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ABSTRACT Faced with the explosive demand of real-world applications, spatial crowdsourcing has
attracted much attention, in which task assignment algorithms take the dominant role in the past few years.
On the one hand, most recent studies concentrate on maximizing the overall benefits of the platform,
ignoring the fact that user experience also plays an essential role in task allocation. On the other hand,
they focus on matching, that is, how to assign tasks, rather than batching, that is, when to make assignment.
In fact, user experience also depends on batching, but this is largely overlooked by current studies. In this
paper, we propose a self-adaptive batching mechanism to enhance user experience in spatial crowdsourcing.
With appropriate start-up timestamps, previous matching methods can perform better. Multi-armed bandit
algorithm in reinforcement learning is adopted to split the batch dynamically according to historical current
states. Extensive experimental results on both real and synthetic datasets demonstrate the effectiveness and
efficiency of the proposed approach.

INDEX TERMS Spatial crowdsourcing, online task assignment, user experience, self-adaptive batching,
multi-armed bandit.

I. INTRODUCTION
With the rapid development of mobile Internet and sharing
economy, a novel framework called spatial crowdsourcing
(SC) is proposed to meet with the growing demand for
suitable solutions to the problem of allocating spatial tasks.
Nowadays, there are many typical real-world SC applica-
tions, such as car-hailing service (e.g., Uber and DiDi), food
delivery service (e.g., Eleme and Meituan) and handyman
service (e.g., TaskRabbit). There are typically three parties
in SC applications: workers, tasks, and a platform. Workers
and tasks arrive dynamically to the platform which is in
charge of matchmaking, that is, tasks are assigned to workers.
A remarkable feature of SC is that workers are required to
travel to corresponding locations physically to finish their
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tasks. Task assignment is a crucial problem in SC and has
received much attention in recent years.

Most existing works on task assignment focus on improv-
ing the overall performance of the platform. For example, [1],
[2], [13] try to maximize the number of assigned tasks; [8],
[14], [15] intend to maximize the overall utility score of
the platform; and [16], [17] aim to minimize the total travel
cost of the platform. While the performance of the platform
is important to successful SC applications, user experience
also plays a significant role in SC. This is because users
are the cornerstone of SC applications. Only by considering
the interests of users, a platform can stand out from the
competitionwith other platforms. A few studies on improving
user experience have been reported very recently. In most
SC applications, user waiting time is an important index of
user experience. Based on this observation, [18] presents
a task assignment method to minimize the maximum user
waiting time.
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FIGURE 1. An example of 4 passengers and 4 taxis.

Though the above method can effectively alleviate the
worst user waiting time, it is essentially a task assignment
strategy, that is, how to assign tasks to workers. The prob-
lem of when this strategy should be executed, however, has
been largely overlooked recently. Existing solutions to this
problem is either real-time or fixed batch. However, both of
them sometimes have unsatisfied performance in terms of
user experience. We illustrate this using the following car-
hailing example.

Assume a car-hailing platform has 4 car-hailing task
(t0-t3) and 4 workers (w0-w3). The locations and the arriving
time of tasks and workers are presented in Fig.1, respectively.
The batch size here represents the time interval between batch
assignments. That is, if the batch size is set to 2, the plat-
form will wait for 2 units of time after each allocation and
then perform the next allocation. In this example, we do not
consider the worker waiting time, and if the worker is not
assigned to the task, he will be treated as an idle worker to
join the next batch for further allocations. Firstly, we set the
batch size to 1, which equate to the online assignment because
incoming tasks are immediately assigned to available workers
within the unit time of its arrival. Under this circumstance,

we match w0 with t0 in the first place since w0 is the only
available worker when t0 arrives at time 1. We assume that
each worker’s velocity is 1, so each worker’s traveling dis-
tance is equivalent to his/her traveling time. If we regard the
waiting time as the cost of the allocation, then the cost of
this single process is

