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ABSTRACT Neighbour-joining algorithm (NJ for short) is an used widely algorithm for constructing phylo-
genetic trees from distances because of its high accuracy. For NJ costs a lot of time to construct phylogenetic
trees for the large input data, it does not often output a result within feasible time. Until now, there are several
improved algorithms of NJ aiming for speeding up the construction of trees, but there is no research on the
accuracy of those improved algorithms. The paper will analyze and compare the accuracy of NJ as well
as its improved algorithms by means of the experiments. We introduce a new improved algorithm, called
RandomNJ, which is an efficient method for constructing phylogenetic trees from distances. Furthermore,
we design the INJ which is a web-based server for on-line constructing the phylogenetic trees using the
improved algorithms and NJ. It is available from http://bioinformatics.imu.edu.cn/INJ/.

INDEX TERMS Phylogenetic trees, neighbour-joining, NJ, distances.

I. INTRODUCTION
NJ is initially proposed by Saitou and Nei [19] which can
construct a phylogenetic tree. Its input is a distance matrix
in which one value describes the evolutionary dissimilarity
between a pair of taxa. And then Studier and Keppler improve
NJ by means of slightly changing the key computation for-
mula in NJ algorithm so that the running time of NJ can
be computed [23]. It needs O(n3) running time and O(n2)
space consumption, where n is the number of taxa. NJ has a
wide utilization in the bioinformatics [2], [13]. NJMerge and
TreeMerge are two modification of NJ in order to estimate
the species tree based on a divide-and-conquer framework
[16], [17]. NJ is also used to predict the protein function.
Reference [10] first uses NJ method to construct a
phylogenetic tree for a protein set and then uses the phy-
logenetic distances between proteins to predict the protein
function. In order to better construct phylogenetic trees for
the increasing amount of available data, many scientists begin
to improve the NJ algorithm, and obtain a lot of improved
algorithms. NJ has an important theoretical evidence, i.e. it
can construct right trees for the additive distance matrices
(will be introduced in the following). NJ needs to seek the
minimum value from a matrix in each iteration of construc-
tion. In order to speed up the construction of phylogenetic
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trees, the improved algorithms try to change the search strat-
egy of the minimum value in the iteration. So there are several
improved methods that can not construct a right tree even for
additive distance matrices. Here all improved methods can be
divided into two classes based on the constructed trees for the
additive distance matrices.

One class is the algorithmswhich have the same theoretical
evidence as NJ and can construct a right tree for additive
distance matrices. QuickJoin uses heuristics to speed up the
NJ by building a quad-tree to prune the search scope of
minimum [14]. RapidNJ reduces the scope of search by cal-
culating an upper bound when searching for the minimum
value [21]. RapidNJ needs to add two new matrices for
excluding a lot of members, so its consumption of memory is
increased. ERapidNJ is the improvement of RapidNJ in order
to reduce the internal memory requirements of RapidNJ by
means of external memory [22], [26], [30]. FastJoin searches
two minimum values in each iteration aiming to reduce the
running time of NJ [24].

The other class is the algorithms which do not have any
theoretical evidence and do not construct right trees for the
additive distance matrices. BIONJ [7], [8] computes the new
distance matrix by a first-order covariance matrix of the
distance matrix in each iteration, aiming to construct a more
practical phylogenetic tree for species. GNJ uses a sampling
of the solution space obtained by keeping track of multiple
partial solutions during its execution [18]. Clearcut searches
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a local minimum value when constructing phylogenetic trees
[6], [20]. Fast neighbour-joining (FNJ for short) method is
based on a auxiliary function to find a local minimum in order
to decrease the running time of NJ [4], [5], [11].

Up to now, several literatures have studied the efficiency of
NJ method. References [1], [12], [15] have studied the effi-
ciency of NJ on reconstructing deep and shallow evolutionary
relationships for large phylogenies. And it follows that it
is more difficult to reconstruct the deep branches than the
shallower branches using NJ method. The taxon ordering of
phylogenetic trees plays an important role in the construction
of trees when using the NJ [3], [9].

Almost all of the improved algorithms of NJ aim to speed
up the construction of trees, and their running times are com-
pared in many papers [24], [25], [29]. However, there is not
any one research on their accuracy of the phylogenetic trees
constructed by those improved algorithms and NJ. Here we
research on the accuracy of several typically improved algo-
rithms, including NJ, FastJoin, RapidNJ, Clearcut, when they
construct phylogenetic trees. NJ needs to search a minimum
value in each iteration. It is possible that there are several
minimum values in some iteration, while those improved
algorithms do not give a reasonable approach on the situ-
ation. Here we propose a new improved algorithm of NJ,
called as RandomNJ, by randomly choose a minimum value
when there are many minimum values in the construction.
Experiments show that the RandomNJ is an efficient method.
Furthermore, we design a tool for researchers to conveniently
construct phylogenetic trees using the NJ and its improved
algorithms.

