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ABSTRACT This study contributes to developing a novel hybrid identification method based on intelligent
algorithms, i.e. the least support vector regression algorithm (LS-SVR) and the artificial bee colony algorithm
(ABC), to deal with the identification of the simplified ship dynamic model while the outliers exist in
the measurements. The ship dynamic model is directly derived from our previous work which has been
well verified and validated. The outliers are detected by introducing the robust estimation method namely
the 3σ principle and then deleted from the training data. The weighted version of LS-SVR (WLS-SVR)
with spareness and robustness ability is used as the fundamental identification approach. To improve the
performance of theWLS-SVR, the structural parameters involved in it are optimized by utilizing the artificial
bee colony algorithm (ABC), and the weights of it are adaptively set with the use of the adaptive weight
method. Two case studies including the simulation study on a container ship and the experimental study
on an Unmanned Surface Vessel (USV) are carried out to test the proposed hybrid intelligent identification
method. The simulation study demonstrates the effectiveness and the acceptable time complexity in terms
of the engineering application of the proposed identification method through the comparison with the
cross-validation method and particle swarm optimization algorithm optimized LS-SVR. In the experimental
study, ABC-LSSVR, ABC-LSSVRwith the 3σ principle (D-ABC-LSSVR), ABC-LSSVRwith the adaptive
weight (ABC-AWLSSVR), and ABC-LSSVR with both the 3σ principle and the adaptive weight (D-ABC-
AWLSSVR) are applied to identify the steering model for the USV. The results indicate that the influence
of the outliers on model identification is effectively diminished by the robust 3σ principle and the adaptive
weight method and that the D-ABC-AWLSSVR outperforms over the other three identification methods in
terms of the mean squared error (MSE) of the model predictions.

INDEX TERMS Ship dynamics modeling, outlier detection, robust 3σ principle, adaptive weight, artificial
bee colony algorithm, least square support vector regression algorithm, a hybrid intelligent identification
method.

I. INTRODUCTION
With the shipping industry showing increasing interest in
developing autonomous ships, International Maritime Orga-
nization (IMO) plans to review regulations pertaining to
Maritime Autonomous Surface Ships (MASS) on Septem-
ber 2019 and furthermore to complete the regulatory scoping
exercise by 2020 [1]. Compared with traditional manned
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ships, the safety of MASS is increased and the emission is
reduced. The motivations of the application of MASS are
diverse, for instance, which can be utilized widely in the
marine sector from research and environmental monitoring
programs to naval and defense applications. Besides, it has a
relatively long lifespan and can be deployed in awide range of
challenging environments without risk to humans and could
be used to take large and potentially hazardous loads.
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Although the MASS is defined as the ship which to a
varying degree can operate independent of human interaction,
it still relies on humans working on an onshore control center
for its operation [2]. Until now, the technical aspects ofMASS
operation such as detection sensors, controller design and
collision avoidance involving detection, path planning and
anti-collision algorithms and adaptation of COLREGs (Inter-
national Regulations for Preventing Collisions at Sea) have
achieved great advances [3]. For controller design and col-
lision avoidance, a suitable ship dynamic model is required
and critical [4].

In general, the task of modeling ship dynamics envelops
two sub-tasks, including the determination of model struc-
ture, and the estimation of parameters involved in the model.

A. DETERMINATION OF MODEL STRUCTURE
To establish the model structure, Newton’s second motion
law is the baseline and has been used to drive several typical
ship dynamic models, such as Abkowitz model [5], MMG
(Mathematical Modeling Group) model [6], vectorial repre-
sentationmodel [7], and responsemodel [8]. Abkowitzmodel
expresses the hydrodynamic forces and moments acting on
the ship hull, propeller and rudder by using the function
of state variables and actuator variable, which is expended
with a 3rd-order truncated Taylor-series at the steady-state
status. This kind model has a good ability to capture ship
dynamics in high precision but has high complexity and non-
linearity. Differently, MMG model just includes the hydro-
dynamic items with physical interpretation and excludes
the meaningless coefficients indicated by the captive model
test, the complexity of which to some degrees decreased.
Vectorial representation model proposed by Fossen uses the
vector-matrix form to express the forces and moments acting
on the ship, which is straightforward to analyze the character-
istics such as the passivity and stability of the ship to feed into
especially the controller design. Response model describes
the ship head reactions to the commanded rudder, which
can be categorized into two core kinds, i.e. the first-order
linear/nonlinear Nomoto model and the second-order lin-
ear/nonlinear Nomoto model. This kind model is of accept-
able simplicity to be widely used for the autopilot design in
marine engineering.

In Abkowitz model, the hull, propeller, and rudder of the
ship are assumed as a holistic system, for which the relatively
induced forces and moments are completely expressed by
the Taylor series. But its application is restricted due to
three facts. The local variation in the design of ship hull,
propeller or rudder and the analysis of their interactions
are impossible. Some coefficients have no clear physical
interpretation. Too many coefficients involved in the model
make the multicollinearity highly happen, which meanwhile
challenges the estimation of coefficients. In MMG model,
external forces andmoments generated by ship hull, propeller
and rudder are represented separately by modulus functions
but completely captured, which makes each term have man-
ifest physical interpretation at the same time makes changes

on hull, propeller or rudder possible. The coefficients can be
estimated through a suitable method necessarily incorporated
with optimal experiments, but it is cumbersome and high
finance-consuming to estimate so many coefficients. What’s
more, it is not to ensure convenient and fast model simula-
tions. In the vectorial representation model, the equations of
motion are completely expressed in the form of vector-matrix
where each term can be interpreted physically and adjusted
according to the property variations of hull, propeller or
rudder. Applying the model for simulation is easy to be
conducted in either MATLAB or C++. The irreplaceable
advantage of this model is that the nonlinear system prop-
erties such as symmetry, skew-symmetry, and positiveness
of matrices can be exploited in the passivity or stability
analysis. Unavoidably, it must stand the pressure on demand
for cumbersome processes and high financial consumption in
estimating all coefficients. In response model, only 1 degree
of freedom (DOF) dynamic concerning the yaw mode is
considered, which is applicable for the course-keeping con-
troller design but not satisfying the requirement of the path
following, trajectory tracking, and highly realistic motion
simulation.