√
34(traveling time of w0) + 0(delay

of t0). The solution under the batch size of 1 with t0, t1, t2,
t3 matched to w0, w1, w2, w3 at time 1, 3, 5, 8 respectively
are demonstrated in Fig.1(a). The total cost is

√
34+
√
34+

√
20+
√
34 ≈ 21.96, and Fig.1(a) also conveys the message

that real-time allocationmay lead to an unbalance distribution
because users sacrifice a nearer car for shorter waiting time.
In terms of fixed batch, we adjust the batch size to 2. During
this process, we match t0, t1, t2, t3 with w1, w0, w2, w3 at
time 2, 4, 6, 8 respectively and the total cost of which is
5 + 3 + (

√
20 + 1) +

√
34 ≈ 19.30. From the result above

we can see a slight decrease in the total cost due to a more
reasonable allocation. With a larger batch size, we can work
out a local optimal solution with existing allocating methods.
Furthermore, if we set the batch size to 4, the total cost is
(
√
10+ 3)+ 3+ (

√
2+ 3)+

√
34 ≈ 19.40, which is slightly

larger than when the batch size is 2. This is because even if
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TABLE 1. Arrival time of car-calling tasks (passengers) and workers (cars).

the distribution results becomemore reasonable, the first ones
that arrive must wait until the end of the current batch to get
assigned, thus increasing the averagewaiting time. Therefore,
we divide the current time period into two batches according
to the distribution of workers and tasks. The first batch size
is 6, and the second batch size is 2. The specific allocation
is as shown in Fig.1(d). As we can see from 1(d), The best
result is that t2 is assigned to w1, t0 is assigned to w3. As for
whether t1 is assigned to w0 or w2, since the two workers
are the same cost to t1, a worker will be randomly assigned
to t1. In our current example, we assign t1 to w2, so this is
the case where w0 is idle and added to the second batch for
allocation. Therefore, there will be a match between t3 andw0
in the second batch. We can have an ideal allocation whose
total cost is (

√
2 + 5) + 5 + (

√
2 + 1) +

√
2 ≈ 15.24,

about 20% less average waiting time than before, indicating
that the problem of when to execute the allocation can play a
significant role in optimizing user’s average waiting time.

In this paper, we propose a self-adaptive batching approach
in SC platform with the purpose of minimizing requesters’
average waiting time. Compared with similar work [8], our
work focuses on the user experience instead of the overall
utility of the platform, and also we will focus on the timing
of allocation and the impact of current real-time user supply
and demand on batch size settings. In order to achieve our
experimental goals, we need a way to dynamically adjust
the batch size based on the current situation. We model the
self-adaptive batching approach as the task of repeatedly
selecting a batch size when a new batch begins. Therefore,
we introduce the multi-armed bandit problem(MAB) into our
mechanism and make targeted improvements to the ε-greedy
method of the MAB based on our model, through which we
can give scores for different batch sizes and decide whether
to continue selecting the historical optimal batch size or to
explore a batch size that better matches the current situation.

Based on the above discussion, we summarize our main
contributions as follows:
• We propose to use the batching method to optimize the
user experience, which is the first work to consider this
problem in SC framework.

• We present a MAB-based self-adaptive batching
approach to optimize SC task assignment, which can
adapt to conventional assignment algorithms and the
changing of real-time supply-demand relationship.

• The effectiveness and efficiency of our mechanism are
veriïĄed on both synthetic and real-world datasets.

The rest of the paper is organized as follows. In Section II,
we review some related works. We next demonstrate the
process and related definitions to form a basic concept for
our mechanism in Section III. Our solutions and its central

idea will be elaborated in Section IV. Extensive evaluations
on both synthetic and real-world datasets are presented in
Section V. Finally, we make our conclusions in Section VI.

II. RELATED WORK
In this section, we review some typical works related to
our problem from two categories, spatial crowdsourcing and
online task-assignment and explain the differences between
ours and the mentioned mechanisms.

