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ABSTRACT Today, indoor localization technology based on WiFi signals has become more and more
popular and applicable. It not only facilitates people’s lives but also creates enormous economic value.
However, during the propagation of the WiFi signal, it is easily interfered by obstacles, and the signal
fluctuation is significant, resulting in low accuracy of positioning. To overcome these problems, we reduce
the influence of environmental factors firstly. Then the positioning accuracy is improved by using the SVM
model to distinguish the NLOS or LOS environment and employing the capsule networks to derive the users’
positions with the WiFi 2.4G and 5G signals. As we all know, the WiFi 2.4G signal has excellent penetrability
and is less affected by obstacles, while the WiFi 5G signal has excellent stability and small fluctuations.
Therefore, we use the advantages of these two kinds of signals to derive the optimal suggestion by the
capsule neural network, which is the learning system with minimum data sets needed. The experimental
results show that the positioning effect of the two signals simultaneously is better than the positioning effect
of a single signal. We also compare with the traditional indoor positioning methods and use the simulation
data to carry out the robustness test, and the positioning accuracy reached 0.99 m in the field environment
finally.

INDEX TERMS Indoor localization, NLOS and LOS channel propagation condition, WiFi 2.4G and WiFi

5G, SVM, capsule network.

I. INTRODUCTION

Since the 21st century, various science and technology have
flourished. Research in the fields of artificial intelligence,
big data, and the Internet of Things has been widely used
in human life and production, creating enormous wealth.
In recent years, many positioning technologies developed
as the IoT system have been proposed, such as Radio Fre-
quency [1], [2], Infrared [3], Ultrasound [4]—[8], Optical, and
Magnetic Field Strength [9]-[12] with the relevant position-
ing calculation mechanism. This kind of positioning mainly
includes two application scenarios. The first scenario is a
kind of outdoor positioning. The technology of outdoor posi-
tioning has been significantly improved over the past few
decades. The more representative technologies are cellular
positioning and GPS technology [13]. These technologies
have become extremely mature and reliable after long periods
of use and countless people. Through these technologies,
we are able to enjoy many conveniences. But unfortunately,
GPS and other technologies cannot be applied to indoor
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environments, and the positioning effect is very poor. The
reason is the complexity of the environment and the difficulty
at the penetrating of the GPS signal. Especially, the signal
decays and absorbs by the moving/stable obstacles.

In indoor positioning systems, in addition to high precision
requirements, low cost, low complexity, and short time con-
sumption are also important indicators. Nowadays, internet
technology is developing rapidly, WiFi networks are becom-
ing more and more popular, and its coverage is becoming
wider and wider. Therefore, WiFi-based indoor positioning
technology has become more and more popular due to its
simplicity, low cost (no additional hardware required), and
many commercial applications for indoor positioning are
based on WiFi [14]-[20]. Generally, most of the research on
WiFi fingerprint location technology is based on the signal
of WiFi 2.4GHz frequency (2.4G for short). For example,
Xuke Hu proposed the concept of AP (access point) set
similarity, and used the WKNN algorithm to classify k nearest
neighbors [21]. In recent years, the technology on WiFi 5GHz
frequency (5G for short) has been appeared. Considering the
stability of the WiFi 5G signal, which is not easily disturbed
by environment factors, Feng Yu uses the WiFi 5G signals
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and cluster KNN algorithm to achieve indoor positioning.
Yu found that the positioning accuracy and efficiency using
WiFi 5G are significantly improved than 2.4G [22]. Mean-
while, Arsham Farshad also proved that the WiFi 5G signal
is more stable than the 2.4G, and the positioning result is
also more accurate than using 2.4G with the new ideas of
virtual access points [23]. Besides, Kyeong Soo Kim et al.
proposed a new DNN architecture for the reduction of feature
space dimension, which the multi-building and multi-floor
indoor localization system based on WiFi fingerprinting is
built based on the feed-forward classifier for multi-label
classification [24].

Recently, Cai et al. applied the convolutional neural net-
work as the solution to indoor positioning. In their research,
the original channel state information (CSI) is used as the
input into the convolutional neural network (CNN) with-
out manually extracting the data features, which achieves a
good positioning effect. However, the data of network input
is derived in a very high dimension, and the implemented
based on WiFi is required more APs, thus, the computa-
tion cost is very high [25]. Furthermore, with the growing
of architectural space, the cause of the location complexity
would decrease the positioning accuracy, and the adding
labels for the CNN is another trouble at the making model
[24]. To solve the above problem, Fei Teng et al. used a
deep Gaussian regression model for indoor positioning. This
model is a nonparametric model, and it only needs to mea-
sure part of the reference points, thus reducing the time and
cost required for data collection [26]. However, according to
our investigation, their researches all are based on the 2.4G
signal band. The advantage of the WiFi channel band is not
revealed.

