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ABSTRACT Mobile crowdsensing (MCS) is becoming an extremely pervasive sensing paradigm with the
popularization of intelligent devices, which needs users to release their data to the sensing platform. But
to the MCS system, user’s privacy-preserving demands may be time-varying in the data releasing process.
In addition, protecting data privacy and ensuring data utility is becoming a contradictory and critical issue,
which results in a trade-off problem that needs to be solved. In this article, we construct a differential game
model to solve the trade-off problem between the data utility and privacy preserving in mobile crowdsensing
system, and solve the feedback Nash equilibrium solutions based on the dynamic programming in the MCS
system. Based on the feedback Nash equilibrium solutions, users and the platform can achieve maximization
of privacy requirement and data utility, respectively. Ultimately, a numerical simulation has been made to
show the correctness of the proposed differential game model.

INDEX TERMS Mobile crowdsensing, data utility, time-varying, privacy-preserving, differential game.

I. INTRODUCTION
Mobile crowdsensing (MCS) is becoming a very popular
paradigm, which uses the tremendous sensing capability
of various sensors (e.g., camera, tape-recorder, video cam-
era, GPS) to complete various sensing tasks (e.g., personal
health monitoring, pricing auditing, monitoring noise and
ambiance, real-time traffic conditions) [1] in a cost-effective
approach. In a typical MCS application scenario, the sens-
ing servers or sensing platforms publish different percep-
tual tasks to users, who have intelligent equipments to col-
lect and release perceptual data. Then the sensing platforms
aggregate, process, analyze and share the data to service
requesters for different purposes [2]. In this process, some
incentive mechanisms are needed for the sensing platforms
to recruit users’ participation. On the one hand, the sensing
data released to task platform may contain personal sensitive
information like user’s location data and accelerometer data.
In addition, with the location data, attackers can derive user’s
private information (e.g., habits and customs, health condi-
tion, social relation) by linking attack [3], hence, the behavior
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that carried out by attackers may violate users’ privacy [4].
On the other hand, in order to complete perceptual tasks
motivated by the sensing platforms, users may have some
additional consumptions, such as battery, storage, and so
on [5]. Meanwhile, the privacy requirements may be varied
over time to users even for the same tasks [6]. In order to
introduce the dynamic requirement about users more clearly,
we take a simple example as follows.
Example 1: For some medical research purposes, the sens-

ing platform needs to collect medical data (e.g., blood pres-
sure, heart rate et al.) abundantly from users for a period.
Some usersmaywant to disclosemore informationwhen they
are ill to get a better monitor. Meanwhile, they can get some
rewards from the sensing platforms by sharing their health
data. In the above process, the privacy-preserving require-
ments of users are lower than the other cases. Once the users
get cured, they will decrease the amount of the shared data
information despite the reward, because they want to have a
higher privacy-preserving requirement for the uploaded data.

In the MCS system, we assume that the sensing platform is
not a trustworthy third party [7], in which scenes the recruited
users are permitted to perturb their raw data locally by
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adding some different grades noise before releasing the data
to the platform according to the dynamic changing privacy
demands, in order to protect their sensitive information [8].
Noise addition behavior will result in a decline in data utility
(the ratio of available data to total data) to both the user
portion and platform portion respectively. For the users, they
want to add enough noise to maximize their data privacy,
which will reduce the data utility. The sensing platform wants
to maximize the data utility to have a better realization of data
value but will reduce the data privacy. Hence, the trade-off
problem between data privacy and data utility [9] arises that
needs to be solved dynamically.

In order to solve the trade-off problem, we design a non-
cooperative differential game model [10], [11] to find if there
exist an optimal strategies for the players, that is, to find Nash
Equilibrium solutions for the trade-off problem to users and
platform over time, no matter what noise addition mechanism
has been used for data perturbation and what data aggregation
mechanism has been adopted for data value to be imple-
mented. Generally, game theory can be used to settle the
trade-off matters. For instance, Wu et al. [9] cast the trade-
off problem between privacy and utility as a game problem
in a static scenario, where the privacy level of data set is
fixed. Different from the above scheme, we formulate a non-
cooperative differential game model to solve the trade-off
problem between privacy and utility in MCS based on a
dynamic privacy requirement condition. The main contribu-
tions of the paper are as follows.