Existing algorithms generally build their models on
bipartite matching problem to cater for different needs.
Reference [3] design a general-purpose SC platform to solve
the maximal assignment problem. [4] consider recommend-
ing an online optimal path for SC worker so that they can
achieve the most reward by completing tasks along the way.
Reference [5] put forward a prediction-based online task
assignment model to enhance the probability of successful
assignment. Reference [6] designs multi-skill algorithms to
maximize the revenue of workers under the constraints of
budgets and skills. Reference [7] take that workers may reject
the task assigned from the SC platform into consideration.
Reference [8] propose a reinforcement learning approach
to find a matching allocation that yields the highest total
revenue.

Existing online assignment algorithms [1], [9], [16], [20]
are normally classified into real-time mode and batch mode.
Real time mode hardly makes sure the efficiency of assign-
ment because better matching objects often appear after the
allocation. Nowadays, most works use the batch mode as a
fixed framework by setting a specific time window value,
and never pay their attention on the truth that, the size
of each batch also matters a lot. Reference [8] firstly use
adaptive allocation by calculating and interrupting current
batch dynamically and achieved remarkable results, which
also proves the significance of our proposal – focusing on
when platform takes action of assignment under the online
scenario to better the assignment effectiveness, rather than
which allocation algorithm we need to utilize.

III. PROBLEM STATEMENT
We first give some basic definitions related to our SC plat-
form, then formally define the problem we aim to optimize
and discuss the criteria we evaluate a given deterministic self-
adaptive batching algorithm’s performance.

A. SC PLATFORM-RELATED DEFINITIONS
Definition 1 (Worker): Aworker on spatial crowdsourcing

platform is denoted by wi = (li, vi), where li and vi respec-
tively indicates his/her current location and unchangeable
moving speed. And a location is a geographic spot l =
(longitude, latitude) where longitude, latitude respectively
indicated the longitude and latitude value.

In this paper, when a worker becomes available, we will
record his/her location at that moment. In addition,
we assume an available worker will not change his/her loca-
tion until he/she is assigned to a task.
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Definition 2 (Task/Request): A task or a request on SC
platform is denoted by tj = (lj, sj), where lj and sj respectively
indicates the location where this request need to be completed
and the timestamp when this request appears on the platform.
Definition 3 (Assignment Triple): An assignment triple

aijx =< wi, tj, sx > indicates that SC platform assigns
worker wi to complete task tj at the timestamp sx .

Once a worker wi is assigned to a specific task tj by plat-
form, he/she immediately move to the destination, location lj.
We note the travel time of this assignment triple as follows:

τtravel =
d
(
li, lj

)
vi

(1)

which indicates the travel time of the assignment triple aijx
starts from the worker wi receives the task tj, and ends when
he/she arrives the location of the request. And the d

(
li, lj

)
means a distance between location li and lj in a 2D Euclidean
space or a road network.

B. PROBLEM DEFINITIONS
Definition 4 (Batch Size): Batch size is denoted by bs,

indicating that the platform performs task assignment every
bs time units, and bsi means the time interval between the
(i− 1)− th and the i− th task assignment.
Definition 5 (Waiting Time): A total waiting time

τijx indicates the time interval from request tj appears on
the platform to the assigned worker wi reached the working
position.Obviously we can notice that:

τijx = τbatch + τtravel (2)

which means the total waiting time of an assignment con-
sists of τbatch, the time period it waits for platform’s allocation
when current batch is split and τbatch, the travel time worker
spends on road.

So the average waiting time of a given time interval T can
be calculated as follows:

avgaijx∈K =

∑
aijx∈K τijx
|K |

, (3)

where |K| is the number of assignment triple set K the plat-
form made during this period.
Definition 6 (Dynamic Batching Model): In a given time

period T, an unknown number of workers and tasks will
appear dynamically on platform in random order. The plat-
form needs to split the period T into n batches, whose size
(bs1, bs1, . . . , bsn) can be different. At the beginning of every
batch, the platform makes a task assignment instance set K,
with all available workers W and tasks R at that time. Once
this batch ends, workers and tasks involved in K will be
removed from W and R, respectively. In the following bsi
time units, M and N may be updated due to the appearance of
new workers and new tasks, or the logout of workers and the
cancellation of tasks. By setting a series of batch sizes with a
certain strategy, the platform can achieve a minimum average
waiting time.

