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ABSTRACT The identification of influential nodes in complex networks has been widely used to suppress
rumor dissemination and control the spread of epidemics and diseases. However, achieving high accuracy
and comprehensiveness in node influence ranking is time-consuming, and there are issues in using different
measures on the same subject. The identification of influential nodes is very important for the maintenance of
the entire network because they determine the stability and integrity of the entire network, which has strong
practical application value in real life. Accordingly, a method based on local neighbor contribution (LNC)
is proposed. LNC combines the influence of the nodes themselves with the contribution of the nearest
and the next nearest neighbor nodes, thus further quantifying node influence in complex networks. LNC
is applicable to networks of various scales, and its time complexity is considerably low. We evaluate the
performance of LNC through extensive simulation experiments on seven real-world networks and two
synthetic networks. We employ the SIR model to examine the spreading efficiency of each node and
compare LNC with degree centrality, betweenness centrality, closeness centrality, eigenvector centrality,
PageRank, Hyperlink-Induced Topic Search(HITS), ProfitLeader, Gravity and Weighted Formal Concept
Analysis(WFCA). It is demonstrated that LNC ranks nodes effectively and outperforms several state-of-the-

art algorithms.

INDEX TERMS Complex networks, influential nodes, local structure, neighbor contribution.

I. INTRODUCTION

Complex networks are powerful methods for representing
and studying the interactions among objects in the real world,
it is an abstraction of complex systems. The topology of com-
plex networks determines their node influence [1]. Recently,
complex network mining has attracted significant attention
[2]-[4]. In several studies, a node with greater propagation
capability is regarded as influential, that is, it can spread
a message to a significant number of network users [5].
Influential nodes contain more global or local network infor-
mation compared with other nodes. Therefore, determin-
ing the propagation capability of nodes and identifying
influential nodes are highly important for successful mes-
sage propagation in social networks [6]. In addition to its
theoretical significance, influential node mining in complex
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networks has various practical applications. For example,
as the scale of the national power grid continues to expand,
its structure becomes more complex, and the disconnection
of several main trunks would lead to the collapse of the entire
network [7]. We can predict and control hidden problems
in the power grid and thus avoid economic loss only if we
understand the network structure in advance. Identification
of influential nodes has wide application in various areas,
as it can be used to hold back the spread of viruses [8],
suppress disease difussion [9], isolate disease sources [10],
distinguish key personnel or information [11], [12] and rank
web pages according to their importance and relevance to
a query. With the development of complex network sci-
ence and the continuous expansion of study fields, complex
networks have been widely used in Economics [13], Chem-
istry [14], Biology [15], [16], and other fields [17], [18].
Determining influential nodes has great theoretical sig-
nificance for optimizing network structure, enhancing the
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FIGURE 1. Example network containing 11 nodes and 13 edges. The network will be disconnected if
vy, Vs, vg, and vg are removed. Their ranks are consistent if the node removal method is used to determine
node influence. However, intuitively, there are significant differences in the influence of these nodes.

robustness of network architecture, and understanding the
dynamics of information dissemination [19], [20]. Design-
ing fast and effective influential node mining methods for
large-scale dynamic networks is an urgent priority.

In the past few decades, several methods for iden-
tifying influential nodes in complex networks have
been proposed, such as degree centrality [21], closeness
centrality [22], betweenness centrality [23], PageRank [24],
Leader Rank [25], H-index [26], and HITS [27]. However,
many methods have common shortcomings. Simpler methods
are inaccurate, whereas accurate methods have high compu-
tational complexity. For instance, methods based on global or
local structure. Typical methods based on local information
focus on the most essential attributes of a node and cannot
fully reflect the influence of the node on the network. Degree
centrality is a typical method based on local information. It is
a direct indicator of single node importance, but it ignores a
key factor: a node with few high-impact neighbors is more
important than a node with a large number of low-impact
neighbors [28], [29]. That is, degree centrality considers only
the influence of the nearest neighbors of a node. The methods
based on global information consider the global structure of
the network, but they relatively difficult to apply in some
specific networks. For example, betweenness centrality and
closeness centrality are not suitable for large-scale networks
owing to their high time complexity. PageRank, a web influ-
ence indicator based on global information, performs well
in directed networks. The expeditious and accurate identi-
fication of influential nodes is an important research topic,
particularly when the network scale reaches tens of millions
or even billions of nodes. In short, accurate and efficient
mining of influential nodes is still an open question [30].

In this paper, we propose a new method, called LNC,
for detecting influential nodes in complex networks of var-
ious scales. Although LNC is based on local information,
the difference from traditional methods is that it considers the
factors affecting node influence from different perspectives,
its effectiveness and accuracy will be discussed in Section III.
We first introduce the basic principle of the proposed method.

A. BASIC IDEA
The influence of a node in a network is mainly measured by
its ability to influence other nodes. If the entire society in a
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TABLE 1. Use LNC method to get the influence rank and calculate the
influence of each node.

Node 5 8 1 9 6 7 11 10 4 3 2
Influence 32.4 29.7 189 9.6 32 32 20 20 04 04 04

certain country is seen as a complex network, state leaders,
successful scholars, great scientists, or famous celebrities,
who are well known in daily life, can be regarded as influen-
tial nodes in the network and promote the development of the
country in different respects. What makes these individuals
stand out is not only their own superior abilities but also their
surroundings [31]. Therefore, the influence of a node can be
determined by the node itself as well as the influence of other
nodes on it. Accordingly, we propose the LNC method to rank
the influence of nodes in complex networks. There are two
main factors in this method. One is the influence of each node
itself, which is mainly measured by its ability to influence
other nodes. Furthermore, we consider the contribution of
other nodes in the network on a specific node. Neither the
contribution of other nodes nor the influence of the node itself
alone can fully reflect the importance of the node in the entire
network, thus, their combination is necessary.

To illustrate the basic principle of LNC further, we consider
an example in detail. Fig. 1 shows a network G that contains
11 nodes and 13 edges. First, we analyze the influence of
each node in the network. According to the ranking methods
based on node removal, the network cannot be connected if
the nodes vy, vs, vg, and vg are removed. That is, the number
of spanning trees is 0 if these nodes are removed, and thus
it appears that these four nodes have the same influence.
However, intuitively, they differ significantly in their influ-
ence rank. First, vs and vg are located at the core of the net-
work, thus, they should be the most influential. Furthermore,
the degree of v is larger than that of vg, and the removal of v
has greater impact on network connectivity, thus vy is more
important than vg. Finally, the peripheral nodes v;, v3, and v4
are on the edge of the network and have little effect, thus,
they are the least influential. Table 1 shows that the results by
LNC are consistent with the theoretical results. The specific
calculation will be described in Section III.