1) We design a non-cooperative differential game-based
model for the trade-off problem of data privacy and data
utility.

2) By attaining the Nash equilibrium solutions, we get the
verdict that the optimum condition was existent, which gives
a certain reference for users to set their privacy requirements
so as to maximize the remuneration, and for platform to
achieve a better value of the data.

The following section is devised as follows: Sect.2 is
the related works. Sect.3 is the preliminaries for the paper.
Sect.4 is the system model and game formulation of the
proposed problem. The feedback Nash Equilibrium solution
of the proposed game model are given in sect.5. Sect.6 is
numerical simulations and analysis, and there is conclusion
and future work in sect.7.

II. RELATED WORK
Lots of the work has been done to the privacy-preserving
issues in the domain of mobile crowdsensing [6], [12]–[18].
In MCS, to protect sensitive information, users may submit
perturbation data or unreliable data to the platform, the iden-
tification about privacy-preserving truthful values from all the
sensing data while protecting individual private data problem
are emerged. To solve the issue, Miao et al. [12] proposes
a cloud-based privacy-preserving truth discovery framework,
which not only protects user’s sensitive information, but also
derives the reliable score of the sensing data that is provided
by individual, but the true discovery framework ignore the

sensing data may have a vary reliability degree due to differ-
ent topics.

Ma et al. [13] formulates a fine grained truth discovery
model named FaitCrowd by using a probabilistic model to
estimate topical expertise and true answers concurrently.

Su et al. [14] presents a decision aggregation framework
GDA, which can take advantage of all the messages, and has
no assumption about the availability level of ground truth
label information.

Xiao et al. [15] proposes a stackelberg game between
intelligent devices owner and MCS server, firstly, the server
determines and broadcasts its payment policy for each sens-
ing accuracy. And then each user chooses the sensing effort
and the sensing accuracy to receive the payment.

In addition, in one place, there may exist multiple sensing
works, which makes the privacy of the sensing users’ harder
to be guaranteed. Meanwhile, the introduction of incentive
mechanisms (auction mechanisms, monetary mechanisms,
game mechanisms) [16], [17] in MCS privacy issues makes it
more challenging to be satisfied. To solve it, Zhang et al. [18]
proposes two privacy-preserving market mechanisms to pro-
tect the privacy.

We see that all the above literatures assume that
user’s privacy protection requirements are fixed by time.
Zhang et al. [6] solves the dynamic pricing problem in MCS
system by using a reinforcement learning approach shows
that the requirements may be time-varying. Based on the
above, we can see the issue that improving the data utility
while protecting data private as a trade-off problem. In order
to solve the trade-off problem, we need to consider the
dynamic variation in the MCS system, which can be built as
a differential game.

III. PRELIMINARIES
A. DIFFERENTIAL PRIVACY
Definition 1 (Differential Privacy [19]–[21]): A random-
ized me-chanism M gives ε-differential privacy for every set
of data outputs S, and for any input neighboring datasets
D1 = (d1, d2, · · · , dn) and D0 = (d

′

1, d
′

2, · · · , d
′

n), which
has n data entries, if they are different only in the ith data
entry [18], i.e. for i ∈ N = {1, 2, · · · , n}, We can express
it as D1 = (d1, d2, · · · di−1, di, di+1, · · · , dn) and D0 =

(d1, d2, · · · di−1, d
′

i , di+1, · · · , dn). If M satisfies:

Pr [M (D1) ∈ S] ≤ exp(ε) · Pr [M (D0) ∈ S]. (1)