Considering the above situation of each typical dynamic
model, some researchers are committed to developing ship
dynamic models by modifying and simplifying the typical
model, aiming at matching their specific requirements of
studies. An instance is a 3 DOF dynamic model modified and
simplified based on the vectorial representation model, which
is used for maneuvering simulation for different types of ves-
sels [9], [10]. Even though the model is simplified with low
complexity, the precision of it in describing ship dynamics is
acceptable, which is evaluated through case studies.

B. ESTIMATION OF PARAMETERS INVOLVED IN THE
MODEL
Among the estimation methods, these deserve particular
attention, which are captive model test with planar motion
mechanism (PMM) [11], estimation with empirical formu-
las [12], numerical calculation based on computational fluid
dynamics (CFD) [13], and system identification with the use
of full-scale trails or free-running model tests [14], [15].
The captive model test with PMM is applicable to obtain
most parameters, but it has a remaining problem of scaling
effect aroused by the difference of Reynold number between
the real ship and the scaled model ship which makes the
measured value of parameters not wholly reliable [16]. The
estimation with empirical formulas is practical and straight-
forward. The formulas are built based on a statistical analysis
of a set of ships, so the estimation results are not precise
for the latest type of ships which are not included in the
database. The rest two estimation methods are both powerful
methods, but the numerical calculation based on CFD always
requires extreme computing power, and its validation dramat-
ically depends on the quality and amount of the experimental
data. Comparatively, system identification in combination
with a free-running model test or full-scale trial avoids the
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scaling effect and is easy to be undertook, but parameter drift
unpredictably existing among parameters if there were too
many parameters in a model would compromise the accuracy
of identification results. Compared with the scaling effects,
the demand of extreme computational power and uninvolved
empirical calculation, the influence of parameter drift on
estimation exactness of ship dynamic model is relatively easy
to be weakened by adopting some measures, e.g. parallel
processing [17] and additional excitation [18] to reconstruct
the samples and improve the condition number, and trun-
cated singular values decomposition and Tikhonov regular-
ization [19] to diminish the uncertainty due to the noises in
measurements.

According to the above analysis of estimation meth-
ods, we can find that the last method is a sufficient and
high cost-effective selection in estimating parameters of a
reduced-parameter ship dynamic model. When combined
with full-scale trails, the scale effect due to the differ-
ence of Reynolds number between the full-scale ship and
its model can be avoided. Besides, when combined with
free-running model tests, the system identification technique
is a cost-effective solution due to many maneuvers can be
easily generated once the first set of free-running model tests
is carried out.

Up to date, a variety of identification methods, e.g.
maximum likelihood method (ML) [20], extended Kalman
filtering algorithm (EKF) [21], least square method (LS) [22],
neural network method (NN) [23], genetic algorithm
(GA) [24], simulated annealing algorithm (SA) [25], SVM
[26], [27], have been studied in parameter estimation of ship
dynamic model. Nevertheless, the deficiencies existing in
these methods require attention which can be explained as
follows. ML and EKF are sensitive to the predetermined
parameters. NN and GA cannot always ensure the global
optimum for the model. Comparatively, SVM avoids these
deficiencies when used as the identifier benefiting from its
merits which are explained from two aspects. (1) It can
work beyond the limitations of the data acquisition of the
vessel maneuvers due to it requires only a finite set of data.
In fact, the experiment of the vessel carried out to stem
data is expensive and restricted to various factors such as
the weather condition, equipment, mobility of the vessel.
So usually a limited number of measurements can be obtained
for the identification. (2) SVM can guarantee global optimal
solutions because the optimization problem defined by it is a
convex one typically quadratic programs (QP). This property
makes a positive impact on the exactness of the identification
results.

One point concerning SVM deserving particular attention
is that the coefficients of variables in the regression model
are sensitive to the structural parameters of SVM, such as the
insensitivity factor, the regularization parameter, and kernel
parameters, which implies that it is of high significance to
assign these structural parameters with particular settings
to guarantee good fitting of measurements. To determine
these structural parameters particularly, methods such as

cross-validation method (CV) [28], particle swarm optimiza-
tion (PSO) [29], [30], jaya optimizer and salp swarm algo-
rithms [31], ant colony algorithm (ACA) [32], ABC [14]
have been successfully studied by scholars. CV is simple
but time-consuming and at average accuracy. PSO and ACA
present the unavoidable problem of the local optimum. ABC
as one of the most recent nature-inspired algorithms has been
proven to be a robust and efficient algorithm for solving
global optimization problems over continuous space. It is also
validated by some studies that the performance of ABC is
better than or similar to PSO and ACA with the advantage of
employing fewer control parameters [33].

C. WORK OF THIS STUDY
Least square support vector regression algorithm (LS-SVR)
proposed by Suykens and Vandewalle [34] is one modified
version of SVM, working with equality constraints instead
of inequality constraints and the quadratic deviation. Such
changes happening on LS-SVR reduces its complexity at the
same the merits like working with finite samples to find a
function for nonlinear system estimation are still inherited.
Nonetheless, LS-SVR has a deficiency, which is sensitive to
the noises or outliers corrupted in the measurements [35].