Several factors should be considered for accurately deter-
mining node influence in complex networks. In the LNC
method, the contributions of the nearest and the next nearest
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neighbor nodes are indispensable. The nearest neighbor
nodes have a direct influence on a node, whereas the next
nearest neighbor nodes have indirect effects that cannot be
ignored. We will further evaluate the performance of the pro-
posed method in real-world complex networks in Section IV.

B. CONTRIBUTIONS
The main contributions of LNC are described as follows.

« Intuitive and effective influential node detection:
We consider the factors that affect the importance of
nodes from two different perspectives, and node influ-
ence is measured through the combination of the influ-
ence contributions of the nodes themselves, the nearest
neighbor nodes, and the next nearest neighbor nodes.
This increases identification accuracy to some extent.

o Scalability: Compared with other methods, LNC can
effectively and accurately identify influential nodes
and greatly reduce computational cost (Fig. 2-Fig. 4,
Table 4-Table 6). It is computationally simple and has
low time complexity (the specific time complexity will
be explained in Section III), thus, it is suitable for
large-scale networks.

o Parameter-Free: LNC does not rely on prior knowl-
edge and parameter adjustments but can automatically
identify influential nodes.

The remainder of this paper is organized as follows.
In Section II, we provide a brief survey of related work.
Section III presents the LNC method in detail. In Section IV,
we present a performance evaluation of LNC based on nine
networks in terms of several widely used metrics. We finally
conclude the paper in Section V.

Il. RELATED WORK

In the past few decades, several methods (e.g., degree central-
ity [21], K-shell [32], closeness centrality [22], betweenness
centrality [23], eigenvector centrality [33], PageRank [24],
nodal contraction, and betweenness centrality with weight)
have been proposed for identifying influential nodes in com-
plex networks, and all these methods have their advantages
and disadvantages. We provide a brief overview of these
methods below.

Ranking methods based on neighbor nodes. These
indicators are simple and intuitive, and they have low time
complexity. Degree centrality and K-shell are two represen-
tative methods based on neighbor nodes. Degree centrality
measures the influence of a node by the number of neighbor
nodes. It is the simplest indicator for characterizing influen-
tial nodes. Its disadvantage is the lack of consideration of the
global network structure and the influence of the surround-
ing nodes, therefore, in several cases, it is not sufficiently
accurate. K-shell is a coarse-grained ranking method [34],
in which a node is usually considered to have a higher influ-
ence if it is situated in the core position of the network even
if its degree is small. The influence of large-degree nodes
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on the edge is often limited [35]. Although this method has
low time complexity, it is not suitable for certain types of
networks, such as rule or BA networks [36], and the ranking
result is coarse-graining because it is difficult to distinguish
the influence of nodes in the same layer.

Ranking methods based on the shortest path. These
methods assume that the information in a network flows only
through the shortest path. Representative methods are close-
ness centrality and betweenness centrality. Closeness central-
ity reflects the degree of closeness between any two nodes in
the network. It uses the relative distance between each pair of
nodes to quantify their centrality in the entire network [37].
Betweenness centrality assumes that information flows along
the shortest path [38] and measures saliency by the number of
shortest paths that pass through a node. Closeness centrality
and betweenness centrality are based on global structure
and can effectively identify influential nodes. However, their
computational complexity is high, and thus they cannot be
applied to large-scale or complex networks [39].

Ranking methods based on eigenvectors. These methods
consider not only the number of neighbor nodes but also their
influence. Eigenvector centrality and PageRank are represen-
tative methods based on eigenvectors. Eigenvector centrality
can be efficiently calculated using a power iteration approach,
but it may become trapped in a zero status owing to the
presence of several nodes without in-degree [26]. PageRank
is a well-known web page ranking algorithm that is used in
the Google search engine. It ranks based on the link structure
of web pages and assumes that the influence of a web page is
determined by both the quality and the number of the pages
linked to it. PageRank has been widely used in various areas.
However, it is sensitive to random network disturbances and
exhibits topic drifts in special network structures [26].

Ranking methods based on node contraction. These
methods consider the influence of a node to be equivalent to
the destructiveness of the network after the node is removed.
The network is significantly more cohesive after a node con-
tracts if the node is influential. In this method, the influence
of a node is determined by the number of its neighbors and
its location in the network. As the average path length should
be calculated for each node contraction, the time complexity
is high. Thus, this method is not suitable for large-scale
networks [40].

Ranking methods based on node centrality in weighted
networks. These methods use edge weights so that the struc-
ture and function of a network may be understood more
comprehensively. A representative method is betweenness
centrality with weight. In a weighted network, the path length
between nodes is determined by edge weights. Specifically,
path length is measured by the reciprocal of the edge weight.

In conclusion, several methods have been proposed for
identifying influential nodes in complex networks. To some
extent, owing to the different structure of real-world complex
systems, each method has its advantages and disadvantages.
Effective and efficient identification of influential nodes
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remains a non-trivial task. Here, we propose an effective
method that can be applied to networks of various scales.

lIl. THE LNC MODEL

We first introduce some basic concepts and definitions
concerning LNC in Section 3.1. The calculation of LNC is
presented in Section 3.2, and Section 3.3 analyzes the time
complexity of LNC in detail.

A. PRELIMINARIES

Before explaining the proposed algorithm, we will formalize
some of the basic definitions that will be used in the following
sections.

Definition I (Degree Centrality): Given a network G =
(V, E), degree refers to the number of relationships between
a node and other nodes in the network. The degree of a node
v; is divided by the maximum number of possible connections
with other nodes to obtain the proportion of nodes directly
related to v;, which is the degree centrality. It is denoted by
DC(v;), and is defined as follows:

d(v;)
(n—1)

where n is the total number of nodes, and d(v;) represents
the degree of v;. In real-world applications, each node has
a different influence. Degree centrality describes the direct
influence of v;, and greater degree implies that the node is
more important.

Definition 2 (Contribution Probability): Given a network
G = (V,E), a node v; is randomly connected to any of its
neighbors, and its degree represents all possible connections.
We take the reciprocal of the degree is defined as the contri-
bution probability of the node v;. It is denoted by P(v;), and
is defined as follows:

DC(v;) = (1)

P(vi) = 1/d(vi) @

where the degree of v; is used as an indicator of its influence.

Definition 3: (Cluster Degree) Given a network G =
(V, E), the degree sum of all neighbor nodes of the node v;
is called cluster degree and is defined as follows:

D)= > d(vy) 3)

vi=n(vi)

where n(v;) is the set of the nearest neighbors of v;.