In definition 1, parameter ε is defined as the privacy bud-
get [20], which dominates the level of differential privacy,
in other words, it’s a measure of the information leakage.
A smaller ε represents a stronger privacy, which means the
harder for attackers to infer the sensitive information that
belong to users, and then the data utility may be lower due to
the stronger privacy. Based on this, in the following sections,
we let ui(t) = εi(t) denotes the privacy loss that the user i can
tolerated at time instant t.
For the randomized mechanism M, it has two privacy

composition theorems: sequential composition and parallel
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FIGURE 1. Architecture of MCS.

composition [22]. In this paper, we will introduce the parallel
composition only.
Lemma 1 (Parallel Composition): Assuming that each of

the privacy-preserving mechanismsMi gives εi privacy guar-
antee forM = {M1,M2, · · · ,Mn} on a set of disjoint data sets
Di ∈ D = {D1,D2, · · · ,Dn}, then M will provide max(εi)-
differential privacy.

B. LAPLACE MECHANISM
Definition 2 (Laplace Mechanism [20]): A randomized
mechanism M is defined as a Laplace mechanism, when M
gives ε-differential privacy and a randomized function g :
D→ R for every set of data D, if it follows

M (D) = g(D)+ Lap(
1g
ε

). (2)

where Lap(x) = 1
2be

(− |x|b ) is the Laplace noise that subor-
dinated the Laplace distribution, which is centered at 0 with
scaling b. Furthermore, 1g = max

D0,D1
|g(D0) − g(D1)| is the

global sensitivity, which is the biggest difference between the
adjacent dataset D0 and D1.

C. LINKING ATTACK
Definition 3 (Linking Attack [3], [23]): An attacker uses the
background knowledge, which is any information that an
attacker possesses, to connect external data with data contain-
ing personal privacy in some ways. The aboved process that
may leads to the privacy information be disclosure is called
linking attack.

D. MOBILE CROWDSENSING NETWORK ARCHITEC-TURE
In this section, we will introduce the architecture of the
rese-arched mobile crowdsensing network. Based on [1],
the overall operation process of a typical mobile crowd-
sensing system is shown in Figure 1, which contains four
steps.

Step 1: The platform releases one or more tasks, and then
the user checks the task and decides whether to accept the
task for collecting and contributing their data or not, the data
which contains their sensitive information like location data
and accelerometer data. In this process, in order to encour-
age users’ participation, platform may use certain incentive

mechanisms to encourage more subscribers to upload their
data to the platform.

Step 2: The participators take the assignment and collect
the related data according to distinct task requirements, then
store and process them locally to prevent some attacks like
linking attack, finally, submit their data to the platform peri-
odically, irregularly or immediately.

Step 3: The platform stores and gathers the data from
all the users, and then releases the aggregation data to the
end users after analytical process them according to different
privacy requirements and different purpose.

Step 4: The end users get the corresponding data according
to different demands, and the data value has been realized.
Furthermore, the platform gets some payoff through provid-
ing the aggregation data to end users, while the users recruited
by the platform get their payoff based on the incentive mech-
anism setting on step 1.

IV. SYSTEM MODEL
In order to solve the data utility and data privacy trade-
off problem, a differential game theory-based model has
been built. Assuming that there exists one platform in the
mobile crowdsensing network, meanwhile, the number of
users recruited by the platform is N = {1, 2, . . . , n}. Here,
the platform and the users are the players of the tradeoff
game between data utility and data privacy, which will be
considered as an N+1 non-cooperative differential game. The
privacy loss of the data for user i (i ∈ N ) can tolerates
at time instant t (t ∈ [t0,T ]) is denoted as ui(t), and
v(t) is the data utility of the total data that collected by
the platform during the time interval [t0, t](t ∈ [t0,T ]).
Moreover, let x(t) denotes the total data that reported by
all of the users in the period from task start to time t
(t ∈ [t0,T ]). Furthermore, based on the basic knowl-
edge in section III, by adding the Laplace noise to the raw
data, a perturbated data is obtained, and through the parallel
composition, we can get the aggregation data [24]. Here,
we assume that we don’t care what noise for users added to
perturb their raw data to protect the sensitive information,
and what methods f(x) for platform used to aggregate the
collected data, that is, we only focus on the results about
all of the players. The process for data flow is shown as
Figure 2 [6].