IV. MAB-BASED SOLUTION
In this section, we first introduce multi-armed bandit algo-
rithm briefly, then use one of MAB strategies, ε-greedy to
select the suitable batch size.

A. MULTI-ARMED BANDIT
Multi-armed bandit (MAB) for a gambler, a typical problem
in reinforce learning, originally described by Robins [10],
is to decide which arm of a K -slot machine to pull to max-
imize his total reward in a series of trials.

A K -armed bandit, is like a multi-lever traditional slot
machine while the reward of each lever is unknown initially.
Our target is select a strategy series to acquire the most
revenue. Since each selection from k arms is an independent
event, another constraint of the K -armed Bandit problem is
to maximize the one-step reward, that is, to ignore future
rewards. There are two simple strategies:
• exploration-only: Allocate each lever with an equal
probability to try, in which way the reward of each arm
can be estimated well, but many opportunities to choose
the optimal arm will be lost.

• exploitation-only: Only choose the lever with the cur-
rently highest reward, in which way the unexplored best
arm may be ignored continuously.

To alleviate the obvious drawbacks of two above methods,
Watkins [11] firstly proposes ε-greedy strategy, probably the
simplest and the most widely used algorithm to solve the ban-
dit problem [12]. In this algorithm, the MAB explores with
ε-frequency, and exploit with frequency 1 − ε. By adjusting
the exploration rate ε, users can achieve the trade-off between
these two basic strategies and obtain an ideal outcome. In this
paper, we will use this efficient algorithm to make next batch
size selection every time platform finishes a batch.

B. MAB-BASED SELF-ADAPTIVE BATCHING ALGORITHM
In our batch split mechanism, using the property of Markov
of the problem [8], we first model the batch splitting decision
as process of selecting appropriate batch size decision from
candidate set, then present a reasonable solution based on
MAB algorithm.

1) BASIC IDEA
As aforementioned, we accomplish task assignment on batch
mode. After each batch is split, we transfer the initiate prob-
lem into a bipartite graph matching problem and solve it with
existing efficient method (e.g., KM algorithm). The main
problem we must solve is to split batches at the right time.

Since the batch splitting process can be modeled as a
Markov decision process(MDP) [8], where the current state
and actions will directly influence the state of the next phase,
we can use multi-armed bandit to complete these sequential
decision due to its superiority in decision-making aspect.

Considering the optimal object is average waiting time
of spatial users, we give a maximum waiting time value
acceptable to most users. Then average this time period
into several batch sizes as alternatives, and model them
as multi-arms of MAB. By observing current platform
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Algorithm 1 MAB-Based Self-Adaptive Batching
Algorithm
Input: Batch size array A, the timestamp set S
Output: An allocation result M
initialize exploration rate ε as α;
Reward array R← [0 for bs in A];
while incoming timestamps do

if random(0, 1) ≤ ε then
bs = RandomChoice(A);

else
bs = A[min(R)];

end
set the current timestamp as sx ;
for workers W and tasks T in Bsx−sx+bs do

allocate wi to tj with task assignment algorithms;
M ← M∪ < wi, tj, sx >;
calculate avgaijx∈Bsx−sx+bs ;

end
update corresponding item in R;
current timestamp← sx+bs;
if |σRsx − σRsx+bs | > β then

if count > θ then
ε← ε − λ;
reset count;

else
count ++;

end
end

end
return M

performance, dynamically adjust MAB’s next action
(selecting a best batch size from candidates). Through these
processes, we continuously split batch to reach the average
waiting time optimization.

2) MODELING
The task we aim to do with ε-greedy MAB algorithm is to
repeatedly select a batch size bsi ∈ {bs1, . . . , bsk} when each
batch begins, in the way of exploring or exploiting.