Definition 4: (Contribution) Given a network G = (V, E),
the influence of a node depends partly on its surroundings.
The contribution of the nearest and the next nearest neighbor
nodes is called contribution and is defined as follows:

k

neiCon(v;) = D(v;) Z P()DC(v)) @
=1

where k denotes the number of the nearest neighbor nodes
and the next nearest neighbor nodes, and v; represents the
neighbor nodes of the node v;.
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Definition 5: (Own Influence) Given a network G =
(V, E), here, we assume that information transfers between
nodes with equal probability. Therefore, the random selectiv-
ity probability describing the contribution ability of the node
v; is P(v;). The influence of the node v; itself is denoted by
ownCon(v;) and defined as follows:

k
ownCon(v;) = d(v;) Zc(k’ DPO) (1 = Pu)®=D  (5)
j=1

Each node may choose to connect with any neighbor node.

B. THE LNC MODEL

The proposed method mainly considers two key factors
affecting node influence. One is an indicator of the node’s
own influence, and the other is the contribution of the nearest
and the next nearest neighbor nodes. In Fig. 1, if we take
the node v5 as an example, then according to the proposed
algorithm, the influence of vs depends on the contribution
of the nearest and the next nearest neighbors as well as the
influence of vs itself. The method for identifying influential
nodes is to simulate various complex systems in reality by
analyzing the network topology and various characteristic
node attributes. We consider detecting influential nodes by
LNC. The graph G in Fig. 1 is a synthetic network containing
11 nodes and 13 edges. The main process of LNC can be
divided into four steps. First, we compute the sum of neighbor
node degrees. Subsequently, we calculate the contribution of
the neighbor and the next neighbor nodes. Then, we calculate
each node’s own influence. Finally, we calculate the influence
of each node in the network.

1) COMPUTATION OF THE SUM OF NEIGHBOR

NODE DEGREES

To control the time complexity of LNC, we select degree as
the fundamental node influence indicator, and the contribu-
tion probability is set to be the reciprocal of the node degree.
Here, we assume that the information in the network flows
randomly. The contribution probability and the degrees of all
neighbor nodes are obtained by formula(2). We now present
the influence calculation for the node vs in detail. First, v
has four nearest neighbor nodes, that is, vy, ve, v7, vg, and six
next nearest neighbors, that is, v, v3, v4, ve, v7, v9. Thus,
by formula(3), D(vs) = Y. d(vj) = d(v1) + d(ve) +

vi=n(vs)
d(v7) + d(vg) = 12. This serves as a fundamental measure

of the influence of neighbor nodes.

2) CALCULATION OF THE CONTRIBUTION OF THE NEAREST
AND THE NEXT NEAREST NEIGHBOR NODES

The contribution of each neighbor node to a certain node is
measured by the influence of these nodes themselves. In this
part, we consider the nearest and the next neighbor nodes of
anode in the network. The degree of a nearest neighbor node
is the number of the next nearest neighbor nodes. We cal-
culate the degree of each nearest neighbor node and take
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its reciprocal as the propagation probability. By formula(4),
we calculate the contribution of each neighbor node sepa-
rately and then obtain the total contribution. By analyzing
these two aspects, we obtain the influence contribution made
by all neighbors to node vs5. Therefore,

neiCon(vs) = D(vs) Z Pv))DC(vj) =19.2
j=1

3) CALCULATION OF EACH NODE'S OWN INFLUENCE

To set a unified standard for the influence of a node, we still
consider degree the basic influence value. We observed that
we can determine the influence of a node by its ability to
influence other nodes. This implies that an influential node
randomly passes information to neighbor nodes. It is also
assumed that the information is spread among nodes with
equal probability. The influence of a node is calculated by its
influence on other nodes. We consider the node vs in Fig. 1.
It can randomly affect any neighbor node, and we assume that
the propagation probability of a node randomly selecting its
neighbor node is the reciprocal of the node degree. It can be
seen that v, ve, v7, v are neighbor nodes of vs, and therefore
by formula(5), the influence of the node itself is

4
ownCon(vs)=d(vs) Z C(4, DP(vs)' (1 — P(vs5))> =1.6875
j=1

4) CALCULATION OF THE INFLUENCE OF THE

NODES IN THE NETWORK

The contribution of the nearest and the next nearest neighbor
nodes is combined with the influence of the node itself. Then,
the influence of all nodes in the network is obtained. It is
defined as follows:

Influ(v;) = neiCon(v;)ownCon(v;) (6)

The influence of vs is as follows, and the influence of the
other nodes is shown in Table 1.

Influ(vs) = neiCon(vs)ownCon(vs) = 32.4

An implementation of the LNC algorithm is shown in
Algorithm 1.

C. TIME COMPLEXITY

One of the advantages of LNC is its low time complexity,
which has three main components. In the first step, to calcu-
late the influence of all nodes in the network, the algorithm
should identify the nearest and the next neighbor nodes of
each node. The time complexity for computing the nearest
neighbor nodes is O(< k > n), where < k > is the average
number of nearest neighbor nodes, and n is the total number
of nodes in the network. In the second step, the nearest and the
next neighbor nodes are considered. LNC should calculate the
degrees of the nearest neighbor nodes and their contributions.
Thus, the time complexity of this part is O(< k > n). In the
third step, the influence of a node itself is measured based
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Algorithm 1 LNC
Input:
Graph:G = (V, E)
1: // The contributions of neighbor nodes
2: for each node vin V do
3 for each node u in N(v) do
4 compute DC () using (1)
5 compute P(u) using (2)
6: compute D(v) using (3)
7
8
9

compute neiCon(v) using (4)
end for

: end for
10: // The influence of nodes themselves.
11: for each node vin V do
12:  n = G.degree(v)
13:  compute P(v) using (2)
14:  compute ownCon(v) using (5)
15: end for
16: compute Influ(v) using (6)
17: // Return Influ
Output:  Influ(v)

on its degree. The time complexity of obtaining the degree of
each node in the network is O(n). Hence, the computational
complexity of LNC is O(< k > n). We note that k << n, and
thus the LNC algorithm can handle large-scale networks.

IV. EXPERIMENTS

In this section, we present the results of experiments con-
ducted using seven real-world networks and two synthetic
networks to demonstrate the performance of LNC based on
comparisons with several other methods. Before presenting
the experimental results, we briefly introduce the methods
used in the comparisons.