The variation for total data x(t) at time t relies not only
on the data itself, but also the data utility for the platform
to achieve the values of the data, as well as the privacy that
the users can bear to publish their information to a third
party. We assume that a>0 is the growth rate of the total
data for the platform due to the (positive) network effect [25],
which means the phenomenon that a good, e.g., telephone
number has a higher value when it is used by the platform
than used by the individual. If the users are participants in
the mobile crowdsensing network, the actions of them can
be thought as the ‘good’ with the network effect positively.
Then the variations of the data are governed by the following
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FIGURE 2. The process of data perturbation and data aggregation.

differential equation,
dx(t)
dt
= ax(t)+

n∑
i=1

ui(t) [v(t)+ ψi]+ kv(t)

x(t0) = x0.

(3)

where ψi denotes the effect rate of the data provided by vary
users that has different level of privacy to the total number
of the data, and k > 0 means the effect of data utility to the
total data. Furthermore, the trade-off game between the data
utility and the privacy loss value can also cause the change to
the total data number.

The purposes of users are to maximize the individual’s
profits through providing data. Meanwhile, to minimize the
privacy value ui(t) for decreasing the leakage of sensitive
information. In the process of data aggregation, users can get
some rewards, and the total income of users can be described
as follows,

Q1 =

{
piui(t), x(t) < θ

[pi − µui(t)]ui(t), x(t) ≥ θ.
(4)

where pi > 0 denotes the platform-specified unit price of data
for user i due to its privacy setting per unit. θ is the bounds of
the number of the data that can be used for the platform, when
the total data x(t) exceeded θ , the data is useful, otherwise, it’s
useless. µ means that the platform gives users a decreasing
amount of privacy budget per unit when the data reaches a
certain amount. Here we just consider the situation that the
data is useful in the subsequent section.

During the game period, there have additional cost for
users to protect their sensitive information. The cost function
of the privacy protection is related to the privacy loss that the
user can accept, and the total data that the platform collected,
which can be defined as,

Q2 = ciui(t)+ σix(t). (5)

where ci is the unit privacy cost of user i. σi is the impact rate
of total data on user cost. Furthermore, inspired by [26], when
user sets its privacy value, it may consider the rewards and the
possible data summation, then the cost can be modelled as a
varying function about the total data.

When the aggregation data is in stability, the profits of user
i at time t is seen as the difference between the income and
the cost, which is,

Q3 = [pi − µui(t)]ui(t)− ciui(t)− σix(t). (6)

Then, for each user i ∈ N , it seeks to

max
ui(t)

∫ T

t0
[(pi − µui(t)) ui(t)− ciui(t)− σix(t)]e−r(t−t0)dt

+ q1x(T )e−r(T−t0). (7)

The objective of the platform is to maximize its profits
through achieving the values of the aggregated data, which
reflects in maximizing the data utility. In mobile crowdsens-
ing, the procedure during the data aggregation, there is a
variety of cost expenditure for the platform. The cost function
is contained of three portions, that is, the cost of platform
for the data further processing, the payments to the users for
providing different privacy according to variation standards,
and the probability cost of data utility caused by the data
summation. The cost function for the platform is shown as,

G1 =

n∑
i=1

miui(t)+
n∑
i=1

(pi − µui(t))ui(t)+ ξx(t). (8)

where ξ is the positive parameters, mi is the unit price of
platform for different privacy data processing per unit.