II. METHODS
For a matrix D, if there is a tree with positive branch lengths
and the length of shortest path between any two leaves is
the distance between the two taxa in D, then D is called
additive [28]. The matrix in Table 1 is additive because the
tree in Figure 1 satisfies the definition.

TABLE 1. An additive distance matrix.

NJ and its improved algorithms take a distance matrix
Dn×n as input, and output a phylogenetic tree, where n is the
number of taxa. The NJ and its improved algorithms will be
introduced in detail in the following.

A. NJ
NJ is a greedy algorithm. It begins with a starlike tree (i.e. a
central node O connecting n nodes). Each iteration of NJ is

executed as follows. First it searches a pair of nodes which
are the most potential neighbours among all possible pairs
of nodes. The search is based on the following matrix S
computed by the Formula 1. Then it creates a new node u
to connect the selected pair of nodes and the central node,
and the connection of the pair of nodes and the central node
is deleted. Next the distances between u and the others node
are updated and the number of taxa is updated to n − 1. The
iteration continues until n ≤ 3.
The matrix S = (sij)n×n (named sum matrix) is computed

from the input distance matrix D, where sij is

sij = (n− 2)D(i, j)− Ri − Rj (1 ≤ i 6= j ≤ n), (1)

where D(i, j) is the value in the ith row and jth column of D,
and

Ri =
n∑

k=1

D(i, k). (2)

The distance between the new node with other taxa is
updated by the following formula,

D(k, u) =
1
2
(D(a, u)+ D(b, u)− D(a, b)) (k 6= a, b), (3)

where sab is the minimum value from the matrix S. The two
nodes a and b found by NJ are true neighbors, if the distance
matrix D is additive. Algorithm 1 is the pseudo-code of NJ.

Algorithm 1 NJ
1: input: a distance matrix Dn×n
2: output: a phylogenetic tree T
3: T is a starlike tree, and O is the center node of T ;
4: while n ≥ 3 do
5: compute each value of S by the formula 1;
6: search a minimum value sab from S, create a new node

A connecting a and b, connect AwithO, and delete the
connection between nodes a, b and O;

7: update the distance matrix D by the formula 3;
8: n = n− 1;
9: end while
10: return T ;

The following section will introduce the improved algo-
rithms of NJ, namely FastJoin, RapidNJ, Clearcut and
RandomNJ. Among them, FastJoin, RapidNJ and RandomNJ
search the minimum value in the S matrix iteratively, which is
the same as NJ, so those algorithms can choose a true pair of
neighbors when the input data is an additive distance matrix.
While Clearcut cannot ensure that the selected pair of taxa are
true neighbors because it searches a local minimum s-value
each one time.

B. FASTJOIN
For an additive distance matrix, Wang et al have proved
that there is another pair of true neighbors besides the
true neighbors a and b corresponding to minimum value of
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FIGURE 1. An unrooted phylogenetic tree.

matrix S [24]. The new true neighbors are the two nodes
with the minimum value of the remaining members of S
removed the members in ath row, ath column, bth row and bth
column. FastJoin is proposed based on the theory, which is an
improved algorithm for NJ by iteratively picking two pairs of
nodes from S to merge as two new nodes instead of picking
a pair of nodes. It saves running time for NJ algorithm.

FastJoin is executed in each iteration as follows. First it
finds out the minimum value sab of S, and the minimum
value suv from the rest values of S by removing the values
of S in the ath row, ath column, bth row and bth column.
There are two pairs of neighbors a and b as well as u and
v. Then it creates a new node A connecting a, b and another
new node B connecting u, v. The distances between the new
node and the other nodes are computed by the formula 3. The
distance between the two new nodes A and B is computed by
the formula 4. Algorithm 2 is the pseudo-code of FastJoin.
FastJoin has the same time complexity and space complexity
as NJ, while it reduces the consumption of time by a factor in

time complexity for NJ.