In this paper, a hybrid identification method named
D-ABC-AWLSSVRmethod consisting of the robust 3σ prin-
ciple (D), the ABC optimization algorithm and adaptive
weight method (AW) is developed for the identification of
the simplified 3 DOF ship dynamic models studied in [9]
and [10]. The outliers from equipped sensors and envi-
ronmental disturbances contaminated in the measurements
are firstly detected and filtered from the training samples.
Afterward, the ABC is employed to optimize the structural
parameters of the LS-SVR and the weighted LS-SVR. The
weighted LS-SVR method is then designed to adaptively
adjust the weights by combining the adaptive weight method.
In the end, the data extracted from relatively informative
maneuvers containing the zigzag maneuvers and straight-line
maneuvers of vessels are used to verify and validate the
proposed hybrid method in identifying the simplified ship
dynamic model for different type vessels. Compared with CV
and PSO optimized LS-SVR based identification methods,
ABC-LSSVR exhibits out-performance with the requirement
of low computational cost, which is validated through the
simulation study on a container ship. Additionally, the supe-
rior identification performance of the D-ABC-AWLSSVR
method is demonstrated through the comprehensive compar-
ison of the ABC-LSSVR method, ABC-AWLSSVR method,
D-ABC-LSSVR method in the experimental study on a
USV.

The main work and contributions of this study can be
summarized as follows:

1) The performance especially the spareness and robust-
ness of the LS-SVR based identification method is
improved by introducing the outliers detector, i.e. the
robust 3σ principle to pre-filter the potential noises,
and the adaptive weight method to highlight the effect
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of the efficient samples at the same time weaken the
influence of the outliers.

2) The ABC with the advantage of fewer control param-
eters compared with the others bionic algorithms is
applied for the optimization of the structural parameters
of the LS-SVR based identification methods, which is
optimal to control the trade-off between the empirical
risk and the confidence interval for the LS-SVR.

3) Informative maneuvers such as zigzag maneuvers car-
ried out on different type vessels are used to analyze the
complexity and the performance of the proposed hybrid
method.

The remainder of this paper is organized as follows:
Section II briefly elaborates the procedure of modeling
ship dynamics based on our previous work published in
a peer-reviewed journal. In Section III, the methods fur-
ther used to construct the hybrid identification method, i.e.
the robust 3σ principle method, the ABC, the (weighted)
LS-SVR, and the adaptive weight method are introduced in
detail. Afterward, the hybrid identification method named D-
ABC-AWLSSVR method is developed in Section IV where
the procedure with a flowchart and the time complexity of this
method are also explained. To verify and validate the effec-
tiveness of the proposed method, two case studies including
the simulation study of a container ship and the experimental
study of a USV are undertaken in Section V. Finally, the work
of this paper is concluded in Section VI.

II. MODELING OF SHIP DYNAMICS
A. REFERENCE FRAMES AND NOTATIONS
To describe the motion of ships, reference frames are nec-
essary to specify what the motion is relative to. In this
study, the North-East-Down (NED) frame and body-fixed
frame are selected to describe the motion of ships. The
NED frame is also regarded as the earth-fixed frame in
the flat earth navigation, which is defined relative to the
Earth’s reference ellipsoid (WGS-84). For the earth-fixed
coordinate system, the axes x, y and z are usually defined
as the x axis directs to true north, the y axis directs to the
east, and z axis directs downwards normal to earth’s surface.
In the earth-fixed frame, the first three coordinates and their
time derivatives correspond to the position and translational
motion along the x-axis, y-axis, and z-axis, while the last three
coordinates and their time derivatives are used to describe
the orientation and rotational motion [4]. The body-fixed
frame is a coordinate system moving along with the body.
The origin center is always defined to coincide with a point
midship in the waterline. The axes xb, yb and zb are usually
set as the xb axis is towards the fore of ships, the yb axis
directs to starboard of ships, and zb axis directs towards the
bottom of ships. Finally, the two reference frames consisted
of a body-fixed frame and an earth-fixed frame (regarded as
the inertial frame for the use of Newton’s law) are shown
in Fig. 1.

For some research issues of ships, f.i., control system
designs, the surge, sway and yaw modes are mostly empha-

FIGURE 1. Illustration of reference frames.

FIGURE 2. Description of planar motion variables. xδ is the longitudinal
moment arm from the center of rotation to the pivot point of the
thruster/propulsion.

TABLE 1. Notations from SNAME.

sized but the roll, heave and pitch modes are ignored. The
corresponding planar coordinate system presented in Fig. 2
is needed to describe the horizontal motions and obtained by
removing the z axis from the earth-fixed frame and the zb axis
from the body-fixed frame.

The notations commonly-used to describe motions of ships
are listed in Table. 1. More information can be found in [36].

B. A SIMPLIFIED 3 DOF DYNAMIC MODEL
A full DOF ship dynamic model expressed in the
vector-matrix form [7] is selected and simplified to a 3 DOF
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dynamic model where only the surge, sway and yaw motions
are considered, and the forces and moments acting on the
ship are calculated with the use of the function of the rudder
deflections and the propeller revolutions. The 3DOF dynamic
model is written as (1) [9].

T|n|n |n| n = (m− X u̇) u̇+ (Yv̇ − m) vr − X|u|u |u| u
+
(
Yṙ − mxg

)
r2 − Xuu

Yδδ = (m− Yv̇) v̇+
(
mxg − Yṙ

)
ṙ + (m− X u̇) ur

−Yvv− Y|v|v |v| v− Y|r|v |r| v− Yrr
−Y|v|r |v| r − Y|r|r |r| r

Nδδ =
(
mxg − Nv̇

)
v̇+ (Iz − Nṙ ) ṙ − (Yv̇ − m) uv

−
(
Nv̇ − mxg

)
ur − (m− X u̇) uv− Nvv

−N|v|v |v| v− N|r|v |r| v− Nrr
−N|v|r |v| r − N|r|r |r| r

(1)

where n is the revolutions per second of the propeller, δ is
the rudder actual angle, T|n|n is the coefficient of the pro-
peller power, Yδ and Nδ are the coefficients of the steering
force and moment respectively, m means the masses of the
ship, the remaining notations except for the ones depicted
in Table. 1 are the hydrodynamic derivatives.