The purpose of the platform for task publish is to obtain
benefit during the task process, which can be denoted by the
difference between the revenue and the cost. Inspired by the
relationship between supply, demand and price in economics,
the income function for platform can be shown as,

G2 = [δ − ζv(t)]v(t), (δ ≥
n∑
i=1

pi). (9)

where δ > 0 is the platform-specified price for the data
resource, ζ is the damping ratio for data utility over time.

According to the analysis of the above, the instantaneous
profits of platform at time t can be represented as,

G3 = [δ − ζv(t)]v(t)−
n∑
i=1

miui(t)

−

n∑
i=1

(pi − µui(t))ui(t)− ξx(t). (10)

Based on the above analysis, the platform can obtain a
optimal solution in which platform seeks to

Jp = max
v(t)

∫ T

t0
e−r(t−t0){ [δ − ζv(t)]v(t)−

n∑
i=1

miui(t)

−

n∑
i=1

(pi − µui(t))ui(t)− ξx(t)}dt + q2x(T )e−r(T−t0).

(11)

V. FEEDBACK NASH EQUILIBRIUM
SOLUTION OF THE GAME
Based on the non-cooperative differential game model estab-
lished for the mobile crowdsensing network in section IV,
in this section, we try to solve the proposed model given
in (3), (7), and (11), to find the feedback Nash equilibrium
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solutions, which will be considered as the optimal bounds for
the data utility to platform, and the optimal bounds for the
data privacy to the users.

For each user, an n-tuple of strategies
{
u
∗

i (t)
}
i∈N

=

{φi(t, x), for t ∈ [t0,T ]}i∈N provides a feedback Nash
equilibrium solution to the game (3) and (7), if there exists
continuously differentiable functions satisfying the following
partial differential equations [27],

−V i
t (t, x)=max

ui(t)
{e−r(t−t0)[(pi−µui(t))ui(t)−ciui(t)−σix(t)]

+V i
x(t, x)[ax(t)+

n∑
i=1

ui(t)(v(t)+ ψi)+ kv(t)]}.

(12)

V i(T , x) = e−r(T−t0)q1x(T ). (13)

Through performing the first order derivation on for-
mula (12), and making it equal to 0, we can get the solution,

ui(t) =
pi − ci + er(t−t0)V i

x(t, x)[v(t)+ ψi]
2µ

. (14)

For the platform, a set of policy
{
v
∗

(t)
}
i∈N
= {ϕ(t, x),

for t ∈ [t0,T ]}i∈N provides a feedback Nash equilibrium
solution to the game (3) and (11), if there exists continuously
differentiable functionsW i(t, x) : [t0,T ]×R→ R satisfying
the following partial differential equations [28],

−W i
t (t, x) = max

v(t)
{e−r(t−t0)[(δ − ζv(t))v(t)−

n∑
i=1

miui(t)

−

n∑
i=1

(pi − µui(t))ui(t)− ξx (t)]}

+W i
x(t, x)[ax(t)+

n∑
i=1

ui(t)∗(v(t)+ψi)+kv(t)].

(15)

W i(T , x) = q2x(T )e−r(T−t0). (16)

Through performing the first order derivation on for-
mula (15) about v(t), and making it equal to 0, we can get
the solution

v(t) =

δ + er(t−t0)W i
x(t, x) · [

n∑
i=1

ui(t)+ k]

2ζ
. (17)

Lemma 2: The solutions for the two systems (12-13) and
(15-16) are

V i(t, x) = e−r(t−t0)[Ai(t)x + Bi(t)]. (18)

W i(t, x) = e−r(t−t0)[A1i(t)x + B1i(t)]. (19)

with {A1(t),A2(t), · · · ,An(t)}, {B1(t),B2(t), · · · ,Bn(t)}
and {A11(t),A12(t), · · · ,A1n(t)}, {B11(t),B12(t), · · · ,B1n(t)}
satisfying the equations as the following,

Ai(t) =
exp [(r − a)∗$ (i, t)]− σi

r − a
,

for

$ (i, t) = T − t +
ln [(r − a)∗q1+ σi]

r − a
. (20)

Ai(T ) = q1. (21)

And

A1i(t) =
exp [(r − a)∗`(t)]− ξ

r − a
,

for

`(t) = T − t +
ln [(r − a)∗q2+ ξ ]

r − a
. (22)

A1i(T) = q2. (23)

Furthermore, referring to [10] and seeing from v(t) in (14)
and ui(t) in (17), we get that v(t) and ui(t) has nomore relation
withBi(t) andB1i(t), so the expression of both is omitted here.