A. COMPARISON METHOD DESCRIPTION
Degree Centrality(DC) is the simplest indicator for describ-
ing node influence. Nodes with high degree have higher influ-
ence than nodes with lower degree. For example, in Fig. 1, vs,
as the initially infected node, spreads information faster and
more widely than vg. However, degree centrality considers
only limited information and is not effective in some cases.
Betweenness Centrality(BC) assumes that the informa-
tion flow propagates along the shortest path. On the short-
est path between all node pairs, the influence of a node is
proportional to the number of shortest paths passing through
it. Betweenness centrality calculates node influence based
on global information. However, this is complicated, as it
requires not only calculating the shortest path length between
each pair of nodes but also recording these shortest paths.
Closeness Centrality(CC) identifies influential nodes
based on global information. Closeness centrality uses the
relative distance between each pair of nodes to deter-
mine node centrality, which is widely used in research.
Closeness centrality effectively resolves the issue of node
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contraction and reduces the complexity of directly calculat-
ing betweenness centrality. It can also be understood as the
use of the average propagation time of network information
for determining node influence, however, it has high time
complexity.

Eigenvector Centrality(EC) assumes that the influence
of a node depends on both the number of neighbor nodes
(the degree of the node) and the influence of each neighbor
node. It evaluates the influence of a node by the information
of the other nodes connected to it. This approach has attracted
great attention both in theory and in practice.

HITS(Hyperlink-Induced Topic Search) uses different
metrics simultaneously. HITS evaluates the influence of each
node using authority and hub. The authority value measures
the original creativity of the node with respect to the infor-
mation, and the hub value reflects the role of the node in the
information transmission. They interact with each other and
converge through iteration.

PageRank ranks web pages based on their link structure.
It assumes that the influence of a web page depends on the
number and quality of other pages pointing to it. If a page has
a large number of high-quality pages pointing to it, then its
quality is also high. It performs well in directed networks but
cannot be applied in undirected networks [41].

ProfitLeader is the latest of these comparison methods
and was proposed in May 2018. This algorithm ranks key
nodes in networks by quantifying the profit that a node can
make. Its calculation is relatively simple, and it is suitable for
large-scale networks [31].

Gravity Centrality(GC) viewing the k-shell value of each
node as its mass and the shortest path distance between two
nodes as their distance, then inspired by the idea of the gravity
formula, the author proposed a gravity centrality index to
identify the influential spreaders in complex networks.

Weighted Formal Concept Analysis(WFCA) is a typical
computational intelligence technique. This model converts
the binary relationships between nodes in a given network
into a knowledge hierarchy, and employs WFCA to aggre-
gate the nodes in terms of their attributes. The more nodes
aggregated, the more important each attribute becomes.

B. DATA DESCRIPTION

In this section, we evaluate the proposed method on two
synthetic networks and seven real-world networks to demon-
strate its performance. These data sets are selected from
different fields, and their network structures and scales
are also various. From the experiment on the example
network, we can see that LNC exhibits high perfor-
mance. Furthermore, we use several well-known real-
world networks with various sizes and characteristics to
assess the performance of these methods. The statistics
for them are summarized in Table 2. We now briefly
introduce these networks, they are all publicly avail-
able from http://konect.uni-koblenz.de/networks/arenas-
email (Karate, Email, Friendship, Powergrid, Caida, Douban)
and http://networkrepository.com (Ca-Csphd).
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TABLE 2. Statistics of seven real-world networks and two synthetic
networks: node number |V|, edge number |E|, the average degree < K >,
maximum degree Kmax, and clustering coefficient < CC >.

Data Sets V] |E| < K> Kmaz < CC >
Karate 34 78 4.59 17 0.5706
Email 1133 5451 9.62 71 0.2202
Friendship 1858 12534 5.76 85 0.167
Ca-Csphd 1882 1740 1.849 46 0.005
Random 3000 47475 30.32 54 0.0102
Powergride 4941 6594 2.669 19 0.0801
Caida 26475 53381 4.033 2628 0.208
BA 30000 119984  7.992 668 0.0025
Douban 154908 327162  4.224 287 0.016

1) SYNTHETIC NETWORKS

Many complex networks exist in the real world but we don’t
know the ground truth details about all of them. Therefore,
in order to evaluate LNC and the methods used in the compar-
ison, we built comprehensive networks with different scales.

a: RANDOM NETWORK

This is a synthetic random network with 3000 nodes con-
nected by probability 0.01, in other words, the average degree
of random network is 3, and it contains 47,475 edges.

b: BA NETWORK
This is a synthetic scale-free network with 30000 nodes, and
4 edges added each time, and it contains 119984 edges.

2) REAL-WORLD NETWORKS
There are many real-world networks in our life. In this

section, we use seven real networks to verify the effectiveness
of the LNC algorithm.

a: KARATE NETWORK [42]

This is a well-known network that has been widely used for
influential node mining in complex networks. It is a friend-
ship network among the 34 members of a karate club at an
American university. It consists of 34 nodes and 78 edges,
where nodes denote members of Zachary’s karate club at
an American university and edges represent the friendship
between members.

b: EMAIL NETWORK [43]

This is an email communication network from a university
in Tarragona, Spain. It contains 1133 nodes and 5452 edges.
Nodes represent users, and each edge indicates that at least
one email was sent.

c: FRIENDSHIP NETWORK [44]

This network represents the friendship between any two users
on hamsterster.com. Nodes represent users and edges denote
the closeness between users.

d: POWERGRID NETWORK [45]
This undirected network contains information about the
power grid of the western states of the United States
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of America. It has 4941 nodes and 6594 edges. A node is
either a generator, a transformer, or a substation, and an edge
is a power supply line.

e: CA-CSPHD NETWORK [46]

The network consists of 1882 nodes and 1740 edges. This is
a popular network and it has been used widely for complex
network influential nodes mining.

f: CAIDA NETWORK [47], [48]

This is an undirected network of autonomous systems of the
Internet connected with each other from the CAIDA project,
collected in 2007. Nodes are autonomous systems, and edges
denote communication.

g: DOUBAN NETWORK [49]
This is the social network of Douban, a Chinese online recom-
mendation site. The network is undirected and unweighted.

It is a large-scale and complex network, it consists
of 154908 nodes and 327163 edges.

C. EVALUATION METRICS

In this study, we employ the SIR model [50] to investigate the
spreading influence of ranked nodes. There are three states
in the SIR model: (i) Susceptible (S) denotes susceptible
individuals who are not yet infected. (ii) Infected (I) rep-
resents infected individuals, who may spread the disease to
susceptible individuals. (iii) Recovered (R) denotes recov-
ered individuals, who can never be infected again. When
an individual has experienced a complete infection cycle,
it will never be re-infected, thus, the individual’s state can be
ignored. To measure the spreading capability of the nodes,
in each implementation, only one node is selected to be
infected, whereas the other nodes are set as susceptible at
each independent run. The seed node infects its neighbor
nodes with a certain probability, and infected nodes recover
with some other probability. Each loop is treated as a time
step ¢, and F(¢) indicates the number of nodes infected and
recovered at time 7, which is used to assess the influence of the
initially infected node. Obviously, the cumulative number of
infected nodes gradually converges with time and eventually
reaches a steady state. The numbers of infected and recovered
nodes indicate the impact capability of the seed node.