We model our candidate batch size set {bs1, . . . , bsk} with
multi arms of MAB, so the splitting batching procedure
can be regarded as selecting a lever with unknown rev-
enue.Similar to the MAB algorithm, the average waiting time
ai can be used as score of each candidate batch size bsi. In our
model, once choosing a candidate batch size bsi, we compute
the average waiting time of all assignment pairs in that batch
and update ai as follow:

ai =
ai1 + ai2 + · · · + aij

j
(4)

where aij is the average waiting time (awt) of assignment
pairs in candidate bsi, when it was chosen for batching for
the j-th time. And j indicates the time this batch size option
has totally been chosen, while ai is the current awt of bsi.

In ε-greedy MAB algorithm, we decide to
explore or exploit according to the exploration rate ε, which
can also bemodelled in ourmechanism. If the current strategy
is exploitation, we pick the candidate batch size that has
the least awt value. If explore, we need to randomly select
an alternative batch size. The choice of strategy always
bases on ε and whatever action (explore/exploit) we choose,
the chosen option’s awt value has to been updated after the
assignment of this batch is finished.

In order to better adapt to dynamic scenarios, we not only
update the reward of each candidate batch size according to
real-time platform performance, but also adjust the explo-
ration rate ε dynamically, which is an innovation of classical
MAB(ε-greedy) algorithm. If the exploration rate ε is too
low, the multi-armed bandit will always tend to choose those
high-score candidates. If the exploration rate ε is too high,
the performance probably get unsteady.

Therefore, we design two reasonable criteria in exploration
rate ε’s adjustment. When a certain batch size is chosen
whose score is far better than others, and after its batching
assignment, updated awt value still lower than the minimum
of all previous data, the continuous exploitation of it is wiser
than aimless exploration. So the first parameter is the mean
variance (var) of all current awt value list of total given
batch sizes. The second parameter, the minimum awt value of
current candidate list can indicates the superiority of current
choice if it is smaller than the counterpart in last batching
decision.

When deciding whether to explore or exploit, we will use a
random function to generate a value between 0 and 1 to com-
pare with the value of ε. Considering the problem of dynam-
ically adjusting the value of ε, we propose a MBA-based
reward array R which corresponds to the batch size array A
to record the target value we set for each batch size, which
is the average waiting time of users. In our framework, each
time the avgaijx∈B is calculated, we will figure out the average
of historical average waiting time and update the reward
array R with the latest value. In order to successfully monitor
the effectiveness of the current batch size, we introduce two
variables, the count value and the variance of R, while the σ
represents the variance of the reward array R. For the specific
process, please refer to lines 16-23 in Algorithm 1.

V. EXPERIMENTAL EVALUATION
In this section, we present the experimental results on syn-
thetic and real-world datasets with the proposed MAB-based
algorithm.

A. EXPERIMENTS SETUP
We use both synthetic and real-world datasets in our
experiments.

The dataset we used in our experiments is from Didi Chux-
ing. Specifically, this real-world dataset contains detailed
time and location information of drivers’ ridesharing orders
in Second Ring Road of Xi’an, which are retrieved from a
full day time period with a latitude of 34.20531◦ to 34.28022◦
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and a longitude of 108.9111◦ to 108.9986◦. Each tuple in this
dataset is a representative of corresponding order’s spatio-
temporal data, which consists of current timestamp, the lati-
tude/longitude of the passenger or driver’s position. In order
to facilitate our model, we assume the current timestamp and
the latitude/longitude of the passenger or drivers to be the
time and location of a task or a worker respectively. Consid-
ering the situation that there are more than 100,000 orders in
one day’s dataset, we only select representative time periods
during the day. In this paper, the time periods we select
are 9:00-11:00, 14:00-16:00 and 20:00-22:00. With the pur-
pose of further proving the practicability of the adaptive
batching mechanism proposed in this paper, we adjusted the
supply/demand ratio by randomly increasing the number of
workers or users.