Through the simulation study on a large container ship
and the experimental study on a small USV, the 3 DOF
dynamic model (1) is verified and validated to be a fur-
ther reduced-terms form [9]. Taking the research goal
of this study aiming at testing the effectiveness of the
hybrid LSSVR-based intelligent identification approach, and
attempting to diminish parameter drift effect into consid-
eration, this work decides to use the further reduced-terms
3 DOF dynamic model given in (2).

u̇ = Xmu u+ X
m
|u|u|u|u+ X

m
uuuu

3
+ Tm
|n|n|n|n

v̇ = Ymv v+ Y
m
r r + Y

m
|v|r |v|r + Y

m
δ δ

ṙ = Nm
v v+ N

m
r r + N

m
|v|r |v|r + N

m
δ δ

(2)

in which the parameters are different from the hydrodynamic
derivatives. For the sake of mathematical convenience, they
are the consolidation of hydrodynamic derivatives such as
Xmu =

Xu
m−Xu̇

. For more detail, see [9].

III. METHODOLOGY
A. OUTLIER DETECTION USING ROBUST 3σ PRINCIPLE
Given a dataset xk (k = 1, 2, . . . , n), calculating the mean of
the variable x̄ and the standard deviation s yields

x̄ =
1
n

n∑
k=1

xk (3)

s2 =
1

n− 1

n∑
k=1

(xk − x̄)2 (4)

Generally, if the dataset does not contain any outliers,
the mean and variance of the sample would present a good
estimation for data location and scatter. However, the sample
mean and variance would drift seriously when the dataset

was contaminated with outliers even a single out-of-scale
measurement [37]. To diminish the impacts of outliers on
the dataset mean and standard deviation, the robust estima-
tion method is employed, which is extremely effective in
practice [38]. In this method, the median and the median
absolute deviation instead of the mean and standard deviation
are respectively calculated as follows:

xmed = median(x1, x2, . . . , xn) =
x[ (n+1)2 ]:n + x[ n2 ]+1:n

2
(5)

SMAD = 1.4826median(|x1 − xmed |, . . . , |xn − xmed |) (6)

where xmed is the median of the dataset, SMAD is the median
absolute deviation of the dataset, [·] is the function of
round-down, the 1.4826 is a constant set to ensure SMAD an
unbiased calculation of the standard deviation for Gaussian
data.

Additionally, in order to propose the outlier detection algo-
rithm, the absolute error eabsk of the kth variable xk is given
as follows:

eabsk = |xk − xmed |, k = 1, 2, . . . , n (7)

Consequently, the procedure of the robust 3σ principle
based on the robust estimation method for outliers detection
can be described in detail as follows:

1) Use (5) and (4) to calculate the median absolute devia-
tion SMAD of the dataset.

2) Calculate the absolute error eabsk for each variable
via (7).

3) Compare eabsk with 3SMAD: if eabsk ≥ 3SMAD, then
the variable xk is defined as the outlier and removed
from the dataset, otherwise, step to k = k + 1 to do the
previous comparison until k = n.

B. LEAST SQUARE SUPPORT VECTOR REGRESSION
ALGORITHM
Suppose the given training data T = {(X1, y1) , · · · , (Xl, yl)}
∈ (χ × y)l , in which Xi ∈ χ = Rd (i = 1, · · · , l) are
patterns, and each pattern is a p-dimensional real vector, and
yi(i = 1, · · · , l) are outputs, then to find a hyperplane fitting
all patterns with adequate margins. Suppose the decision
function expressed as.

f (X) =W·8(Xi)+ b with W ∈ χ, b ∈ R (8)

where W is a parameter vector, normal to the hyperplane,
b is the intercept, 8(·) is a nonlinear function used to map
the patterns to a high-dimensional feature space. Then the
optimization problem with equality constraints becomes like

min
1
2
||W||2 +

C
2

l∑
i=1

e2i , s.t., yi =W ·8(Xi)+ b+ ei

(9)

where ei(i = 1, · · · , l) are regression errors, C is the
regularization parameter. The Lagrange formulation of the
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FIGURE 3. Graphical illustration of LS-SVR.

optimization problem is given as

L (W, b, α, e) =
1
2
||W||2 +

C
2

l∑
i=1

e2i

−

l∑
i=1

αi(W ·8(Xi)+ b+ ei − yi) (10)

Now the derivatives with respect to W, b, ei, and αi are
computed and set to be zero, respectively.

∂L (W, b, α, e)
∂W

= 0 H⇒W =
l∑
i=1

αi8(Xi)

∂L (W, b, α, e)
∂b

= 0 H⇒
l∑
i=1

αi = 0

∂L (W, b, α, e)
∂ei

= 0 H⇒ αi = Cei
∂L (W, b, α, e)

∂αi
= 0 H⇒W ·8(Xi)+b+ei−yi = 0

(11)

After straightforward computations to eliminate variables
W and ei from (11), one obtains the solution

[
b
α

]
=

 0 1Tl×1
1l×1 �+

1
C

−1 × [0y
]

(12)

where α = [α1, . . . , αl]T , 1l×1 is the l × 1 unit vector, �
is the l × l Hessian vector of which the expression is �ij =

8(Xi)T ·8(Xj) = k(Xi,Xj), y = [y1, . . . , yl]T . In application
of the trick kernel, the decision function yields

f (X) =
l∑
i=1

αiK (Xi,X)+ b (13)

Fig. 3 graphically illustrates the framework of LS-SVR
according to the above description.

C. ARTIFICIAL BEE COLONY ALGORITHM
The performance of LS-SVR strongly depends on the reg-
ularization parameter. This is due to that the regularization
parameter controls the trade-off between empirical risk and
confidence interval, or in other words, the trade-off between
the achievement of a low error on the training data and the
minimization of the norm of the weights. Thus, the selection
of the regularization parameter for LS-SVR is one of the most
important steps when using it as an identifier.

