IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received July 31, 2019, accepted August 29, 2019, date of publication September 9, 2019, date of current version September 20, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939903

A Task-Resource Mapping Algorithm for
Large-Scale Batch-Mode Computational
Marine Hydrodynamics Codes on

Containerized Private Cloud

YIYI XU"“1-2, (Student Member, IEEE), PENGFEI LIU*"3, IRENE PENESIS', AND GUANGHUA HE*

! Australia Maritime College, University of Tasmania, Launceston, TAS 7248, Australia

2School of Computer Science and Communication Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China
3Marine, Offshore and Subsea Technology, School of Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K.

4Harbin Institute of Technology, Weihai 264209, China

Corresponding author: Pengfei Liu (pengfei.liu@gmail.com)

The work of Y. Xu was supported by the Australian Maritime College, University of Tasmania, by providing Ph.D. Scholarship.

ABSTRACT CPU time has long been a remaining problem for large-scale batch mode based scientific
computing applications. To address this time-consuming problem, a container-based private cloud was
employed, and a novel task-resource mapping algorithm was developed. Firstly, the execution features
of typical batch mode codes were extracted and then computing jobs were formulated as a coarseness
acyclic DAG. Secondly, to guarantee both job makespan and resource utilization, a novel task-resource
mapping algorithm, along with container pre-planning and worst-case-first task placement phases, were
developed. Finally, a typical Computational Marine Hydrodynamics software, Rotorysics, with a different
scale of input data matrix was used as benchmark software. To manifest the effectiveness of the proposed
method, a number of numerical examples were given via CloudSim and a small-medium containerized
private cloud platform was adopted with three practical study cases. The computational results show that
1) compared with the traditional HPC workstation computing solution, container-based cloud solution shows
significant savings in makespan by more than 6 times. 2) the new method is scalable to address bigger size
batch computing problem up to a run matrix 108.

INDEX TERMS Computational marine hydrodynamics (CMH) codes, containerization, large-scale batch

mode computing, private cloud, task-resource mapping algorithm.

I. INTRODUCTION

Computational Marine Hydrodynamics (CMH) is becoming
more and more popular because of its cost-effectiveness
and improved accuracy today. There are many commer-
cial CMH packages available for a wide range of applica-
tions in marine industry. For example, CFD codes based on
RANS methods, include such as CFX, Fluent, STAR-CD, and
STAR-CCM+ (CD-Adapco), etc. These codes are capable of
investigating local physics flow properties [1]. In addition,
there are some much-less computing-intensive but many tasks
in-house codes, especially developed for engineering design
and optimization, such as PMARC [2], GASFLOW [3],

The associate editor coordinating the review of this manuscript and
approving it for publication was Alberto Cano.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

Rotorysics (formerly Propella [4], [5], DF-OSFBEM [6]-[8].
These codes often use batch processing to run an executable
repeatedly to obtain a large set of hydrodynamic performance
data. Compared with RANS-based CFD codes, these comput-
ing tasks may require a relatively short CPU time, but many
runs, in some cases, in an order of 10° or more.

For example, to design a turbine series prototype using
Rotorysics software, a propeller and rotor design code,
it took about 6 months of CPU time [9]. The computing
job was completed by using multiple-threaded computation
(48 executable running simultaneously) on a Dell Worksta-
tion (4-core 3.0 MHz CPU of 48GB of DRAM). The motion
and geometry parameters are shown in Table 1 and Table 2 as
an example. Along with the series of geometric and motion
parameters, the number of tasks and the size of workloads

127943

https://orcid.org/0000-0001-7688-332X
https://orcid.org/0000-0003-2158-5442

IEEE Access

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

TABLE 1. Data matrix.

| Container as a service |

Conterantizaton

rovide tooling for Lo ST
oth devand IT ops ¥

eproductivity | ~| High start-up time

| Lightweight deployment | | Microservices |

DevOps |

Risk-free ~| Isolated unit|

~|Lcw overhead |
~|Respunsiva | —-Frchestratmn |

_Isupport diverse
L

o

~| Near native pErfurmanoel

(compared with VMs)