For synthetic data sets, we generate workers/tasks that con-
stantly join the spatial crowdsourcing system. We generate a
group of worker and task sets every ten seconds, creating a
total of 720 groups of data which run through two hours. The
position of the workers is randomly distributed in a region
of a latitude of 34.20531◦ to 34.28022◦ and a longitude of
108.9111◦ to 108.9986◦, with a normal distribution of speeds
between [4.52, 25.85] m/s. In addition, we also divided the
supply and demand ratio into three group: 0.5, 1, and 2, and
set the (6k, 12k), (12k, 12k), (12k, 6k) worker-to-task ratio
for each group.

We conduct our mechanism presented in this paper with
the following task assignment methods.
• Greedy algorithm (GR).This is a simple method in batch
mode. The main operation it performs is to circularly
match the new arriving task to the nearest worker who is
idle in different batches.

• KM algorithm (KM). It is an excellent algorithm which
developed mainly for binary graph matching problem,
therefore we modified it to apply to our problem model.

Since the waiting time of tasks is closely related to user
experience and user experience is the primary consideration
in our experiment, the average waiting time should be taken
into consideration when evaluating the algorithms mentioned
above. Also, all the algorithms are evaluated in terms of
running time (measured by seconds) and memory cost (mea-
sured by MiB). In this article, we have selected some of the
result graphs as a representative. Finally, the experiments in
this paper were performed on an Intel(R) Core(TM) i7-8700
3.2GHz CPU and 8GB main memory, and the algorithms
were implemented in Python.

B. EXPERIMENTAL RESULTS
1) IMPACT OF BATCH SIZE
Fig.2 shows the users’ average waiting time of different
fixed batch sizes. From the overall trend of change, with the
batch size increasing, the average waiting time first shows
a downward trend, and after a certain degree, there is an
upward trend. This is because the initial batch size is too
small to accumulate a large number of objects for assignment,
as a result, the task may be assigned to workers who are

FIGURE 2. Results on fixed batch size, MAB and immediate allocation.

far away thus causing an unreasonable allocation. On the
other hand, if the final batch size is too large, even though
each user will be more likely to be assigned to a nearby
worker, the user will spend too much time waiting for an
allocation and users’ satisfaction with the platform may drop
dramatically. Therefore, there must exist an optimal critical
point between these batch sizes. In the example illustrated
above, 60s is the best performing fixed batch size. However,
there is no fixed optimal batch size under rapidly changing
situations. The reason is that in different periods of the day,
there can be different traffic conditions, order supply, demand
ratio and so on. We further discovered that under the same
batch size, the average waiting time of the KM algorithm
is less than that obtained by the Greedy algorithm. Real-
time allocation of algorithms is particularly poor. What’s
more, the MAB approach we proposed can get an excellent
result. According to the results presented in Fig.2, the average
waiting time obtained by the MAB algorithm is significantly
better than the best effect achieved by the fixed batch size,
which reduces the average waiting time by 10%− 15%.

2) IMPACT OF BATCH NUMBER
We further observe the changes in the average waiting time
over each time period. In our experiment, we randomly select
the fixed batch size whose length is 50 seconds,100 seconds,
150 seconds and MAB to make the comparison. From the
result, we can find that at the beginning, both fixed batch size
and MAB have high fluctuations, and even MAB presents
a poor performance. However, as the time goes, the fluc-
tuation of the average waiting time of the user under the
fixed batch size does not showed signs of abating as in the
MAB, resulting in a higher total average waiting time. The
reason is that the exploration rate in MAB will gradually
become smaller and tend to be stable over time without being
fixed. When the supply-demand ratio changes, MAB can
still change the exploration rate reasonably through feedback
information to minimize the users’ average waiting time.
Also, the fixed batch size method does not improve perfor-
mance of GR or KM. It can be seen that from Fig.3(a)(b)(c)
that the curves of the two algorithms are parallelly driven.
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FIGURE 3. Results on the increase of batch number.

FIGURE 4. Results of varying time period and supply/demand ratio on real-world data.

While in Fig.3(d), as the GR algorithm advances over
time, the average user waiting time will gradually decrease,
even with the KM algorithm, thus reflecting the ability of
our mechanism to optimize the performance of existing
algorithms.