D(A,B) =
1
4
(D(a, u)+ D(b, u)+ D(a, v)

+D(b, v)− 2 · D(a, b)− 2 · D(u, v)) (4)

C. RAPIDNJ
In order to speed up the construction of trees, RapidNJ tries
to decrease the search scope of S by computing an upper
bound of the minimum value. It introduces two new matrices
Q and I . The values in each one row of Q is the values in the
same row of D sorted in ascending order, and I records the
mapping from Q to D. In more detail, the values of ith row
in D are sorted as D(i,O1) ≤ D(i,O2) ≤ · · ·D(i,On), where
O1,O2, · · · ,On be a permutation of 1, 2, · · · , n. Then

Q(i, j) = D(i,Oj) (5)

and

I (i, j) = Oj (6)
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Algorithm 2 FastJoin
1: input: a distance matrix Dn×n
2: output: a phylogenetic tree T
3: T is a starlike tree, and O is the center node of T ;
4: while n ≥ 3 do
5: compute each value of S by the formula 1;
6: search a minimum value sab from S, and a minimum

value suv from the rest values of S by removing the
members in the ath row, ath column, bth row and bth
column;

7: create a new nodeA connecting a and b, connectAwith
O, and delete the connection between nodes a, b and
O;

8: create a new node B connecting u and v, connect B
with O, and delete the connection between nodes u, v
and O;

9: update the distance matrix D by the formulas 3 and 4;
10: n = n− 2;
11: end while
12: return T ;

For 1 ≤ l ≤ n, the u(l) is computed by the following
formula, and let Umax be the maximum value in all u(l).

u(l) =
n∑

k=1

D(l, k)/(n− 2) (7)

The upper bound of S is computed by the following
method.

1. Let smin = ∞, i = −1, j = −1;
2. For Q(r, c)

a. if Q(r, c)− u(r)−Umax > smin, then go to the next
row;

b. if S(r, I (r, c)) < smin, then smin = S(r, I (r, c)), i =
r, j = I (r, c)

If the formula 8 is true, then the Q(r, k)(c ≤ k ≤ n) is
so large that the S(r, I (r, k)) is more than the current smin,
so rest values in the r th row of Q are impossible to be the
minimum and are stopped to search. RapidNJ is by visiting
values in the row of Q to search the minimum value in S,
where the searched values in each row of Q depend on the
present smin. If the present smin is close to the minimum value
of S, then a lot of values will be eliminated from S in the
following search. The RapidNJ reduces the running time of
NJ in the practical application. In the worse case, the RapidNJ
will search each value of each row inQ, so the worst case time
complexity of RapidNJ is O(n3).

Q(r, c)− u(r)− Umax > smin (8)

D. CLEARCUT
Clearcut searches a local minimum value rather than a global
minimum of S, so it is also called relaxed neighbor joining
(RNJ for short) [6]. For a taxon a, it first computes Ea by the

following formula:

Ea = {Eai|1 ≤ i ≤ n, i 6= a}, (9)

where Eai is

Eai = D(a, i)− (
n∑

k=1,k 6=i

D(a, i)+
n∑

j=1,j 6=a

D(i, j))/(n− 2)

(10)

In each one iteration, Clearcut picks randomly two taxon
a, b, if Eab is the minimum value of Ea and the minimum
value of Eb, then it takes a, b as a neighbour and connects
them with a new node. Algorithm 3 is the pseudo-code of
Clearcut. The time complexity of Clearcut is O(n2logn). The
two taxa selected by the Clearcut are not necessarily true
neighbours for an additive distance matrix as input.

Algorithm 3 Clearcut
1: input: a distance matrix Dn×n
2: output: a phylogenetic tree T
3: T is a starlike tree, and O is the center node of T ;
4: while n ≥ 3 do
5: randomly choose two different taxa a and b;
6: compute the set Ea = {Eai|1 ≤ i ≤ n and i 6= a};
7: compute the set Eb = {Ebj|1 ≤ j ≤ n and j 6= b};
8: if Eab is the minimum number of Ea and the minimum

number of Eb then
9: create a new node B connecting a and b, connect

B with O, and delete the connection between nodes
a, b and O;

10: end if
11: update the distance matrix D by the formula 3;
12: n = n− 1;
13: end while
14: return T ;

E. RANDOMNJ
The above algorithms need to search a minimum number
and then merge the two taxa in its each iteration. If there
are more than two minimum values in one iteration, then the
constructed tree depends on the first minimum value obtained
by algorithms. Here we introduce a new improved NJ, called
RandomNJ, which randomly chooses a minimum value from
all minimum values in each iteration. Algorithm 4 is the
pseudo-code of RandomNJ.

III. ACCESS OF INJ
We devise the INJ (Improved NJ) in order to make it easier for
the researches to construct phylogenetic trees using NJ and
its improved algorithms. INJ is a web server which is used to
construct phylogenetic trees. Moreover, the users can down-
load the installable software INJ from the web server. INJ
implements the above algorithms. Figure 2 shows the home
page of INJ.
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FIGURE 2. The home page of INJ.