To evaluate the performance of the methods, Kendall t [51]
is introduced to measure the correlation of the spreading
influence of the nodes by the ten methods. Kendall 7 as
a rank correlation coefficient is usually used to measure
the correlation between two ranking lists. We assume that
two queues X and Y with the same number of elements #,
X = (x1,x2, ..., xp) and ¥ = (y1, y2, ..., Y). Any pair of
pairs (x;, y;) and (xj, y;) (i # j) are said to be concordant if
the ranks for both elements agree, that is, if both x; > x; and
yi > yjorx; < x;jand y; < y;. They are said to be discordant
ifx; >xjandy; < yjorifx; < xjandy; > y;. lf x; = x;
or y; = Yyj, the pair is neither consistent nor inconsistent.
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TABLE 3. Ranking by LNC and other methods, where the last two columns
are ranked by the SIR model. Here, PL, PR, Gr, LNC' and SIR’ denote
ProfitLeader, PageRank, Gravity, LNC value, and SIR value, respectively.

BC CC DC EC HITSPR PL Gr WECA LNC LNC’ SIR SIR’
5 5 1 8 1 I 5 8 5 5 324 5 1536
1 8 5 5 5 5 8 5 1 8 29.7 8 1.501
8 1 8 6 8 8 1 9 9 1 189 1 1.462
9 6 9 7 9 9 9 6 10 9 9.6 9 1.361
2 7 6 9 6 10 10 7 11 6 3.2 6 1.296
39 7 1 17 11 11 10 6 7 3.2 7 1.282
4 2 10 10 10 6 6 11 7 10 20 11 1257
6 3 11 11 11 7 7 1 2 11 20 10 1.236
7 4 2 2 3 2 3 2 3 2 0.4 4 1.142
10 10 3 3 4 3 2 3 4 3 0.4 3 1.118
11 11 4 4 2 4 4 4 8 4 0.4 2 1.104
Kendall 7 coefficient is defined as follows:
. —
T(X,¥) = )
0.5n(n—1)

Here, n. and ny indicate the number of concordant and
discordant pairs, respectively. This coefficient reflects the
correlation and matching between two methods. In general,
T is in [—1, 1], where T > O indicates positive correlation,
whereas T < 0 indicates negative correlation. That is, higher
t values imply a more accurate ranking list.

D. PERFORMANCE EVALUATION

In this experiment, to distinguish node influence and verify
the effectiveness of the proposed method, the SIR model
was used to verify the accuracy of LNC. Using the network
in Fig. 1 as an example, Table 3 shows the ranking results for
each node by the ten methods and lists the results obtained
by LNC and the SIR model. Kendall t was used to detect
the veracity and reliability of LNC. Fig. 2 shows the Kendall
T of the LNC method, where the ranking lists are generated
by the BC, CC, DC, EC, HITS, PageRank, ProfitLeader,
Gravity and WFCA. It can be seen that most Kendall t for the
LNC method is between 0.8 and 1(such as Karate, Ca-CSphd,
Friendship, Random, Email, Powergrid, Caida and Douban),
which is the largest in most networks, indicating that the
ranking lists generated by LNC and the SIR spreading process
are essentially identical. Fig. 2 shows that performance varies
among the methods, and LNC performs well on networks
of different scales. We note that the performance of the BC
method is nearly always the worst on all networks because
BC is generally based on the definition of the shortest path,
but information in most networks does not flow along the
shortest paths. In addition, we have noticed that on the BA
network, Kendall T of all methods is less than 0. Although
LNC algorithm is not the best, it still has certain advantages
compared with some algorithms.

To investigate the performance of the LNC method further,
we consider the spreading influence of the ranked nodes in
the SIR model. To distinguish the influential nodes more
clearly, we choose a relatively small A for the large data
sets (Powergrid, Caida, BA and Douban). Specifically we set
A = 0.01 because with a larger value, the propagation would
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FIGURE 2. Kendall 7 is obtained by comparing the rankings by the ten methods and the SIR model. Networks with propagation probability
A = 0.1 include (a) Karate. (b) Ca-Csphd. (c) Friendship. (d) Random. (e) Email. Those with A = 0.01 are (f) Powergrid. (g) Caida. (h) BA.
(i) Douban. Here, PL, PR, Gr and Wf denotes ProfitLeader, PageRank, Gravity and WFCA, respectively.

TABLE 4. Rankings by the ten methods. Owing to space limitations, only the top 10 nodes of two networks are shown: (a) Friendship (b) Email, where PL

and PR denote ProfitLeader and PageRank, respectively.

(2)

(b)

BC CC DC EC HITS PR PL Gravity WFCA LNC

BC CC DC EC HITS PR PL Gravity WFCA LNC

237 237 237 237 237 237 237 237 237 237
137 137 238 238 238 238 238 238 238 238
169 238 168 168 168 169 168 168 356 44

238 177 137 356 356 44 137 137 168 168
251 176 169 44 44 137 356 44 137 137
44 118 45 177 177 168 44 177 244 45

296 178 46 137 137 45 244 176 177 46

168 168 176 244 244 46 177 46 649 176
23 3 177 176 176 65 458 3 44 177
65 117 47 3 3 87 46 356 158 169

333 333 105 105 105 105 105 105 299 105
105 23 333 16 333 23 16 333 434 333

23 105 16 196 42 333 42 42 552 42
578 42 23 204 16 41 196 23 389 16
76 41 42 42 23 42 3 76 726 23
233 76 41 49 41 16 333 41 756 41

135 233 196 56 196 233 299 233 571 196
41 52 233 116 233 355 49 196 886 233
355 135 21 333 21 21 41 52 888 76
42 378 76 3 76 24 46 3 788 21

occur across nearly the entire network [32], in which case
it would be difficult to distinguish the influence of different
nodes. For the small data sets (Karate, Email, Friendship,
Ca-CSphd, and Random), we set A = 0.1 to evaluate the
influence of each node so that we can obtain the propagation
efficiency of all nodes in the network, otherwise, we set the
recovery probability 4 = 1 and the time step ¢ = 500. First,
we compute the influence of each node using the various
methods and rank them in descending order. Table 4 presents

131726

the top 10 ranked nodes. Owing to space limitations, we only
show the top 10 nodes of two networks: Friendship and Email.
It can be seen that most top 10 nodes of LNC are also obtained
by other methods. Therefore, the validity of the LNC method
is verified. Secondly, each node is considered a seed node
for influencing other nodes. Finally, we obtain the number
of nodes successfully infected by the seed nodes by com-
puting the average over 1000 turns. The results are shown in
Fig. 3.
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(g) BA. (h) Caida. (i) Douban.