—|Support lesser CPU & memot

Variables Parameters Value
Nips rotor shaft rotational speed 10
Nyer number of inflow velocities 10
Ngar number of rotor solidity 9
Npitch number of pitch /diameter ratio 9 Cross platform
pport Linux\
N, number of blades 12 oo image]
Nrasks Nrps X Nyeit X Ngar X Npiten X Nz 105300
TABLE 2. Example of CPU run time.
Number of blades Value
Nz=2 t=425 sec=0.12 hours
Nz=12 t=86400 sec=24 hours
TABLE 3. Current accelerated solutions.
Solutions Benefits Problem
Batch
processing o Works o Heavily depends on HPC
efficiency services and horizontal
for repeated scaling .
jobs. e Takes long CPU time to

e Dominating
method for long

achieve required results.

years.
Parallel pro-
cessing o Popular NOT suitable for sci-
accelerated entific codes with inde-
method with pendent many-task with
mature IDE long delay added due to
extra in-communication
Grid
processing o Performance in- e Complicated configura-
surance tion and maintenance
e Needs dedicated devices
Public cloud
computing e Pay on a o Data security
demand-driven e NOT cost effective
basis o Unstable performance if
o Low speed of network is low
maintenance
cost
Recode
e Methods e Needs domain knowl-

and function edge in-communication
updated o High-level language
means new challenges

can be calculated. It is obvious that to get more accuracy,
more CPU time and memory are needed to complete such
arelatively big data matrix run.

To improve computing efficiency for these large-scale
scientific codes, many studies [10]-[16] were conducted
ranging from software recode to parallel computing as shown
in Table 3. Among them, cloud computing is an emerging
technology and new trend to support scientific computing.

However, as scientific applications often rely on plenty of
libraries, most of binaries and settled configuration files, have

127944

jusage per instance

FIGURE 1. Advantages of container-based technical. Feathers in boldface
are absorbed in our method.

series environment dependences [17], [18]. This means that
migrating scientific codes from workstations on distributed
platforms will encounter some compatibility problems, such
as tool installation issues etc. In this regard, containeriza-
tion technology is emerged to allow task scheduling on
lightweight containers and support their migration when-
ever required. Compared with virtualization technology,
containerization technology requires only a few seconds to
bootstrap and initiate versus several minutes for a regu-
lar VM. Docker [19] and native workstation have no sig-
nificant performance difference. As shown in Fig. 1, a new
type of cloud service based on containerization, sontainer as
a service (CoaaS), is considered efficient to address above
issues.

For CoaaS, task scheduling algorithm is considered as
a key factor to contribute to High Performance Comput-
ing (HPC), but it is still in its infancy [20]-[23]. With the
development of container technology in industry, researchers
put forward many optimal algorithms to enhance multiple
goals, such as service cost, response time, and load balancing
etc. It was also observed that these goals are covered from
only service for cloud providers at system-level to users at
user-level that aim to run expert system with high computing
requirements in the last three years.

Xin et al. [24] adopted container-based virtualization tech-
nology and proposed a container-based scheduling strategy
by using stable matching theory. Their strategy produced
at most 27.4% degradation compared with virtual-machine-
based clouds on response time. Their method proves to be
good for small-medium scale computational tasks, especially
the number of tasks increases to 200 or more.

Guan et al. [22] presented a dynamic allocation algorithm
for Docker container resource named AODC which adapts to
application’s requirements. AODC algorithm takes into con-
sideration the resources on nodes, the network consumption
of nodes and the energy consumption of nodes. Simulation
results indicate that AODC algorithm outperforms existing
VM-based methods in terms of cost and custom acceptance
ratio.

Luxiu et al. [25] developed a new task-scheduling
and resource management algorithm for fog computing.

VOLUME 7, 2019

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

IEEE Access

Their approach aimed to reduce task delays in accordance
with the characteristics of containers. The results showed
their method can effectively reduce task delays and improve
the concurrency number of the tasks significantly.

Yanghu and Wenbin [26] conducted extensive experiments
and results show that their algorithm can effectively reduce
the system load imbalance and improve the overall system
performance compared with other algorithms.