In this paper, we proposed the fuse learning method with
the dual bands on the WiFi positioning system, our sys-
tem named as BiCN method (Bi-modal capsule network for
indoor localization using commodity WiFi devices). In BiCN,
we collect WiFi 2.4G and 5G signals from the APs that are
preset and used to build the fingerprint database on these
dual bands firstly. In our training phase, we extract the four
characterizing values of the WiFi signal, including the mean,
the variance, the kurtosis, and the skewness from the original
data, and manually tag the feature values of each signal to
identify the received signal in NLOS condition or LOS condi-
tion [27]-[31]. Accordingly, our learning model is the capsule
network model. The capsule neural network was proposed by
Hinton, the proponent of the convolutional neural network,
in 2017 [32]. In terms of image processing, the amount of
training data required is much smaller than that of CNN, but
the effect is not inferior to CNN, which is the advantage of
the capsule network. In this paper, the capsule network is
employed by the ability to handling low-dimensional data,
and the amount of data required for training is small, which
is better than other DNN networks. Thus, when training
the capsule network model, the input of WiFi 2.4G and
5G signal data are used in the dual capsule networks for
training, because the first layer in the capsule network is the
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convolution layer, that is why we called the proposed model
as bi-model.

The contributions of this study include three aspects as
follows:

First, we theoretically and experimentally validate the fea-
sibility of using bi-modal WiFi data for indoor localization.
To our best knowledge, our proposed study is the first method
to use WiFi 2.4GHz and 5GHz together with the distinct
NLOS and LOS conditions.

Second, we propose the capsule network for the indoor
fingerprinting firstly. The traditional neural networks need a
large training dataset, but the capsule network can achieve a
good effect by training with small and low-dimensional data.
According to our experience, the inference process really
fits the small quantity of APs and reduces the computation
cost.

Third, because of the complementation properties of 2.4G
and 5G, our proposed strength the signal on different fre-
quency on the dual bands WiFi APs to predict the user
location in different typical scenarios. Our experiments’
results show that the proposed BiCN can outperform at some
representative existing schemes with the high localization
accuracy.

The remainder of this paper is organized as follows.
Section 2 introduces the characteristics of dual bands WiFi.
Section 3 specifies the system architecture and theoretical
basis. The experimental process, performance comparison,
and localization error analyses are described in Section 4.
Finally, the conclusion is drawn in Section 5.

Il. PRELIMINARIES

A. CONDITIONS OF LOS AND NLOS

The concept of location fingerprinting is that the location in
the environment is associated with certain fingerprint, and
one location corresponds to a unique fingerprint. In our study,
the fingerprint is the received signal strength (RSS) value
at the fixed location. Generally, the RSS value received by
the mobile phone is unique at every location, like a human
fingerprint. It is usually necessary to establish a fingerprint
database for position matching or training models in the
fingerprint localization method. Besides, the disadvantage of
the fingerprint is that the RSS values are affected by the
environment factors, such as obstacles blocking, temperature
and humidity. The positioning effect is suffered by the state
of signal blocking, called NLOS (Non-Line of Sight) channel
propagation condition. On the contrary, LOS (Line of Sight)
condition is that the signal is not obstructed by the obstacle
during the propagation. As shown in the Fig. 1, AN stands for
AP and TN stands for signal receiving point. LOS condition is
that the propagation of signals between AN and TN and there
is no obstacle between the two points. The signal propagation
between AN4 and TN is NLOS condition. Due to some
block such as wall, door, other building structures, and human
activities, signal propagation is often reflected, diffracted, and
obscured, therefore, NLOS condition is ubiquitous.
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FIGURE 1. The illustration of LOS and NLOS environments.

B. DUAL BANDS WiFi

2.4GHz and 5GHz are two main bands with the different fre-
quency used for WiFi. Generally, the router we used can sup-
port both frequencies i.e 2.4GHz and SGHz simultaneously.
2.4GHz though more widespread in usage (all 802.11b/g
devices run on 2.4GHz only) has only 3 non-overlapping
channels for transmission, which are crowded due to a lot of
interfering devices, like other WiFi APs, microwave ovens,
cordless phones, Bluetooth devices, etc [33]-[35]. All make
for a noisy environment which increases interference and
degrades the performance. On the other hand, the SGHz
channel is much cleaner with less interference with 23 non-
overlapping channels, and 8 times more than 2.4GHz for
transmission, which makes it suitable for applications like
Video streaming and Gaming which are very sensitive to
packet loss and delays. Normally, the WiFi 2.4G signal has
higher coverage and penetrability but less speed. WiFi 5G has
higher speed and stability but lesser penetrability [22]. Thus,
because WiFi 2.4G does not attenuate much as the signal
pass through obstacles such as walls and doors, we consider
that WiFi 2.4G will have a better performance in the NLOS
environments due to its high penetrability. On the contrary,
the WiFi 5G signal is more suitable for the LOS environment
by its higher stability.

The following data was collected to illustrate the stability
condition between WiFi 2.4G/5G in NLOS/LOS conditions.
To bring into correspondence with the signal performance,
to collect data is adopted by Samsung cell phone. Staying
in the room or separating by a wall is the way to receive
LOS and NLOS signals. Figure 2 shows the RSS values
of the WiFi 2.4G and 5G signal received from the fixed
AP at the same location in the LOS condition. Fifty RSS
values of WiFi 2.4G and 5G are collected at a 2 m distance
with a frequency of 3s/time. Figure 3 evaluates the signal
performance in the NLOS condition. To simulate the NLOS
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FIGURE 2. Signal performance of WiFi 2.4G and 5G in the LOS
environment.
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FIGURE 3. Signal performance of WiFi 2.4G and 5G in NLOS environment.