Normally, a more important node infects more nodes, thus,
an effective algorithm should generate a curve that decreases
as node influence decreases. As can be seen from Fig. 3,
LNC performs best on Karate, Email, Friendship, Powergrid,
Douban, and Caida networks. For the Email network, Gravity
has the best performance, but LNC still has an advantage
over most methods, and all curves are smooth with only a
slight fluctuation. For Random and BA networks, all methods
have similar effects, but LNC is still outstanding. As shown
in Fig. 2, the Kendall 7 of the Random network is still the
highest, and the infectivity of the top 10 nodes is relatively
strong compared with other methods. Table 5 further presents
the ranking results on the Karate network for the ten methods,
where each node is treated as a seed node for infecting
its neighbor nodes. It can be seen that LNC performs best
compared to other methods.

Furthermore, we compare the influence of the top 10 nodes
that are selected by LNC and the other methods. All top
10 nodes are used as seed nodes and the time step ¢ ranges
from 1 to 15. Table 6 shows that LNC has the highest prop-
agation capability for all nodes and all methods. Clearly,
the infection node F(¢) increases as t increases, and the
propagation in most networks reaches a steady state atr = 10.
This is because the top 10 influential nodes infect other
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TABLE 5. Ranking by the SIR model according to node influence by the
ten methods. Here, PL, PR and Gr denotes ProfitLeader, PageRank and
Gravity respectively.

t | BC CC DC EC HITS PR PL Gr WEFCALNC
1] 344 350 361 353 358 352 339 334 3.50 3.56
2| 371 290 331 341 339 339 3.54 358 347 341
3| 311 356 3.02 2.89 3.0 3.15 3.02 292 298 3.02
41303 230 281 3.09 3.03 295 293 3.00 3.00 287
5| 237 232 261 271 263 267 264 259 261 259
6 | 239 230 216 237 229 225 235 226 220 238
7| 268 3.05 233 226 233 227 247 233 238 225
8| 223 1.79 240 215 235 2.09 227 229 231 225
91 1.86 272 231 232 238 235 227 199 239 229
10 1.70 229 222 207 2.05 222 200 2.14 221 212
11| 1.80 2.03 1.64 213 197 175 1.69 232 1.85 201
12| 195 1.85 1.81 224 188 176 1.81 190 2.04 196
13| 2,12 1.87 2.09 196 2.08 1.84 1.86 196 2.07 190
14| 2.04 197 207 193 1.64 2.04 2.00 2.07 1.74 195
15) 218 1.59 1.86 192 1.72 214 198 1.75 1.78 1.76

nodes with high efficiency, and stability is attained after a
certain threshold is reached [52]. In addition, Fig. 4 shows the
influence of the top 10 nodes in the nine networks, and it can
be seen that the LNC method has high spreading efficiency.
LNC has the best performance on most networks, that is, Ca-
CSphd, Friendship, Douban, and Caida.
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TABLE 6. Influences F(t) for top 10 nodes by LNC and the other methods
in Friendship network. Here, PR, PL and Gr denotes PageRank,
ProfitLeader and Gravity, respectively.

BC CC DC EC HITS PR PL Gr WFCALNC
24.08 23.69 25.87 24.88 25.74 25.33 24.76 26.49 28.34 25.76
28.34 27.60 29.69 28.64 29.64 28.87 28.84 30.18 30.37 30.30
29.83 28.83 30.92 30.33 31.18 30.35 30.21 30.84 30.79 31.45
29.61 29.05 32.19 30.47 31.89 30.23 31.22 30.72 30.85 31.68
30.37 29.98 32.04 30.61 31.78 31.74 31.24 30.95 3091 32.72
29.76 28.86 32.21 30.80 32.14 31.46 30.12 30.96 30.87 32.16
29.86 29.34 31.79 31.51 31.72 31.46 31.07 30.83 31.04 32.34
30.72 29.84 31.94 30.82 32.33 31.85 30.86 30.95 30.93 3245
30.17 29.36 32.60 30.55 32.11 31.07 31.22 30.92 30.99 32.28
10| 30.12 30.68 32.19 31.14 32.12 31.55 31.09 30.89 31.03 32.40
11| 30.34 29.60 32.13 30.69 32.28 31.65 30.85 30.89 30.91 32.11
12| 30.49 29.51 32.05 30.78 31.91 31.78 30.46 30.86 30.87 32.09
13] 29.83 29.87 32.24 30.76 32.20 31.41 30.88 30.87 31.00 32.26
14| 30.19 29.94 32.13 30.99 32.33 31.62 30.98 30.87 30.84 32.39
15| 29.98 29.45 31.27 30.87 32.32 31.68 31.33 30.85 30.93 32.06

O 001NN W=

Moreover, Fig. 5 shows a comparison of the time efficiency
of LNC with that of the other methods. We chose to use six
test data with more than 1000 nodes in the experiment, and
the time required to sort the nodes is used as a measure of the
running time of these methods. We compare the LNC method
with several representative methods, namely, DC, CC, BC,
EC, and PageRank. As can be seen from Fig. 5, LNC has
the least runtime in Web-Spam and Powergrid networks, and
is above centrality only in Email, Ca-CSphd, Random and
Friendship. Thus, we verified the high efficiency of LNC.

V. CONCLUSION

In this study, we considered the problem of detecting
influential nodes based on the local neighbor contribution.
The proposed method considers local information regard-
ing a given network. This is a new measurement method
for identifying influential nodes, which has low time and
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computational complexity. Accordingly, this method can be
applied to large and complex networks. We considered both
network complexity and the influence of the nearest and the
next nearest neighbor nodes. To evaluate the performance of
the proposed method, we applied it to nine networks and used
the SIR model to simulate the spreading process by employ-
ing Kendall 7 to measure the correlation between the ranking
lists generated by the simulation and the other identifica-
tion methods. Experimental results regarding monotonicity,
correctness, and efficiency demonstrated that the proposed
method exhibits excellent performance on both artificial and
real-world networks. The new method can discriminate the
node influence more accurately and provides a more reason-
able ranking list than other measures.

REFERENCES

[1] Z. Sun, B. Wang, J. Sheng, Y. Hu, Y. Wang, and J. Shao, ‘“Identifying
influential nodes in complex networks based on weighted formal concept
analysis,” IEEE Access, vol. 5, pp. 3777-3789, 2017.