Tamanna et al. [27] proposed a genetic algorithm-based
customer-conscious resource allocation and task scheduling.
Their algorithm based on popular multi-cloud computing and
consists of two phases. The first phase is a genetic algorithm-
based resource allocation and the second phase is the shortest
task first scheduling. These algorithms aimed to have mini-
mum makespan and maximum customer satisfaction. Results
from simulation illustrate that the proposed algorithm outrun
the existing ones as per concerned metrics.

Jose et al. [23] provided a resource allocation solution by
extending the concept of time slicing to the level of the con-
tainer. By using this approach, they can control and mitigate
some of the more detrimental performance effects over sub-
scription. Their results show significant improvement over
standard scheduling of Docker.

Singh et al. [28] designed a renewable energy-based host
selection and container consolidation scheme. The proposed
approach has been evaluated using Google workload tracers.
The results obtained are 15%, 28% and 10.55% higher energy
savings in comparison to the existing solutions.

Chanwit and Kornrathak [29] proposed a container
scheduling algorithm with Docker Swarmkit. In their study,
they presented an Ant Colony Optimization (ACO) strategy
to improve the scheduler’s optimality and introduce these
specific parameters to make the scheduler works better for
each situation. Finally, their experimental results show ACO
strategy is better than greedy algorithm by approximately
15% on resource usages. Their purpose is to balance the use
of resources so that applications in a container cluster will
have a better performance.

Zulkar et al. [30] evaluated a dynamic fuzzy load balancing
algorithm to predict the virtual machine where the next job
will be scheduled. This is quite similar to the idea we propose
in Section 3, where we focus on the resource allocation for
light-weighted containers instead of virtual machines.

Pande et al. [31] proposed a customer-oriented task
scheduling algorithm for a heterogeneous multi-cloud envi-
ronment. The basic idea of this algorithm is to assign a
suitable task for each cloud which takes minimum execution
time. It balances the makespan by inserting as many as tasks
into idle slots of each cloud, so that time can be minimized.
A simulated result proves the validity of this method.

Li et al. [32] proposed PINE—a performance isolation
optimization solution in container environments when differ-
ent services (latency-sensitive services and throughput first
services) are deployed on a host machine using container
technology. Their experimental results show that PINE can

VOLUME 7, 2019

effectively optimize the performance of running services and
achieve the optimal result in a relatively short time.

Kwon et al. [33] firstly proposed several hurdles to real-
ize container-enabled clusters for HPDA (high-performance
data analytics) workload; Secondly, to address technical con-
straints around bottlenecked inter-connections for overlay
networking and storage access, they designed a container-
enabled cluster prototype. Their results show an effectively
and seamlessly integration with the hardware and software
pieces of HPDA cluster.

Zhuang et al. [34] proposed an immediate access for Earth
science modeling. They stated that cloud is a promising
vehicle for massively-parallel simulations emulating local
HPC clusters, but several issues need to be addressed. Soft-
ware containers hence used to support GEOS-Chem global
model of atmospheric chemistry and they gave a detailed
description of how its software environment to be moved
smoothly between cloud platforms and local clusters by using
container technical. Their work provides general guidance
for scientific models to cloud computing platforms in a user
accessible way.

Lin et al. state that there are some open issues have not been
completely addressed in the deployment and management of
the microservice container. In their work, a multi-objective
optimization model is built, and an ant colony algorithm is
proposed to solve the scheduling problem. By comparing
with other related algorithms, the experimental results show
their ant colony algorithm is effective for container resource
scheduling not only satisfies the service requirements of users
but also reduces the running overhead.

In addition, it is interesting that Waibel et al. [35] presented
a container-based eBPMS, named ViePEP-C, for the process
activity execution. Their work is somewhat similar to our
work by using a novel resource and task scheduling algorithm
in containers-based execution environment. The main differ-
ence is their work is designed for business processing system,
but our work focused on scientific workflow. Their experi-
ment results shown that the execution cost can be decreased
by over 20% by comparing with other state-of-the-art
VM-based scheduling algorithm.