condition in our testing, the AP was put on the other room
with one wall separation from the testing environment. The
signal collection way is the same as the LOS condition.
According to Fig. 2, the fluctuation of the WiFi 5G sig-
nal is smaller than the 2.4G signal in the LOS condition.
The difference between the maximum RSS value and the
minimum RSS value for the 5G signal is only three dBm,
while for 2.4G signal, it is eight dBm. Besides, as shown
in Fig. 3, the fluctuations between WiFi 2.4G and 5G are
almost the same. However, the power difference of 2.4G is
smaller than 5G. This indicates that the WiFi 2.4G signal has
much higher penetrability than the 5G signal in the NLOS
condition. Furthermore, the authors also collect values on
five distinct and nearby positions to reveal the situations of
WiFi signals. According to the results, the NLOS variance
of WiFi 2.4G and WiFi 5G are 1.5612 and 1.5576 on the
average, the average LOS variance of WiFi 2.4G and WiFi
5G are 3.6331 and 0.9078. These results also demonstrated
the specific characters on WiFi 2.4G and WiFi 5G in different
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FIGURE 4. The system architecture.

environments. The signals of WiFi 2.4G and WiFi 5G are
stable in the NLOS and LOS conditions respectively.

Ill. THE DESIGN OF BICN SYSTEM

A. SYSTEM OVERVIEW

In our study, based on the above descriptions, the WiFi 2.4G
and 5G signal are employed as the input of our proposed
BiCN system. That is, the characteristics of the WiFi dual
bands are used to estimate the signal condition while the users
stand indoors. Fig.4 illustrates the framework of the BiCN
system. In the beginning, our system will create two offline
fingerprinting databases in the same area, one is for the WiFi
2.4G signal, the other is for WiFi 5G. It’s the offline part of
our system. On the contrary, the procedure in the online phase
is to estimate the user’s position L’at time ¢ from a series of
RSS values from all nearby APs, that is

L' = F@"), 1)

where ' represents the collection of twenty RSS values of all
nearby APs at fixed localization, including ten times of WiFi
2.4G signal and 5G signals. F(.) is defined as the signal fuse
learning method, which is the nonlinear mapping function to
predict the user’s location. In Fig.4, the process of F(.) is
divided into 3 parts, they are listed as follows,

o Features Extraction: For the purpose to increase the
dimension of input vector, in our system, we extract
four characteristics of mean, standard deviation, skew-
ness and kurtosis from the series of RSS data 7,
expressed as v; = {meanl.sz, std§'4, skevl.zj'4, kurtl%"‘,

meanfj, stdg, skevisj, kurtg-,j = 1,2,...,K}. Note that,

2.4 and 5 in the upper-angled characteristics represent

the data from WiFi 2.4G signal and WiFi 5G signal

respectively. j indicates the jth AP.

o Fuse Learning Methods: In this part, we employed the
SVM method to distinguish the WiFi signal state as
NLOS or LOS condition, while the user stood indoor.
According to our previous statement, the WiFi 5G signal
has serious interference with the obstacles blocking.
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Thus, our fuse learning method is based on the training
SVM model by the WiFi 5G signal. With the WiFi 5G
signal help, we can obtain the probability to distinguish
the signal condition of APs. This probability pass to the
next part as the important degrees of WiFi 2.4G and 5G.
On the other hand, we proposed two capsule networks
trained by WiFi 2.4G and 5G fingerprint databases
employed herein. Inputted with the WiFi 2.4G and 5G
signals, these two capsule networks will derive the first
position estimating results.

o Location Estimation: This part consists of the results
of SVM and the capsule network. The result of SVM
reveals the probability of the user’s location in the
NLOS or LOS condition. This value is mutual exclusive.
Accordingly, the proposed capsule networks are used to
obtain two estimating coordinates of WiFi 2.4G finger-
print and 5G fingerprint databases. Finally, the predi-
cated position is combined with these results.

The following sections will introduce these parts

sequentially.

B. FEATURES EXTRACTION

Accordingly, to better represent our system, every indoor
area was regarded as the grid-based localization. The built
fingerprint database is a M x (K + 1) matrix of M vec-
tors {Z-, F,i = 1,2,...,M}, where M is the size of the
database, and K is the numbers of APs. Each vector consists
of a one-dimensional label /; of discrete position and the
K-dimensional RSS vector, so the data of each position is
the (K + 1)-dimensional vector. The RSS vector 7; contains
K elements 7;;(j = 1,2,...,K), and each represents the
observed RSS value of the jth AP.

As mentioned above, the WiFi 5G signal is obvious at the
diagnosing of the conditions of NLOS and LOS. Thus, only
the WiFi 5G signal is needed to extract the features as the
input for the next stage. Each feature contains four values
of mean, standard deviation, skewness, and kurtosis. Mean
value refers to the average of all RSSs of an AP collected
at one location. The value of standard deviation (std) and
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skewness are derived as the same definition. Skewness is used
to measure the asymmetry of the probability distribution. The
formula to calculate the skewness is as follows:
1 n ~ 3
= _1(Fijx — mean)
skew;j = —* Li=1 T = (2)
LN s 2\3
G D k1 (Fijx — mean)?)2

where skew;; represents the skewness feature of the jth AP at
the ith position, and 7 represents the kth RSS received by
the jth AP at the ith position. 7 is the collecting numbers of
RSS values. The mean represents the average of the data.
On the other hand, Kurtosis is used to describe the peak-
to-peak characterizing values of the probability density dis-
tribution curve at averaging. Kurtosis expressed as (3).

1 ~

i 2k=1 ik
(% ZZ:] (;: ijk
where kurt;j represents the kurtosis feature of the jth AP at the
ith position.