ABC has been proven to be a robust and efficient algo-
rithm for solving global optimization problems over con-
tinuous space [39], which consists of three groups of bees,
i.e., employed bees, onlooker bees and scout bees, who play
essential roles in completing the optimization procedure of
ABC. The employed bees are responsible for exploring new
food source positions in their neighborhoods, evaluating the
food quality (fitness value) of the new food sources, updating
the current food sources, and sharing this information with
onlooker bees waiting in hives. Onlooker bees choose a food
source for exploration based on the information obtained
from employed bees and update food sources using the same
way as employed bees. If an employed bee cannot improve its
food source quality within a predefined number of iterations
(Limit), it will become a scout bee. The scout bees will
randomly find food sources within the search space. The
details are explained as follows.

1) INITIALIZATION
The initial food sources randomly distributed within the
search space are assigned to the employed bees. Every food
source is an optimal solution, which includes information
about the food position and food quality (fitness value). The
food position is calculated by the following equation

xij = xminj + a
(
xmaxj − xminj

)
,

(i = 1, · · · , S, j = 1, · · · ,D) (14)

where xmaxj and xminj are the lower and upper bounds of the
jth parameter respectively which decide the search space, a
is random number in range of [0, 1], S is the number of
food sources which is usually equal to the number of the
employed bees donated by NP or the onlooker bees donated
by NP, and D is the dimension confirmed by the number
of optimization parameter (here is 1 due to the optimized
parameter is the regularization parameter of LS-SVR). The
fitness value (fitnessi) is calculated by

fitnessi =
1

1+ Obj.f .i
(15)

where Obj.f .i is the objective function of the ith solution,
which can be expressed by

Obj.f .i =
1
N

N∑
n=1

(yact (n)− ypre (n))2 (16)

where yact are actual outputs, ypre are predicted outputs of the
identified model, N is the number of samples.
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2) THE EMPLOYED BEES STAGE
After initialization, employed bees start finding new food
sources in their neighborhoods according to the following
equation

xnewij = xij+a
(
xij−xkj

)
, (i, k = 1, · · · , S, j = 1, · · · ,D)

(17)

where xnewij is the jth dimension of the new food source, xkj is
the jth dimension of kth employed bee, a is a random num-
ber restricted in [−1, 1], jth and kth are randomly selected
among initial solutions and are not equal to each other. The
information of the ith new food source then is updated via (15)
and (16). The selection of new food source is decided by the
greedy selection mechanism, i.e., if the fitness value of the
new food source is better than the previous one, the new food
source will replace the previous one, and Limit is set to zero,
otherwise, the new food source will be ignored and Limit is
added by one.

3) THE ONLOOKER BEES STAGE
The onlooker bees take food information from all employed
bees. Every onlooker bee chooses a food source with a proba-
bility related to its fitness value. The probability is calculated
by

Pi =
fitnessi∑S
i=1 fitnessi

(18)

Obviously, the higher the fitness value the food source is,
the better the food source is. In other words, the food source
with high fitness value is much possible to be selected by
onlooker bees. Then, the procedure of updating food sources
used by employed bees is also applied to onlooker bees.
If the fitness value of the new food source calculated for
onlooker bees is better than employed bees, the employed bee
is replaced by the onlooker bee.

4) THE SCOUT BEES STAGE
If an employed bee cannot improve its food source quality
within a predefined number Limit , it will become a scout bee.
The scout bees will randomly find food sources within the
search space using (14).

D. ADAPTIVE WEIGHTED LEAST SQUARE SUPPORT
VECTOR REGRESSION ALGORITHM
1) WEIGHTED LEAST SQUARE SUPPORT VECTOR
REGRESSION ALGORITHM
In order to improve the performance of the LSSVR-based
model parameter estimation, the error variables ei of the
previous LS-SVR can be weighted with weighting factors υi,
which leads to the following optimization problem [35]:

min
1
2
||W||2 +

C
2

l∑
i=1

υie2i , s.t., yi =W ·8(Xi)+ b+ ei

(19)

Then the Lagrangian becomes

L
(
W, b, α∗, e

)
=

1
2
||W||2 +

C
2

l∑
i=1

υie2i

−

l∑
i=1

α∗i (W ·8(Xi)+ b+ ei − yi) (20)

By optimizing (20) and eliminating W, e, one acquires the
Karush-Khun-Tucker(KKT) system[

b
α∗

]
=

[
0 1Tl×1

1l×1 �+ VC

]−1
×

[
0
y

]
(21)

where α∗ = [α∗1 , . . . , α
∗
l ]
T , the diagonal martrix VC is pre-

sented as VC = diag
{

1
Cυ1

, . . . , 1
Cυl

}
, υ∗ = [υ∗1 , . . . , υ

∗
l ]
T .

Consequently, the decision function for the system is

f (X) =
l∑
i=1

α∗i K (Xi,X)+ b (22)

2) ADAPTIVE WEIGHT
The outliers contaminated in the dataset can be detected
through the robust 3σ principle which can effectively
decrease the computation, but there are still some poten-
tial outliers unmarked existing in the dataset. Besides,
the performance of the above introduced weighted LS-SVR
highly depends on the distribution of data noises. Compre-
hensively considering, the adaptive weight method is pro-
posed to dynamically adjust the weight of each error vari-
able. The concrete adaptive weight process is defined as
follows:

υi =
2

1+ e
ei
T ′
, i = 1, . . . , l (23)

with 
T ′ = mean(t1, t2)
t1 = median(e′1

4 l+1
, e′1

4 l+2
, . . . , e′1

2 l
)

t2 = median(e′1
2 l+1

, e′1
2 l+2

, . . . , e′3
4 l
)

e′i = sort(ei)(i = 1, 2, . . . , l)

(24)

in which ei is the ith sample error, e′i is the error sorted accord-
ing to the ascending order of the sample error series, t1, t2 are
the partial robust estimation, and T ′ is the pseudo-median of
the sample errors. One can see that the bigger error of the
sample datum is, the smaller the weight is.