Algorithm 4 RandomNJ
1: input: a distance matrix Dn×n
2: output: a phylogenetic tree T
3: T is a starlike tree, and O is the center node of T ;
4: while n ≥ 3 do
5: compute each value of S by the formula 1;
6: pick randomly aminimum value sab from all minimum

values;
7: create a new node A connecting a and b, connect A

with O, and delete the connection between the nodes
a, b and O;

8: update the distance matrix D by the formula 3;
9: n = n− 1;
10: end while
11: return T ;

IV. RESULTS
The experiments will use two groups of constructed data to
test the performance of algorithms. First group of data is addi-
tive distance matrices, in which each one matrix is computed

from all branch lengths of a phylogenetic tree. Second group
of data is non-additive distance matrices, in which each one
matrix is calculated from DNA sequences by means of the
evolutionary model of DNA.

A. DATA
We first introduce the generation of additive distance matri-
ces. We randomly generate 1000 unrooted phylogenetic trees
with n taxa. For each generated phylogenetic tree, we set a
value from 1 to 10 for each branch and compute the distance
between any two taxa which is sum of all branch lengths in
the shortest path from a taxa to the other taxa. For example,
Table 1 shows the distance matrix of the unrooted phyloge-
netic tree in Figure 1.

We then introduce the generation of non-additive distance
matrices. First we generate randomly a rooted phylogenetic
tree P with n taxa and a DNA sequence S with length
10000 which is composed of A,G,C and T. Then we take the
sequence S as the ancestor and evolve it alone the topology
of P. The considered events are insert, deletion and substitu-
tion, and the evolution proportions are respectively 2%, 2%
and 1%. So each leave of the tree obtains a DNA sequence
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FIGURE 3. A rooted phylogenetic tree with the root node R.

using the above process. For example, the tree in Figure 3
is the randomly generated tree, then eight sequences can be
generated from the tree. Then we use the CCV method [27]
to compute the distance between any two DNA sequences,
and obtain a distance matrix. The initial sequence S is treated
as the outgroup when constructing rooted phylogenetic tree.
In total, there are generated 1000 rooted phylogenetic trees
for the taxa number n, so 1000 distance matrices are created
for each n. In order to better estimate the accuracy of the algo-
rithms, we generate 1000 trees and 1000 distance matrices
(both additive and non-additive) for each n. The process is
very time-consuming, so we set the taxa number is from 5 to
40 in order to complete them within feasible time.

B. EXPERIMENT
For each generated phylogenetic tree T1, a distance matrix D
will be obtained from T1. Each algorithm can construct a phy-
logenetic tree T2 forD. Smaller the difference between T1 and
T2 is, more efficient the algorithm is. The difference between
two phylogenetic trees is measured by the partition metric of
CDRPT software(http://bioinformatics.imu.edu.cn/tree/).

C. RESULTS ON ADDITIVE DISTANCES
Table 2 shows results on the additive distance matrices. For
each value n and each algorithm, the value in Table 2 is
the average of 1000 distances between the original trees and
the phylogenetic trees constructed by the algorithm. The last
row in the table shows the average values. Table 2 shows
that the constructed phylogenetic trees by NJ, RapidNJ and
RandomNJ are the same as the original trees because the

TABLE 2. Results on additive distance matrices.

TABLE 3. Results on non-additive distance matrices.

distances between them are 0. The distances between the
constructed phylogenetic trees by FastJoin and the original
trees are smaller than the distances between constructed phy-
logenetic trees by Clearcut and the original trees in almost
all cases. Therefore, it is concluded that NJ, RapidNJ as well
as RandomNJ are most efficient among all those algorithms,
and FastJoin is more efficient than Clearcut.
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D. RESULTS ON NON-ADDITIVE DISTANCES
Table 3 shows the results on the non-additive distance
matrices. Similarly, each value in the table is the mean
of 1000 distances between the original trees and the phylo-
genetic trees constructed by the algorithm. The last row in
the table shows the average values.

Table 3 shows that the distances between the phylogenetic
trees constructed by those algorithms and the original trees
have slight difference. From the average values (i.e. values in
the last row), it follows that RandomNJ is most efficient in
all those algorithms; NJ,FastJoin and RapidNJ with the same
performance are more efficient than Clearcut.

V. DISCUSSION
Compared with other algorithms, Clearcut does not have the
theoretical evidence on the constructed phylogenetic trees
for the additive distance matrices. The experiments have
also shown that Clearcut has the worst performance on not
only additive distance matrices but also non-additive distance
matrices. RandomNJ is a little superior to the others. NJ,
RapidNJ and FastJoin have nearly the same performance,
which are superior to Clearcut.
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