— mean)4

3

kurtij = _
— mean)?)?

C. FUSE LEARNING METHODS

1) SVM MODEL FOR THE NLOS AND LOS CONDITIONS
After extracting the WiFi 5G features, we employed the
SVM model to distinguish the user located at the NLOS
or LOS conditions, and this value is mutual exclusive in
one. Besides, the collection of AP data is independent and
identically distributed; the environment inference still causes
the value mutually independent. For each AP, the correspond-
ing SVM model is trained separately. For example, given
a set of M training items {sz’ bj,i = 1,2,...,M}, where

/ {mean std5 skevg, kurts} is the ith reference point’s
frngerprrntmg consrstrng ofa subset of features, b;; € {—1, 1}
indicates the ith reference point is in the NLOS/LOS con-
dition towards the jth AP(b; = 11is LOS and b;; = —1is
NLOS). Accordingly, the deriving example of each AP (jth
AP) is listed as follows,

First, the optimal hyperplane of SVM model is defined
as wl'x + wo = 0. This hyperplane satisfies the following
condition; for the ith reference point, when b;; = 1, f (v ) is
always greater than 0; when b;; =
than 0. Thus,

5
l,f(vij) is always less

Fx) =wlx +wy. 4)

In order to find this hyperplane, we need to maximize
the geometry of the point closest to the plane, which is
represented as ﬁ in mathematics. In other words, to make
the maximization of geometry, what we only need is to
minimize [|w||. This leads to a convex optimization problem.
Then we use the Lagrange duality method to solve the convex
problem. Lastly, we find the parameters w, wq that minimizes
wll by (5).

2
IIWII

arg min
w,wo

M
1 .
t+es Z cej = 1=byw (7)) + wo), Vi

&)
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where w, wg are weight parameters learned from the training
data using the above optimization, ¢ is a custom weight
coefficient and ¢ is the predetermined feature mapping func-
tion, which can map the feature vector to higher dimensional
spaces. We use a Gaussian radial basis function (RBF) as our
mapping function, that is

5 35
(1

m] ’] 2
_= 6
7). (6

After (5), we find the optimal hyperplane and obtain the
parameters w, wg. These parameters can substitute into (4),
and yield the result like (7),

k( mja V ) = (P(ij)T (p(vl]) = gxp(_

flx) = Zx bik (x, 57) + wo, )

where A; is the Lagrange multiplier, and k(x,f/f.) is the
kernel function presented in (6). We define h(x) =
Zl 1 Aibijk(x, \7 ) then f (x) can be simplified as follow,

J(x) = h(x) + wo. ®)

Accordingly, the SVM method outputs the classification
results directly. For the purpose to obtain the categorizing
probability, we refer to Plat’s method in [22], (9) is the output
of posterior probability,

1

Po=1I0~ P = omp O
where x is the feature vector of test point and y is the
mathematical symbol describing the state of the test point.
P(y = 1| x) represents the posterior probability. P4p(.) is a
function of f (x), which is the output result of the trained SVM
model. A, B are the fitted parameters. The sigmoid function
can well convert the output value of the SVM to the interval of
(0,1), which is exactly the approximate range of probability.
In fact, if we obtain the best parameters A and B, we can
use (9) to discriminate whether the test point is in LOS or
NLOS environment. For example for the mth test point, its
feature vector denotes as v , its state for the jth denotes as
bynj. We substitute it into (9) and the probability of the jth AP

in the LOS condition is listed as follow,

1
5 A —

P(bjj =11v,;) ~ Pap(f) = T+ epAf 1 B) (10)

To find the optimum parameters, we minimize the negative
logarithmic likelihood function of training data as shown
in (11),

arlgixrgrn Z(Iylog(pu)-f-(l ti)log(1 —pi)), (A1)
i=1

where p; = denotes the probability that ith

1
1+exp(Af(v?j+B)
reference point is in the LOS environment for the jth AP
calculate by (10). Furthermore, the probability of NLOS
isl— Pij-
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FIGURE 5. The system architecture.

2) THE CAPSULE NETWORK FOR THE ESTIMATION
COORDINATION

The capsule neural network was proposed by Hinton, the pro-
ponent of the convolutional neural network, in 2017 [32].
In terms of image processing, the amount of training data
required is much smaller than that of CNN, but the effect is
not inferior to CNN, which is the advantage of the capsule
network. In our study, we found that capsule network is also
very capable of handling low-dimensional data. Thus, our
system employed two capsule networks to calculate position
coordinates, the specific structure of a single capsule network
is shown in Fig.5. Our network model has four layers, there
are the input, convolution, capsule, and fully connected lay-
ers. The input layer has a 10K dimensions. Taking a 2.4G
network as an example, the input vector can be expressed
as r;j j = 1,2,...,K), note that i is the number of the
location, j is the jth AP in the total K APs. According to
our design, the network input is a series of RSS values,
not the preprocessed data, because the second layer of the
convolution layer is designed for the feature extraction. That
is, this layer can refine the feature of the RSS inputs, extend
the local features, and refine the global feature for capsule
network. The final purpose is we want to purify the original
input. The third layer is the capsule layer and similar to the
convolution layer. The difference is that the object involved
in the convolution operation is no longer a single neuron, but
a larger-sized neural capsule. A neural capsule can regard as
a set of packed neurons to extract multiple features from the
incoming data, then output a high-dimensional vector. About
the fourth layer, it’s fully connected and different from the
ordinary neural network. The import reason is that the weight
of the connection changed during the learning process. That
is called the dynamic routing to strengthen the connection
between the nodes. The output of the fourth layer is probabil-
ities O, it is the predicted position at a possible position, and
o0 = {Oﬁ, i =1,...,M}. Finally, the position coordinate X
with the highest probability is chosen as the predicted one.
In order to ensure that the length of the output vector in the
fully connected layer can better represent the probability of
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the position, a function is needed to map the length to the
[0 ~ 1) interval, and to ensure that the vector contains the
same information. This function is called non-linear ‘‘squash-
ing” function. The dynamic routing and non-linear “‘squash-
ing” function will be introduced as follows,