IV. THE HYBRID D-ABC-AWLSSVR APPROACH
A. PROCEDURE OF D-ABC-AWLSSVR FOR PARAMETERS
ESTIMATION
In order to improve the identification results, and overcome
the drawbacks, a combination identification approach (named
as D-ABC-AWLSSVR) with the robust 3σ principle (named
as D), ABC, adaptive weight (named as AW), and LS-SVR
for parameters estimation of ship dynamic model is designed.
Note that the linear kernel function is determined for the
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FIGURE 4. Flowchart of the D-ABC-AWLSSVR approach for parameters estimation.

LS-SVR due to the ship dynamic model is linear with respect
to the parameters required to be estimated finally. The holistic
flowchart is presented in Fig. 4.

The procedure of theD-ABC-AWLSSVR approach used to
estimate parameters of ship dynamic models can be described
from four steps as follows:
1) Data extraction. A series of specific ship maneuvers

such as the standard zigzag maneuver is carried out
under expected environmental conditions. Some train-
ing and validation samples are extracted from the
maneuvering data.

2) Outliers detection. The robust 3σ principle is utilized
to detect outliers corrupted in the samples. The outliers
are deleted from the initial samples to get the cleaning
data.

3) Regularization parameter optimization using the ABC
algorithm. The parameters of ABC are firstly initial-
ized, including the number of food sources S, the num-
ber of employed bees or onlooker bees NP, the maxi-
mum iteration Tmax , and the special number Limit . The
employed bees stage is activated to search and update
food sources for the employed bees. After getting the
food information from the employed bees, the onlooker
bees stage is executed. If the food source quality of
the employed bee is not improved or replaced by the
onlooker bees within Limit , the scout bees stage will
start. The above steps are repeated until reaching the
Tmax . The finally stored best food source is the tuned
value for the regularization parameter.

4) Parameter estimation through the AW-LSSVR.
LS-SVR is utilized to estimated parameters of the
ship dynamic model with the use of the cleaning data.
The initial sample errors or fitting errors are obtained.
The initial weights υi (i = 1, 2, . . . , l) are calculated
via 23. By applying the weighted LS-SVR with υi (i =
1, 2, . . . , l) the parameters of the ship dynamic model
are estimated. The weights are updated according to the
sample errors of the model identified by the weighted
LS-SVR and the adaptive weight method and expressed
as ῡi. The E =

∑l
i=1 |υi − ῡi| is compared with

the summation of the required minimum deviation of
the weights Emin. If the E > Emin, then υi = ῡi
and return back to undertake the previous steps, oth-
erwise, the weights are converged. Finally, the values
of parameters of ship dynamic models are obtained
by applying the weighted LS-SVR with the converged
weights.

The indicator, namely the mean square error (MSE),
is adopted to assess the accuracy of the model identified
by the D-ABC-AWLSSVR approach. The calculation of the
MSE is written as

MSE =
1
l

l∑
i=1

|ŷi − yi|2 (25)

B. COMPLEXITY ANALYSIS
In this subsection, the complexity mainly concerning the time
complexity of the proposed D-ABC-AWLSSVR approach
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is discussed. According to the previous procedure of the
D-ABC-AWLSSVR approach for model identification, its
computational cost is the summation of the time complexity
of ABC and the time complexity of AW-LSSVR.

The time complexity of ABC is major defined by five
parts including the initialization, the search operation of
employed bees, the calculation of the probability of food
sources, the search operation of onlooker bees, and the search
operation of scout bees. According to the prementioned opti-
mization procedure of ABC, the computational cost of these
five parts are O(SN ), O(S(N + N 2)), O(S), O(S(S + (N +
N 2) + N )), and O(SN ), respectively. Therefore, the overall
time complexity of ABC isO(SN+Tit (SN+S(S+N+N 2)))
where S is the number of food sources, N is the number
of samples selected for optimization, Tit is the number of
iterations. Furthermore, the generic expression of the time
complexity of ABC is O(N 2).
For SVM, the time complexity depends on solving the

convex quadratic programming problem and the dual opti-
mization, which is O(ln2sv + n3sv). Here l is the number of
patterns, nsv is the number of support vectors. Since LS-SVR
is developed by Suykens and Vandewalle, [34] on the basis
of the discussion of How much can the SVM formulation
be simplified without losing any of its advantages? in which
the equality constraints replace the inequality constraints of
SVM, the convex quadratic programming problem of it is
converted into the linear equations. However, all patterns are
treated as the support vectors in LS-SVR, which implies that
l = nsv. Therefore, the overall time complexity of LS-SVR is
given as O(l3). For the adaptive weighted LS-SVR, the time
complexity is O(dl3) where d is the iteration number of the
adaptive weighting procedure. Compared with l, d is gen-
erally too small to be accounted for. Consequently, the time
complexity of the AW-LSSVR is O(l3). As seen, the overall
time complexity of AW-LSSVR might increase drastically
with the increase of the patterns adopted for identification.
In the worst case, the pattern dataset should be not more than
a couple of 10000 samples.

Consequently, one can conclude that the overall time
complexity of the proposed identification method is
O(N 2

+ l3).

C. CONSTRUCTION OF SAMPLES FOR MODEL
IDENTIFICATION
According to the characteristics of the identification
approach, the structure of the dynamic model is ought to be
adjusted to construct suitable input-output pairs for the model
identification. In this study, the forward-difference approx-
imation of Eulers stepping method is adopted to discrete
the perturbation dynamic model as shown in (26) which is
generated under the initial condition of u = u0, v = 0 m/s,
r = 0 rad/s, δ = 0 rad , and n = n0.