Proof: Based on the formula (18) and (19), we get the
derivation of x and t respectively

V i
t (t, x)= e

−r(t−t0)[−rAi(t)x−rBi(t)+Ȧi(t)x+Ḃi(t)]. (24)

V i
x(t, x) = e−r(t−t0)Ai(t). (25)

W i
t (t, x)= e

−r(t−t0)[−rA1i(t) x − rB1i(t)+Ȧ1i(t) · x+Ḃ1i(t)]

(26)

W i
x(t, x) = e−r(t−t0)A1i(t). (27)

Using (12-19), we can get,

e−r(t−t0)[(pi − µui(t))ui(t)− ciui(t)− σix(t)]

+ e−r(t−t0)Ai(t)∗[ax(t)+
n∑
i=1

ui(t)(v(t)+ ψi)+ kv(t)]

= e−r(t−t0)[rAi(t)x + rBi(t)− Ȧi(t)x − Ḃi(t)]. (28)

And,

e−r(t−t0)[(δ − ζv(t))v(t)−
n∑
i=1

miui(t)−
n∑
i=1

(pi − µui(t))ui(t)

− ξ∗x (t)]+ e−r(t−t0)A1i(t)[ax(t)

+

n∑
i=1

ui(t)(v(t)+ ψi)+ kv(t)]

= e−r(t−t0)[rA1i(t)x + rB1i(t)− Ȧ1i(t) · x − Ḃ1i(t)]. (29)

For (28) and (29) to be hold, it should be satisfied that,{
Ȧi(t)+ (a− r)Ai(t) = σi
Ai(T) = q1.

(30)

And, {
Ȧ1i(t)+ (a− r)A1i(t) = ξ
A1i(T) = q2.

(31)

Then we have,

Ai(t) =
exp [(r− a)∗$ (i, t)]− σi

r − a
,

$ (i, t) = T − t +
ln [(r− a)∗q1+ σi]

r − a
. (32)
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TABLE 1. Parameters setting.

A1i(t) =
exp [(r− a)∗`(t)]− ξ

r − a
,

`(t) = T − t +
ln [(r− a)∗q2+ ξ ]

r − a
. (33)

�
From (14), (25), (32) and (17), (27), (33), we can get the

solutions to the users and the platform, respectively,

ui(t) =
pi − ci + [ exp [(r−a)∗$ (i,t)]−σi

r−a ] · [v(t)+ ψi]

2µ
. (34)

v(t) =

δ + [ exp [(r−a)∗`(t)]−ξ
r−a ] · [

n∑
i=1

ui(t)+ k]

2ζ
. (35)

Using (34) and (35), we can get the optimal control strate-
gies u

∗

i (t) and v
∗

(t) for the users and the platform, respec-
tively,

u
∗

i (t) = H + G∗
M + N ∗

n∑
i=1

H

1− N ∗
n∑
i=1

G
. (36)

v
∗

(t) =

M + N ∗
n∑
i=1

H

1− N ∗
n∑
i=1

G
. (37)

where,

H =
pi − ci(t)+

[
exp [(r−a)∗$ (i,t)]−σi

r−a

]∗
ψi

2µ
,

G =
exp [(r−a)∗$ (i,t)]−σi

r−a

2µ
,

M =
δ +

[
exp [(r−a)∗`(t)]−ξ

r−a

]∗
k

2ζ
,

N =
exp [(r−a)∗`(t)]−ξ

r−a

2ζ
.