About the dynamic routing in our system, the coupling
strength of the lower layer capsule and the high layer capsule
is controlled by the coupling coefficient Cj;, and we defined
that 3 ,C;j = 1, i indicates that the ith capsule in lower
level, j represents the jth high-level active capsule to the
one attached. In our study, the lower layer capsule refers to
the third layer, and the high layer capsule refers to the last
layer of the fully connected layer in the network. Besides,
a flexible and orderly dynamic routing mechanism ensures
that the useful information in the lower level capsule can send
to the appropriate high-level capsule nodes. This definition
is quite different from the traditional neural network. The
traditional neural network sends all the information of the
previous layer to the following layer, and the capsule network
transmits the information to the next layer with emphasis. The
weighted connection process of high-low-level nerve capsule
is shown in the Fig.6.

Accordingly, the length of the output vector of a capsule
is used to represent the probability. Therefore, using a
non-linear “‘squashing” function can guarantee the short vec-
tors shrinking to the almost zero length, and the long vectors
shrinking to the length slightly. The function is shown in (12).
Therefore, we leave it to discriminative learning to make good
use of this non-linearity. That is,

Isil> s
v = /—2 . _/ (12)
L+ s> sl

where v; is the vector output of capsule j, and s; is its total
input. Furthermore, for all but the first layer in our network,
the total input to a capsule s; is a weighted sum over all
“prediction vectors” uj; from the capsules in the layer below
and is produced by multiplying the output u; of a capsule in
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FIGURE 6. High-low-level nerve capsule connection diagram.

the layer below by a weight matrix W;.

sj= Y Cyflyi. Wi = Wiu;. (13)

1

where Cj; is the coupling coefficient determined by the iter-
ative dynamic routing process. Besides, the coupling coef-
ficients between capsule i and all the capsules in the layer
above are summarized to one, and these coupling coefficients
are computed by a “‘routing softmax”’. The initial logits b;;
of “routing softmax’ are the log prior probabilities and the
capsule i should be coupled to capsule j. The description of
the coupling coefficient is listed as follows,

C; = 2P (14)

> exp(bix)

Moreover, the log priors can be learned at the same time for
all the other weights discriminatively. The initial coupling
coefficients are iteratively refined by measuring the agree-
ment between the current output v; of each capsule j and the
prediction u;); made by capsule i. Finally, the agreement is
treated as if it was a log likelihood and is added to the initial
logit b;;.

Thus, the length of the instantiation vector represents the
probability of a capsule’s entity exists. The top-level capsule
for digit class k has a long instantiation vector if and only
if that digit is present in the image. To allow for multiple
digits, our system uses a separate margin loss, Ly for each
digit capsule k, that is

Ly =Tmax(0, m™ — ||vg |)* +A(1 =T )max(0, ||ve || —m™)%,
(15)

where T = 1 iff a position of class k is existed and m* =
0.9 and m~ = 0.1. The 1 will stop the initial learning
from shrinking the lengths of the activity vectors, and can
downweight of the loss for absent position classes. In our
study, we defined A = 0.5 as our experiences.
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Algorithm 1 Dynamic Routing

1: procedure ROUTING((wj;), r, )

2: for all capsule i in layer / and capsule j in layer (/ 4 1):

3: for r iterations do
for all capsule i in layer [: C; <— softmax(b;) I> softmax
computes (14)

5. for all capsule j in layer (I + 1): s5; < > Cij'll}”

6:  for all capsule j in layer (I + 1): v; < squash(s;) >
softmax computes (12)

7:  for all capsule i in layer / and capsule j in layer (/ 4 1):
bij < bij +jji - vj

8: end for

9: return v;

D. LOCATION ESTIMATION

According to the above description, when a user wants to
predict his location, then his smartphone will receive a series
of RSS values. Then, our proposed SVM method is used
to derive the probabilities of NLOS/LOS condition by the
signal received from each AP in the current position. At the
same time, these RSS values pass to the capsule network to
obtain the predicted coordinates. Finally, the final position is
obtained through the weight computation of (16) and (17).
According to our assumption, our system is based on the
derivation of the WiFi 2.4G/5G signals. For the location
estimation in the same place, the derived probabilities are
added as the total confidence for WiFi 2.4G, and WiFi 5G,
the equations are listed as follows,

K
wh = wal’ (16)
j=1
and
K
Wh =", (17)
j=1

where WiN and WiL represent the sum of the probabilities
that all signal states at the ith position are in NLOS and
LOS conditions, wi.\.’ and wl.L. are defined as the probability
that the signal transmitted by the jth AP in the ith position
is in the NLOS and LOS condition either. Finally, in the
positioning step, the position coordinates are calculated from
the network trained by the 2.4G signal can be expressed as
X?4, and 5G as X7, for t = 1,2, .... The final position
coordinate is obtained by multiplying of their respectively
total confidences. The formula is listed as follows,
wN wk
L=——1 x>+ 1 x5 (18)
wh 4wk wN 4wk