[2] J. Shao, Z. Han, Q. Yang, and T. Zhou, “Community detection based
on distance dynamics,” in Proc. ACM 21th SIGKDD Int. Conf. Knowl.
Discovery Data Mining, 2015, pp. 1075-1084.

[3] M. Girvan and M. E. J. Newman, “Community structure in social
and biological networks,” Proc. Nat. Acad. Sci. USA, vol. 99, no. 12,
pp. 7821-7826, Apr. 2002.

[4] D.Chen,L.Lii, M.-S. Shang, Y.-C. Zhang, and T. Zhou, “Identifying influ-
ential nodes in complex networks,” Phys. A, Stat. Mech. Appl., vol. 391,
no. 4, pp. 1777-1787, 2012.

[5] A. Zareie and A. Sheikhahmadi, “A hierarchical approach for influential
node ranking in complex social networks,” Expert Syst. Appl., vol. 93,
pp. 200-211, Mar. 2018.

[6] Y. Liu, M. Tang, T. Zhou, and Y. Do, “Identify influential spreaders in
complex networks, the role of neighborhood,” Phys. A, Stat. Mech. Appl.,
vol. 452, pp. 289-298, Jun. 2016.

[7] J. Zhong, F. Zhang, and Z. Li, “Identification of vital nodes in complex
network via belief propagation and node reinsertion,” IEEE Access, vol. 6,
pp- 29200-29210, 2018.

[8] T. Bian and Y. Deng, “Identifying influential nodes in complex net-
works: A node information dimension approach,” Chaos, vol. 28, no. 4,
pp. 043109-1-043109-103, 2018.

131729



IEEE Access

J. Dai et al.: Identifying Influential Nodes in Complex Networks Based on LNC

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

C.Li, L. Wang, S. Sun, and C. Xia, “Identification of influential spreaders
based on classified neighbors in real-world complex networks,” Appl.
Math. Comput., vol. 320, pp. 512-523, Mar. 2018.

A. Farooq, G. J. Joyia, M. Uzair, and U. Akram, “Detection of influential
nodes using social networks analysis based on network metrics,” in Proc.
Int. Conf. Comput., Math. Eng. Technol. (iCoMET), Mar. 2018, pp. 1-6.
S. Basu and U. Maulik, “Mining important nodes in complex net-
works using nonlinear PCA,” in Proc. IEEE Calcutta Conf. (CALCON),
Dec. 2017, pp. 469-473.

Y. Wang, S. Wang, and Y. Deng, “A modified efficiency centrality to
identify influential nodes in weighted networks,” Pramana, vol. 92, no. 4,
p. 68, 2019.

K. Yada, H. Motoda, T. Washio, and A. Miyawaki, “Consumer behavior
analysis by graph mining technique,” New Math. Natural Comput., vol. 2,
no. 1, pp. 59-68, 2006.

G. Klopman, “Artificial intelligence approach to structure-activity studies.
computer automated structure evaluation of biological activity of organic
molecules,” J. Amer. Chem. Soc., vol. 106, no. 24, pp. 7315-7321, 1984.
S. Parthasarathy, S. Tatikonda, and D. Ucar, “A survey of graph mining
techniques for biological datasets,” in Managing and Mining Graph Data.
Springer, 2010, pp. 547-580.

H. Rahmani, H. Blockeel, and A. Bender, “Using a human drug network
for generating novel hypotheses about drugs,” Intell. Data Anal., vol. 20,
no. 1, pp. 183-197, 2016.

C. Phua, V. Lee, K. Smith, and R. Gayler, “A comprehensive survey of data
mining-based fraud detection research,” 2010, arXiv:1009.6119. [Online].
Available: https://arxiv.org/abs/1009.6119

L. Xiaojun, H. Song, and X. Weikun, “The analysis of logistics influence
of the important node cities of beijing-tianjin-hebei,” Int. J. Bus. Econ.
Res., vol. 6, no. 5, p. 88, 2017.

X. Wen, C. Tu, and M. Wu, “Fast ranking nodes importance in complex
networks based on LS-SVM method,” Phys. A, Stat. Mech. Appl., vol. 506,
pp. 11-23, Jun. 2016.

B. Wei and Y. Deng, “A cluster-growing dimension of complex networks:
From the view of node closeness centrality,” Phys. A, Stat. Mech. Appl.,
vol. 522, pp. 80-87, May 2019.

P. Bonacich, “Factoring and weighting approaches to status scores and
clique identification,” J. Math. Sociol., vol. 2, no. 1, pp. 113-120, 1972.
G. Sabidussi, “The centrality index of a graph,” Psychometrika, vol. 31,
no. 4, pp. 581-603, Dec. 1966.

L. C. Freeman, “Centrality in social networks conceptual clarification,”
Soc. Netw., vol. 1, no. 3, pp. 215-239, 1979.

S. Brin and L. Page, “Reprint of: The anatomy of a large-scale hypertextual
Web search engine,” Comput. Netw., vol. 56, no. 18, pp. 3825-3833,
Dec. 2012.

L.Li, Y.-C. Zhang, C. H. Yeung, and T. Zhou, “Leaders in social networks,
the delicious case,” PLoS ONE, vol. 6, no. 6, Jun. 2011, Art. no. €21202.
L. Li, D. Chen, X.-L. Ren, Q.-M. Zhang, Y.-C. Zhang, and T. Zhou, ‘“Vital
nodes identification in complex networks,” Phys. Rep., vol. 650, pp. 1-63,
Sep. 2016.

J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
J. ACM , vol. 46, no. 5, pp. 604-632, Sep. 1999.

C. Salavati, A. Abdollahpouri, and Z. Manbari, “Ranking nodes in com-
plex networks based on local structure and improving closeness centrality,”
Neurocomputing, vol. 336, pp. 3645, Apr. 2019.

L. Fei, Q. Zhang, and Y. Deng, “Identifying influential nodes in complex
networks based on the inverse-square law,” Phys. A, Stat. Mech. Appl.,
vol. 512, pp. 1044-1059, Dec. 2018.

L. Yin and Y. Deng, “Toward uncertainty of weighted networks:
An entropy-based model,” Phys. A, Stat. Mech. Appl., vol. 508,
pp. 176-186, Oct. 2018.

Z. Yu, J. Shao, Q. Yang, and Z. Sun, “Profitleader: Identifying leaders in
networks with profit capacity,” World Wide Web, vol. 22, pp. 533-553,
Mar. 2019.

