (a) 6cm, (d)
8cm and (g) 12cm. The solution of the PARL in Algorithm 1 for the surface separations of (b) 6cm, (e) 8cm and (h) 12cm. Note that the two
peaks are separated and the extraneous background counts are reduced. The final result by Algorithm 2 for the surface separations of (c)
6cm, (f) 8cm and (i) 12cm. (j) The raw CPD data collected from the front side of the square. (k) One depth’s reconstruction by PARL.(l) One
depth’s reconstruction by Algorithm 2.

square and the flat board is small (below 6cm), then our
algorithm produces a large error towards the true separation.
After the depth averaging, for the separations of 8cm [see
Fig.4 (d)] and 12 cm [see Fig.4 (g)], the estimated separa-
tions are 9.5cm [see Fig.4 (f)] and 12.7cm [see Fig.4 (i)]
respectively. The peak positions determined by the proposed
method are shown to approach the true peak positions. Then

the laser spot is projected on the front side of the square.
It means that the light reflected from only one target contains
a single depth. Fig.4 (l) shows the single-depth reconstruction
by Algorithm 2.

With Algorithm 1, it is certain that there is an optimal
solution along with the extension of the iteration number.
Thus, in Fig.5, the statistical record with the 8 cm data set
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FIGURE 5. RMSE curves versus maximum number of iterations with
variable separations of 8cm (dashed line),10cm (solid line) and 12cm
(dotted line) by the proposed method.

(dashed line), 10cm data set (solid line) and 12cm data
set (dotted line) about the setting of maximum number
of iterations demonstrates the robustness of the proposed
method. Here, the vertical axis represents the separation
RMSE of 50 samples and the abscissa corresponds to the
maximum number of iterations. The number of iterations at
which the minimum RMSE is achieved depicted in Fig.5.
Thus, we require an average of 5 PARL iterations (kmax = 5)
per pixel.

The recovered range profiles in Fig.4 seem to demonstrate
that the proposed method works. Then, to further explore
the advantages of the proposed method, with the datasets
in Table 1, the statistical record of 50 samples about the
separation RMSE and the separation STD were made to
evaluate the accuracy and stability of the results under the
current settings. To illustrate the proposed method’s advan-
tage, the CM method is used to compare with Algorithm 2.
Table 1 presents the statistical record of the proposed method
and the CM method. As shown in Table 1, the separation
STD has been improved more than the separation RMSE by
the proposed method. For both algorithms, the RMSE and
STD become larger as the separation becomes small. The CM
method is a satisfactory approach for well-separated peaks;
however, as the two surface return signals merge, the process
becomes increasingly problematic. The larger error of depth
separation estimated by the CM method is attributed to the
inability to determine the time of flight accurately due to
the superposition with the SIR and the fluctuation of back-
ground noise. Our proposed method successfully resolves
the overlap peaks and outperforms the CM method, but it
causes larger RMSE when the separation is 6cm shown
in Table 1.

For the separation of 10cm, the solution of the proposed
method demonstrates separation RMSE of 3.2cm and the CM
method gives 15.02cm. The proposed method thus demon-
strates an improvement in the separation RMSE by a factor
of 4.7. With respect to the separation of 8cm, the solu-
tion of the proposed method demonstrates separation RMSE
of 3.82cm and the CM method gives 15.4cm. The proposed
method thus demonstrates an improvement in the separation
RMSE by a factor of 4.

TABLE 1. Range statistical record of different separations.

C. TWO-DIMENSIONAL RANGE PROFILES RECOVERED
WITH VARYING SEPARATIONS AND GAPS
To validate range resolution and accuracy, the object with
3 cm × 3 cm squares mounted on a flat board with vary-
ing separations and varying gaps was made [see Fig.2 (a)].
This test object was placed at a range about 7m and
Algorithm 2 was applied. The scanning resolution was set
to be 90 × 90. The minimum movement of the rail was set
to 1mm. Fig.6 (a), (b) and (c) present the imaging result of
the two squares with the gap of 1cm. In our 3D imaging
system, fiber connections of the circulator, splitter and other
fiber components increase the measured range. Themeasured
range shown in Fig.6 is more than 7m. The separation of
the squares from the flat board is 8cm [see Fig.6 (a)], 10cm
[see Fig.6 (b)] and 12cm [see Fig.6 (c)]. It can be seen
that the proposed method is succeeded in recovering useful
depth features of the two squares. The color bar indicates the
estimated depths of the objects. As the separation increases,
the imaging of the two squares’ boundaries becomes
clear.

In Fig.6 (d) and (e), imaging squares’ gap varies from
0.5cm [see Fig.6 (d)] to 1.5cm [see Fig.6 (e)]. The var-
ied gap is used to test the lateral range resolution by the
proposed method. The separation of the squares relative
to the flat board is 8cm. From Fig.6 (d), we observe that
our proposed multi-depth imager successfully distinguishes
the two closely placed squares. Also, our proposed multi-
depth imager distinguishes the squares from the flat board
behind it, even though there exist mixed-depth pixels at
boundaries and high background light plus dark counts. The
narrow gap is possible to affect the scattered photons to
produce more complex patterns of light. If the gap between
the two squares is below 0.5cm, we almost fail to distin-
guish the two squares. Note that we calculate the separa-
tion RMSE, which is different from the true depth RMSE.
Thus, the maximum depth subtracting the minimum depth on
the color bar is larger than the separation RMSE indicated
in Table.1. It implies that when calculating the separation
RMSE, even the error is 0, the estimation results still remain
deviation from the true depth, causing larger error shown
in Fig.6
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FIGURE 6. Three recovered images of the two separated squares for the separations of (a) 8cm, (b) 10cm and (c) 12cm by the proposed method. The
images for varying gaps of (d) 0.5cm and (e) 1.5cm between the two squares.

IV. CONCLUSION
In this letter, sub-FWHM resolution by improving the range
resolution from 21cm to 8cm has been successfully achieved
based on PSSPC technique under low SNR condition. The
proposed method gives an improvement in the separation
RMSE by a factor of 4.7, compared to the conventional CM
method, for the task of imaging a scene of two objects sep-
arated by a distance of 10cm. Besides, the proposed method
has made an improvement in the separation RMSE by a factor
of 4 for the surface separation of 8cm. Also, the proposed
method has distinguished the two squares, which are closely
placed 0.5cm apart from each other with the 6.8mm laser spot
size. The proposed method is able to achieve sub-spot size
lateral range resolution.

Our proposed algorithm is conducted with computational
efficiency since we require an average of 5 PARL iter-
ations per pixel. The post-processing step only requires
a linear search over n bins. The CM method applied
in Algorithm 2 only requires several bins’ calculation as
depicted in Fig.4 (c), (f), (i) and (l). When imaging the objects
with 3 cm × 3 cm squares, the average per pixel processing
time was measured to be 0.01 seconds and its total processing
time was 81s with 90×90 pixel scans. This technique can
achieve the lower RMSE and less calculation time in accu-
rately recovering the two closelymounted squares. It provides

a new prospect in recovering complex target profiles accu-
rately by the PSSPC technique.

In the future work, it is of interest to study how to apply
other post-processing methods with several signal photon
counts per pixel. Also, techniques, such as range gating and
narrowband optical filtering, can be incorporated to reject
background counts at the data acquisition level to have amore
accurate multi-depth reconstruction.
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