IV. EXPERIMENTS AND DISCUSSION
A. EXPERIMENT ENVIRONMENT INITIALIZATION

In our experiment environment, we conducted a complex
indoor environment on the first floor of the 55th office
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building of Tianjin University, including two halls, one cor-
ridor, and two classrooms. The area was approximately
12 mx16 m for the classrooms 1 and 2. Every class-
room divided into 63 rectangular squares with an area
of 1.2 mx1.2 m. The area of the corridor was about
50 mx50 m, and the area of the first and second halls were
12.3 mx6.6 m and 13.6 mx7 m respectively. People were
free to walk around in these areas. To receive the online
RSS data, the Samsung cell phone (Note S9) was used as the
data collector in the testing areas, according to our previous
studies, the antenna design of Samsung cell phones was
much more stable than the other brands at the data collec-
tion. Accordingly, we use three Tenda AC9 routers in our
experiments which support both WiFi 2.4G and 5G frequency
bands. For each AP, twenty RSS values were collected at the
fixed positions for each AP as our offline fingerprint database.
Note that these areas contain many NLOS inference factors,
like obstacles, doors, walls and human activities. Figure 7 is
the illustration of our physical testing area. On the other
hand, to test our system in the diversity area, we also carried
out the simulation testing area as the wide-range experiment
environment. This environment was assumed in a 20 m x20 m
square space by MATLAB R2017b. The whole environment
was divided into 400 small pieces with a square area of
1 mx 1 m. These places exist several walls and doors, please
review Fig.8 for the detail.

B. DISCRIMINATION ON NLOS CONDITION

For the purpose to check the discrimination on NLOS con-
dition, in this experiment, the eigenvector of the 5G signal
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of the test point in our physic area substituted into (10)
and (11) to obtain the prediction of NLOS condition. Total
twenty experiments were employed to illustrate the accu-
racy of the discrimination. According to Fig.9, the minimum
accuracy rate of the discrimination is no less than 96%,
most of the accuracies are higher than 97%. This result indi-
cates that our method has an outstanding in the discrimina-
tion on NLOS condition. Besides, this result also indicates
the WiFi 5G signal is more suitable for the discrimination
due to its significant differences between LOS and NLOS
environment.

C. LOCATION ESTIMATION IN THE PHYSICAL FIELD
ENVIRONMENT

In this experiment, we want to test the performance of
location estimation in the physical field environment with
several different methods, including our proposed method,
KNN [36], WKNN [21], Cluster KNN [22], and DGPR pro-
posed by Fei Teng [26]. In the traditional indoor position
system, KNN, WKNN and Cluster KNN were proposed to
categorize the fingerprint database into a small group, then a
user can derive his position in this small group easily. On the
other hand, DGPR is a nonparametric model in the indoor
position system, and this model only needs to measure part
of the reference points for the future usage, thus reducing the
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TABLE 1. Performances of different methods in the field experiment.

Methods Average |1 m 2m 3m Sm
Error(m)

KNN 2.40 17.81% | 47.95% | 65.75% |95.89%
WKNN 1.86 32.39% | 64.79% | 83.09% | 98.59%
Cluster KNN | 2.09 26.02% | 58.90% |76.71% |93.15%
DGPR 2.38 14.54% | 52.73% | 69.09% | 94.55%
CN2.4G 1.13 64.38% | 80.82% | 89.04% | 98.63%
CN5G 1.11 65.75% | 82.19% |90.41% | 98.63%
BiCN 0.99 58.82% | 88.23% |95.59% | 100%

time and cost required for data collection. In this experiment,
we tried to reveal our outstanding performance by comparing
with three traditional fingerprint models and one learning
model. Accordingly, we compared the estimation accuracy
in Table 1 and plotted the CDF (cumulative distribution func-
tion) of different methods in Fig.10. In Table 1, the average
localization errors are 2.40 m, 1.86 m, 2.09 m and 2.38 m,
respectively. Our proposed methods with CN2.4G (trained
and tested by WiFi 2.4G data), CN5G (trained and tested by
WiFi 5G data) and BiCN have the average errors with 1.13 m,
1.11 m and 0.99 m. Obviously, our proposed methods have
better positioning accuracy. Furthermore in Table 1, about
the three methods using the capsule network, all over 50%
of the test positions have an error smaller than 1 m. The other
methods of KNN, WKNN, Cluster KNN and DGPR with a
positioning error under one meter are less than 50%. Thus it
can be seen the superior performance of the capsule network.
Moreover, in Table 1, we observe that the positioning error
of the network trained with WiFi 5G alone is better than
the positioning error of trained with WiFi 2.4G. In Fig.10,
we also found our proposed BiCN method using with WiFi
2.4G and WiFi 5G to locate the position can speed up the
convergence. There is a very small difference of positioning
error under 1 m among using CN2.4G, CN5G and BiCN.
On the contrary, in the range of 2 m to 4 m, the CDF of
error proportion by BiCN is higher than that of CN2.4G and
CNS5G. The reason is that when the received signal is in the
NLOS condition, the method will trust the WiFi 2.4G signal
more with greater confidence, and vice versa with WiFi 5G
in LOS condition. This switch step can increase the system
flexibility during the learning process. Generally, the position
methods mentioned above consisted of two parts, the offline
training part, and online testing part, please refer to Fig.4. The
offline training system is the data collection phase. To face
user requirement is the process of online system. According
to our test in the field environment, the execution time of
KNN, WKNN, Cluster KNN, DGPR, CN2.4G, CN5G, and
BiCNare 0.455s,0.565,1.175s,0.545,0.725,0.72s,and 0.85 s
respectively. Through our field testing, the execution time of
less than one second is tolerable. Although the execution time
is higher, the more accuracy rate is much better than others.