M. Kitsak, L. K. Gallos, S. Havlin, F. Liljeros, L. Muchnik, H. E. Stanley,
and H. A. Makse, “Identification of influential spreaders in complex
networks,” Nature Phys., vol. 6, pp. 888-893, Aug. 2010.

E. Estrada and J. A. Rodriguez-Veldzquez, “Subgraph centrality in com-
plex networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip.
Top., vol. 71, no. 5, May 2005, Art. no. 056103.

T. Bian and Y. Deng, “A new evidential methodology of identifying
influential nodes in complex networks,” Chaos, Solitons Fractals, vol. 103,
pp. 101-110, Oct. 2017.

131730

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]
[43]

[44]

(45]

[46]

(47]

(48]
(49]
[50]
[51]

(52]

S. Wang, Y. Du, and Y. Deng, “A new measure of identifying influential
nodes: Efficiency centrality,” Commun. Nonlinear Sci. Numer. Simul.,
vol. 47, pp. 151-163, Jun. 2017.

A.-L. Barabdsi and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509-512, 1999.

M. Li, Q. Zhang, and Y. Deng, “Evidential identification of influen-
tial nodes in network of networks,” Chaos, Solitons Fractals, vol. 117,
pp. 283-296, Dec. 2018.

Z. Wang, X. Pei, Y. Wang, and Y. Yao, “Ranking the key nodes with
temporal degree deviation centrality on complex networks,” in Proc. IEEE
29th Chin. Control Decis. Conf. (CCDC), May 2017, pp. 1484-1489.

S. Xu and P. Wang, “Identifying important nodes by adaptive Leader-
Rank,” Phys. A, Stat. Mech. Appl., vol. 469, pp. 654—-664, Mar. 2017.

J. Wu and Y. Yue-Jin, “Finding the most vital node by node contraction
in communication networks,” in Proc. Int. Conf. Commun., Circuits Syst.,
May 2005, p. 1286.

J. Hu, Y. Du, H. Mo, D. Wei, and Y. Deng, “A modified weighted TOPSIS
to identify influential nodes in complex networks,” Phys. A, Stat. Mech.
Appl., vol. 444, pp. 73-85, Feb. 2016.

W. W. Zachary, “An information flow model for conflict and fission in
small groups,” J. Anthropol. Res., vol. 33, no. 4, pp. 452-473, 1977.
(Sep. 2016). U. Rovira I Virgili Network Dataset—KONECT. [Online].
Available: http://konect.uni-koblenz.de/networks/arenas-email

J. Kunegis, “KONECT: The Koblenz network collection,” in Proc. Int.
Conf. World Wide Web Companion, 2013, pp. 1343-1350. [Online]. Avail-
able:  http://userpages.uni-koblenz.de/~kunegis/paper/kunegis-koblenz-
network-collection.pdf

D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, no. 6684, pp. 440—442, Jun. 1998.

R. A. Rossi and N. K. Ahmed, “The network data repository
with interactive graph analytics and visualization,” in Proc. 29th
AAAI Conf. Artif. Intell., 2015, pp. 4292-4293. [Online]. Available:
http://networkrepository.com

J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Densifica-
tion and shrinking diameters,” ACM Trans. Knowl. Discovery Data, vol. 1,
no. 1, pp. 1-40, 2007.

(Sep. 2016). Caida Network Dataset—KONECT. [Online]. Available:
http://konect.uni-koblenz.de/networks/as-caida20071105

R. Zafarani and H. Liu. (2009). Social Computing Data Repository at ASU.
[Online]. Available: http://socialcomputing.asu.edu

R. M. Anderson, R. M. May, and B. Anderson, Infectious Diseases of
Humans: Dynamics and Control. London, U.K.: Oxford Univ. Press, 1992.
M. G. Kendall, “A new measure of rank correlation,” Biometrika, vol. 30,
no. 1/2, pp. 81-93, Jun. 1938.

S. Peng, Y. Zhou, L. Cao, S. Yu, J. Niu, and W. Jia, “Influence analysis in
social networks: A survey,” J. Netw. Comput. Appl., vol. 106, pp. 17-32,
Mar. 2018.

JINYING DAI received the B.S. degree in software
engineering from Henan University, in 2016.
She is currently pursuing the M.S. degree with
the School of Computer Science and Engineering,
Central South University, Changsha, China. Her
research interests include software engineering
and complex networks.

BIN WANG received the M.Sc. degree in mining
engineering and the Ph.D. degree in computer sci-
ence and technology from Central South Univer-
sity, China, in 1999 and 2003, respectively, where
he is currently a Professor with the School of
Computer Science and Engineering. His research
interests include transparent computing and soft-
ware engineering.

VOLUME 7, 2019



J. Dai et al.: Identifying Influential Nodes in Complex Networks Based on LNC

IEEE Access

VOLUME 7, 2019

JINFANG SHENG received the M.Sc. degree in
computer science and technology and the Ph.D.
degree in control theory and control engineering
from Central South University, China, in 1996 and
2007, respectively, where she is currently an
Associate Professor with the School of Com-
puter Science and Engineering. Her research inter-
ests include transparent computing and big data
processing.

ZEJUN SUN received the B.Sc. degree from
Henan Polytechnic University, in 2003, and the
M.Sc. degree from Xidian University, China,
in 2008, both in computer science. He is currently
pursuing the Ph.D. degree with Central South Uni-
versity, China. His research interests include data
mining, complex network structure mining, and
machine learning.

FAIZA RIAZ KHAWAIJA received the B.S. degree
in software engineering from Isra University,
Hyderabad, Pakistan, in 2016. She is currently
pursuing the M.S. degree in computer science and
technology with Central South University, Chang-
sha, China. She was a Teaching Assistant with
Isra University for one year. Her research inter-
ests include software engineering and complex
networks.

AMAN ULLAH received the B.S. degree in com-
puter science from Gomal University, Dera Ismail
Khan, Pakistan, in 2012, and the M.S. degree
in software engineering from Abasyn University,
Peshawar, Pakistan, in 2017. He is currently pur-
suing the Ph.D. degree with Central South Univer-
sity, Hunan, China. His research interests include
software engineering, software cost estimation,
artificial intelligent, and complex networks.

DAWIT AKLILU DEJENE received the B.S.
degree (Hons.) in computer science from Unity
University, Addis Ababa, Ethiopia, in 2016.
He is currently pursuing the M.S. degree with
the School of Computer Science and Engineer-
ing, Central South University, Changsha, Hunan.
His research interests include cloud computing and
network security.

GUIHUA DUAN received the Ph.D. degree in
computer science and technology from Central
South University, in 2010, where she is cur-
rently an Associate Professor with the School of
Computer Science and Engineering. Her research
interests include big data processing and network
security.

131731