4u̇ = (Xmu +2X
m
|u|u|u0|)4u+X

m
uuu4u

3
+ 2Tm

|n|n|n0|4n (26)

where4u = u−u0,4n = n−n0. Then one can get the forms
of the 3 DOF dynamic model presented in (27) to construct

sample pairs according to the sampling interval.
4u̇ = [a1, a2, a3]× [4u, 4u3, 4n]T

v̇ = [bv, br , b|v|r , bδ]× [v, r, |v|r, δ]T

ṙ = [cv, cr , c|v|r , cδ]× [v, r, |v|r, δ]T
(27)

with a1 = Xmu + 2Xm
|u|u|u0|, a2 = Xuuu, a3 = 2Tm

|n|n|n0|,
bv = Ymv , br = Ymr , b|v|r = Ym

|v|r , bδ = Ymδ , cv = Nm
v ,

cr = Nm
r , b|v|r = Nm

|v|r , bδ = Nm
δ .

V. CASE STUDY
Two case studies are carried out for their respective purposes
in this part. The first one using simulation maneuvers of
the large container ship mainly focuses on investigating the
computational cost of the proposed identification method
from the engineering application perspective. The other study
on a USV aims at testing the proposed D-ABC-AW-LSSVR
approach in a realistic context. It is noticeable that in both
cases the properties of the ABC are set as the same, i.e.
NP = 20, S = 20, D = 1, Limit = 30, T = 30, xminj = 10−2

and xmaxj = 1010 which define the search range of LS-SVR
regularization parameter.

A. SIMULATION STUDY ON A CONTAINER SHIP
1) DATA PROCESSING
A nonlinear 4 DOF dynamic model with predetermined
parameter values is found in the study [40]. The model has
been well proved with relatively high exactness in describing
maneuvers of a large container ship. Thus, in application of
this 4 DOF model, four groups of specific maneuvers are
undertook under the same initial conditions, i.e. U0 = u0 =
8 m/s, v0 = 0 m/s, r0 = 0 rad/s, δ = 0 rad , ψ =
0 rad , n0 = 80 rpm. The simulation interval is 0.5 s. In the
end, 1800 samples of each state variable are obtained. The
first straight line maneuver is simulated by varying propeller
speed in-between [120, 160] at the same time keeping the
commanded rudder angle in 0◦, fromwhich data are extracted
to identify the surge model. To verify the identified surge
model, the study uses the data stemmed from the second
straight line maneuver which is generated with the propeller
speed varied in-between [100, 160] and the zero commanded
rudder angle. The 10◦/10◦ and 20◦/20◦ zigzag maneuvers
are generated to provide training data and validation data
respectively for the identification of the steering model. The
maneuvers simulated to feed into the identification procedure
are shown in Fig. 5.

2) IDENTIFICATION RESULTS AND DISCUSSIONS
To comprehensively present and analyze the optimization
performance of the ABC on tuning the regularization param-
eter of the LS-SVR, the commonly-used 5 fold CV and
PSO are utilized for the comparison. To investigate the time
complexity of the proposed identification method, a series
of numerical simulations in identifying surge and steering
models are carried out under the condition of the varying
number of training samples with the steps of 10. In the
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FIGURE 5. Simulation data of the first straight line and the 10◦/10◦
zigzag maneuvers.

FIGURE 6. The time consumed by the three estimation methods on
identifying the surge model.

simulation of each group with the use of a specified num-
ber of samples, three indexes including the total cost time,
MSE of the identified model, and estimated parameters are
analyzed.

Figs. 6-7 present the comparison of the identification
results of ABC-LSSVR, CV-LSSVR, and PSO-LSSVR on
the simplified surge model and further simplified steering
model in terms of the consumed time, respectively. From
these figures, one can see that the cost time of the three
identification methods increases with the increase of the
number of samples. This implies that the number of samples
has a direct effect on the time complexity of the proposed
identification method, which is consistent with the analy-
sis of time complexity in the complexity analysis section.
Compared with CV-LSSVR and PSO-LSSVR, ABC-LSSVR
takes approximately equivalent time to execute the
identification.

The MSE and the estimated parameters of the models
identified by the three estimation methods are summarized
in Figs. 8-12. It can be observed that the fluctuation of MSEs
and estimated parameters of all identified surge models is
obvious within the first 350 samples but becomes stable

FIGURE 7. The time consumed by the three estimation methods on
identifying the steering model. The top sub-figure presents the cost time
of the sway model, the bottom sub-figure means the cost time of the yaw
model.

FIGURE 8. The MSE of the three identified surge models.

soon after. Compared with CV-LSSVR and PSO-LSSVR,
ABC-LSSVR mostly provides the identified surge model
with the lowest MSE. For the identification of the steering
model, the performance of PSO-LSSVR is not so desirable
as that of CV-LSSVR and ABC-LSSVR. This is due to
PSO-LSSVR is prone to fall into local optima. Through the
identified steering models of CV-LSSVR and ABC-LSSVR,
one can notice that MSE of the identified sway models and
the identified yaw models have no apparent variations after
the first 630 samples and the first 230 samples. Recall that
the time complexity of ABC-LSSVR increases along with the
increasing of the number of samples. Therefore, the suitable
selection of samples for efficient identification of the surge
model, the sway model, and the yaw model is 350, 630 and
230, respectively. Correspondingly, the optimized regulariza-
tion parameter of LS-SVR decided by CV, PSO, and ABC are
presented in Table. 2.

B. EXPERIMENTAL STUDY ON A UNMANNED SURFACE
VESSEL
1) DATA ACQUISITION AND PROCESSING
A USV shown in Fig. 13 was carried out a series of maneu-
vering experiments in the East Lake in Wuhan China under
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FIGURE 9. The MSE of the three identified further simplified steering
model.(a) the MSE of the identified sway models. (b) the MSE of the
identified yaw models.

FIGURE 10. The estimated parameters of the three identified surge
models. The top sub-figure is the parameter a1, the middle
sub-figure donates the parameter a2, the bottom sub-figure means the
parameter a3.