D. LOCATION ESTIMATION IN THE SIMULATING
ENVIRONMENT

In order to simulate the environment with different noise,
we referred the logarithmic distance model to generate

VOLUME 7, 2019

— —
W & —— knn
0.9 »= W24 —+- wknn
AR
,1 ,i" cluster-knn
0.8 - //’ s g <4+ DGPR
A ->- CN24G
0.7+ /" LAy - CN5G
s LR
y A —e— BiCN
0.6 P
;7
o5 I{
9] A
/
0.4 /

0.3

0.2

0.1

0.0

Positioning Error(m)

0.0 0.5 1.0 1.52025303540455055606570758.0

FIGURE 10. CDF plot of different methods in the field environment.

TABLE 2. Common empirical value of attenuation factor.

Environment | N

office 1.4-2.5
corridor 1.9-2.5
park 2.7-3.4
lawn 3.0-3.9
sand beach 3.8-4.6

simulation data, that is
d
P(d)apm = P(do)gpm — 10 X N x 10g(%) —-Xs, (19)

where N indicates the rate of increase in the signal attenuation
with the propagation distance, P(dp) is the RSS at a distance
of reference point dp, and d is the distance between the
transmitter and the receiver [37]. Furthermore, N is the atten-
uation factor, and Xj is the noise generated by the Gaussian
random distribution that standard deviation is § and mean is 0.
We use X; to represent the effects of obstacles on the RSS.
According to our experiences, the attenuation factor N of the
logarithmic distance model has a great relationship with the
surrounding environment. In [38]-[40], the empirical values
of N in different environments are summarized as Table 3.
N is assumed as 2 to approximate to our collected data in the
field environment. Besides, we simulate the WiFi 2.4G and
5G signals by the following two characteristics; one is the
decay of WiFi 2.4G less influenced by the objects blocking
and vice versa. Comparing Fig. 2 and Fig. 3, the average
attenuation of WiFi 2.4G and 5G are eleven dBm and sixteen
dBm, respectively. These values are defined as different Ns to
represent the WiFi 2.4G and 5G signal in Eq. 19. The second
characteristic is that the fluctuation of WiFi 2.4G signal is
excellent than the WiFi 5G signal. Therefore, noise mappings
are different for WiFi 2.4G and 5G.

Like the previous experiment, we test the performance
of location estimation in the stimulating environment with
our proposed method, KNN, WKNN, Cluster KNN, and
DGPR. In this simulating area, it’s the 20 mx20 m square
divided by 400 pieces of small 1 mx1 m area (Fig.8).
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FIGURE 11. CDF plot of different methods in the simulate environment.

These places exist several walls and doors, and we equipped
three APs in the top right, left the bottom and lower right
corner corners. Figurell shows the CDF of location errors
of the seven methods. Generally, in this complex propaga-
tion environment, with the BICN method help, 100% of the
test positions have an error smaller than 5 m, while KNN,
WKNN, Cluster KNN, and DGPR achieved an error of less
than 5 m approximately as 99.17%, 99.17%, 88.33%, and
97.50% of the test locations, respectively. Besides, the error
rate in 1 m, we can see that the percentage of test positions
are 84.17%,48.33%,74.17%,38.33% and 32.89% for BiCN,
DGPR, Cluster KNN, WKNN, and KNN, respectively. These
results still reveal the advantage of our proposed method.

TABLE 3. Performances of different methods in the simulate experiment.

Methods Average |[1m 2m 3m Sm
Error(m)

KNN 1.54 32.89% | 72.39% | 93.83% |99.17%
WKNN 1.46 38.33% | 74,17% | 95.83% |99.17%
Cluster KNN | 1.34 74.17% | 79.17% | 80.00% | 88.33%
DGPR 1.47 48.33% | 80.00% | 88.33% | 97.50%
CN2.4G 1.05 70.83% | 81.67% | 91.66% | 100%
CN5G 0.96 70.00% | 82.19% | 90.41% | 100%
BiCN 0.76 84.17% | 95.00% | 97.50% | 100%

E. THE ROBUSTNESS FOR LOCALIZATION ACCURACY

In this experiment, we wanted to verify the robustness of the
proposed method. Thus, the environmental changes was sim-
ulated in the same area by setting different 6 values in (19).
That is, the larger the standard deviation of the noise term
of X, the greater the effect on signal propagation. As we can
see in Fig. 12(a), this figure consists of different arcs, each
arc represents the same RSS value but different coordinates in
an area. Moreover, Figures 12(b)-(f) show the RSS mappings
with 6 equaling 1, 2, 3, 4, 5 for the noise term of Xs. The
origin of the coordinate axis is the location of the AP. In the
ideal case, the RSS values strictly fit the log model and
there does not exist of the signal interference. As long as
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TABLE 4. Common empirical value of attenuation factor.