Through submitting the formula (36) and (37) into the
equation of state expression (3), we get the optimal state in
the non-cooperative differential game, which is written as

FIGURE 3. The variation of optimal utility strategy v∗(t) over time with
different r.

follows,

dx
∗

(t)
dt
= ax

∗

(t)−
n∑
i=1

[H + G∗
M + N ∗

n∑
i=1

H

1− N ∗
n∑
i=1

G
]∗

{[

M + N ∗
n∑
i=1

H

1− N ∗
n∑
i=1

G
]+ ψi} + k[

M + N ∗
n∑
i=1

H

1− N ∗
n∑
i=1

G
]

x(t0) = x0.

(38)

VI. NUMERICAL SIMULATIONS AND ANALYSIS
In this section, numerical simulations are made to test the
performance of the game model given in the above sections.
For the parameters setting, we set up two data for the sim-
ulation as an illustration, the growth rate that brought by
the positive network effect a is set to be 0.036, for people
participating in the recruitment tasks, to some extent, due to
the effect, which may not be the main reason for users to
complete the perceptual tasks, though the individual value can
be embodied in a group than be the personal one. Moreover,
the discount rate r that represent the value of possible future
benefits in the present, when it takes different values, the
convergence rate is different with time. It is obvious that
the bigger the r is, the faster the convergence rate is for the
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FIGURE 4. The variation of ui (t) with time t when r = 0.05.

FIGURE 5. The variation of v(t) with time t when r = 0.05.

optimal utility strategy, which is shown in Figure 3. The same
as [29], the discount rate here is set to be r = 0.05. The
other parameters to users and the platform are set as follows
in Table 1.

From the simulation results, we get the variation of the
optimal strategies for the users and platform, which is exhib-
ited in Figure 4 and Figure 5, respectively. From Fig.4,
we see that the privacy ui(t) to each user is decreased with
time. For the smaller the value of ui(t) is, a stronger pri-
vacy requirement that needs to be achieved. With time goes
by, more and more individual information may be leaked,
so users who submit individual data to platformmay not want
to participate in the sensing task.

From Figure 5, the variation of v(t) with time t is also
declining, for users, with it is privacy needs stronger than
the beginning, and the stronger the privacy is, the weaker
the utility is, all of which results in the decline of the data
utility for platform with time, so the total number of the data
to platform collected is coming down, which is illustrated in
the Figure 6.

FIGURE 6. The variation of x(t) with time t when r = 0.05.

Based on the result shown as above, it is also shown that a
better incentives mechanism should be designed to motivate
users to participate in different sensing tasks to implement the
profit maximized of the data.

VII. CONCLUSION AND FUTURE WORK
In order to implement data privacy-preserving in mobile
crowdsensing, there are two aspects that needs to be consid-
ered, the first one is how to guarantee privacy in data appli-
cation phase, and the second aspect is how to be beneficial to
the application of data. So, it’s a trade-off problem between
getting a good data utility and protecting individual privacy,
which is also a contradictional and important problem.

In this paper, to address the above problem when pri-
vacy requirement for users may time-varying due to distinct
purpose, firstly, we formulate a non-cooperative differential
game model to verify whether there exists an equilibrium
state for data utility and user privacy. Secondly, by solving
the model, we get the unique Nash equilibriums. And finally,
numerical simulations have been made to show the correct-
ness of the model we have devised.

In the future research work, firstly, a more effective
incentive mechanism for platform will be devised to irritate
more users partake. Secondly, a more suitable data aggre-
gation mechanism and data perturbation mechanism will be
designed to have a maximization for both privacy and util-
ity. Finally, we plan to implement a realistic MCS platform
based on the game model and the suitable incentive, data
aggregation and data perturbation mechanism to realize a
better performance against linking attacks in MCS for user’s
privacy-preserving demands, which may be time-varying in
the data releasing process.
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