FIGURE 11. The estimated parameters of the three identified further
simplified sway models. (a) parameter bv , (b) parameter br , (c) parameter
b|v |r , (d) parameter bδ .

a relatively calm water condition. Table. 3 illustrates the
particulars of the USV. Some sensors such as a R93T GPS,
a Mit-G-700 Inertial Measurement Unit, a HCM356B Com-
pass, and a rudder indicator are equipped with the USV. Due

FIGURE 12. The estimated parameters of the three identified further
simplified yaw models. (a) parameter cr , (b) parameter cv , (c) parameter
c|v |r , (d) parameter cδ .

TABLE 2. Best regularization parameters optimized by the three
optimization methods.

FIGURE 13. The USV.

TABLE 3. Particulars of the USV.

to the lack of the rpm indicator, only the position, yaw rate,
heading angle, and actual rudder angle are measured and col-
lected to process the identification of the steering model for
the USV. Compared to the turning circle maneuver, the zigzag
maneuver is more informative. Hence, the data extracted from
a number of zigzag maneuvers undertook under the condition
of a steady forward speed at around 3 m/s are used in identi-
fying the steering model. As the surge speed and sway speed
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FIGURE 14. The training data extracted from the 10◦/10◦ zigzag
maneuver.

FIGURE 15. Weights of the training sample for the ABC-AWLSSVR method.
The upper subfigure is for the sway model. The lower subfigure is for the
yaw model.

can not be measured directly in this experiment, we obtain
them by calculating the derivatives of the measured positions
with a sampling interval of 1s. Finally, a set of samples of
each state involving yaw rate, actual rudder angle, heading
angle and sway speed are collected during the zigzag maneu-
verings. The 10◦/10◦ zigzag maneuver provides the training

FIGURE 16. Weights of the training sample for the D-ABC-AWLSSVR
method. The upper subfigure is for the sway model. The lower
subfigure is for the yaw model.

FIGURE 17. Predictions of the 25◦/25◦ zigzag maneuver.

data, meanwhile, the 25◦/25◦ zigzag maneuver offers the
validation data. The training data are visualized as Fig. 14
shown.
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FIGURE 18. The prediction errors of the 25◦/25◦ zigzag maneuver.

2) IDENTIFICATION RESULTS AND DISCUSSIONS
In the study, the iteration number is set as 500. In the process
of identification, it is observed that the weights of training
sample for the ABC-AWLSSVR method are converged in
the 8th iteration for the sway model and the 52nd iteration
for the yaw model, while for the D-ABC-AWLSSVRmethod
these are respective the 38th iteration for the sway model and
the 20th iteration for the yaw model. To well and obviously
present the fluctuation of these weights, Fig. 15 and Fig. 16
just show the iterative weights of the training sample for
the ABC-AWLSSVR method and the D-ABC-AWLSSVR
method from the start iteration time to the converged iteration
time, respectively. It can be seen that the maximum weight
of the training sample for the D-ABC-AWLSSVR method
is much bigger than that of the ABC-AWLSSVR method.
This reveals that the outliers corrupted in the training sample
are undetected but regarded as the efficient samples in the
process of identification using the ABC-AWLSSVR method,
while the D-ABC-AWLSSVR method can mostly detect the
outliers and assign the other efficient samples with pretty
large weights. Thus, it can be concluded that the effect of
outliers on the identification results can be weakened when
using the D-ABC-AWLSSVR method.

The prediction results of the 25◦/25◦ zigzag maneuver
of four identified steering models are shown in Fig. 17
where the predictions are compared with the original
measurements. It can be seen from Fig. 17 that the trend of
each group of predictions is very similar and close to that

TABLE 4. Comparison of the MSE of predictions of four identified
steering model.

of the original measurements which in other words means
these four identification methods, i.e. ABC-LSSVR method,
ABC-AWLSSVR method, D-ABC-LSSVR method, and
D-ABC-AWLSSVR method are effective for the identifica-
tion of the steering model for the USV. Comparatively speak-
ing, the performance of the D-ABC-AWLSSVR method is
superior to the other three methods due to the fact that the pre-
dictions of the model identified by the D-ABC-AWLSSVR
method are the best ones close to the original measurements.
For this point, the errors of predictions presented in Fig. 18
and the corresponding MSEs listed in Table. 4 can prove.
It can be seen from the error results that the MSE from the
steering model identified by the D-ABC-AWLSSVR method
is the smallest, which to a large extent demonstrates the
best performance of the D-ABC-AWLSSVR method. While
studying these identification methods, one can find that the
computation cost of them are nearly the same.

VI. CONCLUSION
In this work, a novel hybrid identification method named D-
ABC-AWLSSVR method taking advantages of the robust 3σ
principle method, the good optimization ability of the ABC
and the adaptive weight method is proposed and studied for
the identification of ship dynamic model. By introducing
the adaptive weight method, the drawback of the LS-SVR
based identification method, i.e. high sensitivity to the noises
or outliers contaminated in the samples can be effectively
overcome. Through the simulation study on a container
ship, the computation cost of the proposed method has been
proved to be low enough to satisfy the engineering appli-
cation requirement. In addition, it has been demonstrated
that the performance of the proposed method is superior to
the ABC-LSSVR method, the D-ABC-LSSVR method and
the ABC-AWLSSVR method in the experimental study on a
USV.

In reality, the noises or outliers from sensors and envi-
ronmental disturbances contaminated in the measurements
can not be avoided completely. The proposed identification
method is applicable to such a case where the contaminated
measurements are used to identify models of systems like
the ship dynamic model. The D-ABC-AWLSSVR is a hybrid
method consisting of four components, and every component
has an impact on its identification performance. Therefore,
it is noticeable to pay full attention to the property of each
component while doing model identification, e.g. the setting
of Limit for the ABC due to the fact that the optimization
performance of the ABC is severely sensitive to the setting of
Limit .
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