ID of environment 24G 5G training/testing
training/testing

E1(General Area) 171 0.5/0.5

E2(Light Crowds Area) 172 0.5/1

E3(Median Crowds Area) 1/3 0.5/1.5

E4(Heavy Crowds Area) 1/4 0.5/2

E5(Super Heavy Crowds | 1/5 0.5/2.5

Area)

the reference points keep the same distance from that AP,
the receiver in these reference points will obtain the same
RSS values. This situation is shown in Fig. 12(a). When
the environmental noise and the RSS fluctuation are getting
worse and worse, the interference of RSS values is shown
in Fig. 12(b)-(f) respectively. For example, Figure 12(b) illus-
trates the small differences of RSS values with the same
distance from the AP, this situation represents the slightly
environmental changes. Figures 12(a) and 12(b) are very
similar. Furthermore, the increasing of environmental noise §
values will confuse the stable of the RSS values.

To evaluate the robustness of our proposed algorithm,
we simulated five different environments in Table 4. These
attenuation factors of testing and training areas were indicated
as the five crowding degrees of normal (represented as E1),
light (E2), medium (E3), heavy (E4) and super heavy (ES) in
WiFi 2.4G and 5G environments. The numbers of humans can
be represented as the interference of the signal. We trained
our model on the normal situation and tested on the specific
crowds in the same area. Thus, in Table 4, the training and
testing attenuation factors are 1 and 1, 1 and 2, 1 and 3,
1 and 4, 1 and 5, respectively in E1, E2, E3, E4 and E5 with
WiFi 2.4G. Furthermore, the training and testing attenuation
factors are 0.5 and 0.5, 0.5 and 1, 0.5 and 1.5, 0.5 and 2,
0.5 and 2.5, respectively in El, E2, E3, E4 and E5 with
WiFi 5G.

In the environments E2-ES5, the localization errors were
compared in Fig. 13(a)-13(d). We can see that the robustness
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FIGURE 13. CDF of simulated localization error for different noisy
environments: (a) the DGPR method; (b) the CN2.4G method; (c) the
CN5G method; (d) the BiCN method.

of the DGPR is better. The mean positioning error of our
method has a slight fluctuation in the environment with a
different noise, which is 0.76 m, 0.84 m, 0.87 m, 1.15 m and
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TABLE 5. Localization error of four different methods in five different
environments.

method | El E2 E3 E4 ES

DGPR 1.39 1.45 1.55 1.72 1.83
CN24G |1.05 1.28 1.50 1.56 1.92
CN5G 0.96 1.23 1.37 1.53 1.89
BiCN 0.76 0.84 0.87 1.15 1.54

1.54 m. The positioning error of DGPR is 1.39 m, 1.45 m,
1.55m, 1.72 m, and 1.83 m in the E5. As shown in Table 5,
BiCN still has a mean localization error within 1 m in the
first three environments and its mean positioning error is
1.54 m in the E5 where the noise is largest. The CN2.4G
and CN5G are slightly worse, which mean error is 1.92 m
and 1.89 m respectively. The DGPR method is better than
CN2.4G and CN5G, which mean positioning error is 1.83 m
in the ES. In summary, our method has strong robustness and
can achieve higher positioning accuracy even when strong
interference is encountered.

V. CONCLUSION

Nowadays, internet technology is developing rapidly, WiFi
networks are becoming more and more popular, and its cov-
erage is becoming wider and wider. Therefore, WiFi-based
indoor positioning technology has become more and more
popular due to its simplicity, low cost. Thus, many commer-
cial applications for indoor positioning are based on WiFi.
In our study, the bi-modal with 2.4GHz and 5GHz and a deep
learning system for fingerprinting-based indoor localization
are proposed as BiCN. That is, the characteristics of the
WiFi dual bands are used to estimate the signal condition
while the users stand indoors. First, our system will create
two offline fingerprinting databases in the same area, one
is for the WiFi 2.4G signals, the other is for WiFi 5G. Two
characteristics of the dual bands are referred in our study,
one is the decay of the WiFi 2.4G signal is less influenced
by the objects blocking, on the contrary, WiFi 5G is seriously
worse than WiFi 2.4G. The second characteristic is that the
fluctuation of the WiFi 2.4G signal is great than the WiFi 5G
signal. Thus, the procedure in the online phase is to estimate
the user’s position by the proposed features extraction and
fuse learning methods. The main focus in feature extraction
is based on the obviousness at WiFi 5G at the diagnosing
of the condition of NLOS and LOS. Thus, four values of
mean, standard deviation, skewness, and kurtosis are derived
from the received signals. Accordingly, we employed the
SVM model to weight the chance of the user located at the
NLOS or LOS environment, and the capsule networks are
also employed to calculate position coordinates.

Comparing with traditional positioning methods, those
methods took time on the designing algorithm for fitting
heterogeneous signals, filtering results and tuning parameters
on the non-linear model. Our proposed BiCN can utilize the
WiFi dual bands’ signal as the tool to recognize the LOS
and NLOS situations, learn the mapping structure between
ground-truth positions and fingerprinting database. Because
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of the adaptive and efficiency of the BiCN, the proposed posi-
tioning scheme achieves excellent positioning ability with
high accuracies. The experimental results validated the per-
formance of BiCN over several benchmark schemes.
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