3) IMPACT OF PERIOD OF TIME
Since traffic conditions and traffic flow throughout the
day change over time, we extracted data from three time
periods of the day for analysis. Three time periods are
9:00-11:00, 14:00-16:00 and 20:00-22:00 respectively.
There are 12379 workers and 27539 tasks in 9:00-
11:00, 15641 workers and 50305 tasks in 14:00-16:00,
and 12306 workers and 11432 tasks in 20:00-22:00. The
demand/supply ratio are 2.225, 3.216, 0.929 corresponding
to three different period of time. The results of four different

algorithms are represented in Fig.4(a). We can conclude from
the figure that when the supply exceeds demand, the average
waiting time of the user is far less than the situation of short
supply. Therefore, we further observe the impact of different
supply and demand ratios on the averagewaiting time of users
on real data sets and synthetic data sets.

4) IMPACT OF SUPPLY AND DEMAND RATIO
Different supply and demand ratios also have an important
impact on the average waiting time of users. When supply
exceeds demand, the workers assigned to users are likely
to be better, and the experience value of users is better
because there are more candidate workers to be assigned to
users. On the contrary, if the supply is less than the demand,
because of the shortage of workers, the system does not
have much choice when assigning workers to users, and the
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FIGURE 5. Results of varying supply/demand ratio on synthetic data.

FIGURE 6. Time and memory cost.

final distribution result may be unsatisfactory. Fig.4(b) shows
the result in real-world data experiment. When the supply
is less than demand, the order of the average waiting time
from small to large is km_MAB, km_batch, greedy_MAB,
greedy_batch. However, the difference between them is not
large. When the supply and demand are equal, the MAB
method is significantly better than the batch_based method.
When the supply exceeds demand, the time of greedy_MAB
is better than km_batch, only a little more than the time
of km_MAB. Looking at these three scenarios, the average
waiting time of km_MAB is always the best, which further
confirms the validity of our proposed MAB.

We set the supply-demand ratio on the artificial data to
0.5, 1, 2, which represent the three situations of supply less
than demand, supply and demand balance, and over-demand.

Fig.5 show the results of four algorithms at three supply and
demand ratios. We can find that the results based on theMAB
algorithm are superior at almost all supply and demand ratios.
However, when the supply and demand ratio is too large or too
small, such as 0.5 or 2 in this example, the improvement of
the result based on the MAB algorithm is not obvious. For
example, if the supply-demand ratio is 2, greedy_MAB is
worse than greedy_batch.

5) TIME AND MEMORY COST
Since immediate allocation algorithm consumes very little
memory and time, we will neglect its running cost and just
focus on the Greedy algorithm and KM algorithm. As the
Fig.6 shows, when comparing with KM algorithm, greedy
algorithm not only runs faster, but also consumes less mem-
ory. Under the same dataset of workers and tasks, KM algo-
rithm consumes about 1.2 times as much memory as Greedy
algorithm, and runs nearly 10 times longer than Greedy algo-
rithm. However, the average waiting time of users through the
KM algorithm will be less than that of Greedy, as we describe
above.

VI. CONCLUSION
In this paper, we propose a self-adaptive batching mecha-
nism for spatial crowdsourcing, which better take care of
the user experience and take into account a more realis-
tic situation. Considering the nature of the mechanisms we
design, some traditional task assignment methods can also be
combined with our self-adaptive batching mechanism, which
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can improve the efficiency of dynamic task allocation in
online mode as a whole, and also shows good compatibility.
Based on this framework, we designed a dynamic batch size
adjustment scheme based on multi-arm bandit algorithm,
a reinforcement learning based algorithm that infer the next
most appropriate batch size based on historical data. We also
propose users’ average waiting time to be the optimizing
objective, thus improving the user experience and fitting the
needs of real-world situation. Extensive experimental results
of actual and synthetic data sets demonstrate the effectiveness
and effectiveness of our mechanisms.
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