Traditional cloud scheduling policy focused on ‘let
resources adapt computational tasks’; recent containeriza-
tion technology make it possible to ““let computational jobs
adapt resources”’, by well-scheduling jobs to reserved con-
tainers as mentioned above. However, most of related stud-
ies rely on public cloud infrastructure and hence brings
some extra service expenses. For non-expert cloud end-users,
dynamic configuration management of a container and the
relationship with containers and nodes are also a source of
confusion. In our work, an containerized private cloud is
exploited with an automatic container deploy technology, and
corresponding novel job-resource mapping algorithms are
developed. Finally, according to the above steps, makespan
time needed for implementation is reduced, and computing
performance is enhanced significantly.

127945

IEEE Access

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

The remainder of this paper is organized as follows.
Section 2 introduces our methodology, such as detailed mod-
ule design and key strategy. Section 3 presents evaluation and
results of the proposed methodology by using a simulator and
areal private cloud test bed. Section 4 concludes the work and
suggests some future work.

Il. METHODOLOGY

To achieve the above goals, a framework with 3 modules
is proposed as shown in Fig. 2. These 3 modules are func-
tioned as job formalization and classification, reservation of
container and job-container scheduler.

module1 Job profiling and classification Module 2

User subbmit [Lor/ 458 nam: 1F1

| Results / System state

- ; Module 4
Container execution Execute and okbtain results

Runtime

Reservation of container

F2:
F|Container Pre-planning|

Instance

DAG based job | workioads
* formalization

Requirement

Discover available
resouces

o

H

[Auocate resouces m} [Establish provisionging W ¥

. Available
requstor containers

Adjust Schedule
F3: Task-container Goto F1
mapping algorithmn Workload updation

FIGURE 2. Flow chart of the proposed methodology.

Module 3
Task-container
Scheduler

Given the characteristics of tasks, Module 1 is a pre-
process to describe how users will gain access and inter-
act with cloud platform. This access is implemented by a
DAG based quantization job queueing and several constrains
with requested demand. Module 2 is a pre-process to esti-
mate and predict instances of containers, or in other words,
maximum resource consumption for each task. The instance
here consists of configuration, numbers (maximum amount)
and layers (we assume that instances of containers can be
nested if needed). This module hence can provide global
information at scheduling time for next step. Module 3 aims
to schedule jobs in containers under a minimum makespan
and a maximum utilization. As these two objectives have
conflicts, in this work, we developed an advanced worst-case-
first bin packing algorithm to address the time-consuming
question. Module 4 is a nature execution process on parallel
containers and end users can obtain computing results for
further analysis.

A. JOB FORMALIZATION AND CLASSIFICATION
Large-scale batch mode computing jobs based CMH appli-
cations often requires a relatively short CPU time to obtain
one data point but need a huge number of runs to build
performance database as mentioned above. To characterize
this kind of jobs, the notations is given in Table 4, where,

1) Each J is separated into n operations, and each oper-
ation is named ‘“‘task” here. Each job J consists of
multiple tasks, which is in a range from 10° to 10'?
or even more.

2) Resources and container are considered the same.

127946

TABLE 4. Table of notations.

Notation Meaning
w cloud workflow service set
J a workflow ensemble (job sets)
H length of schedule (scheduling horizon)
Ji job4
v; container ¢
Di processor ¢
S, start time of j;
E;, end time of j;
Ty, execution time of j;
Re.; capability of container of v;
Cy) CPU usage of the container v;
Py, processors sets which belongs to the containerv;
Rej, acquired resources of job j;

PNCRIC

g 0

Processor-parallelization

p |"@) 'S -

a. Execution in one folder on Workstation

f Thread-parallelization f
3

[
Container;

| I—— e ———————
aul 234 5 e, time”

b. Execution in one container on Cloud

FIGURE 3. Execution features.

3)

4)

5)

6)

7)

Each J is non-pre-emptive tasks. This means that if two
tasks belong to the same job J, they must be mapped on
the same processor in the same container as shown in
Fig. 3.

Each J is indivisible with unit execution time, and
hence it has less DAG defined time and inter commu-
nication time.

To weighted total overhead CPU run time of the
process W, one generally needs to considerate DAG
defined time, average memory access latency, task
waiting time and communication time, and makespan
time etc. It is noted not every time metric can be
quantified or determined easily. Some factors have only
marginal effects according the features of batch-mode
workflows and private run platform. Therefore, in our
work makespan time is used as the main performance
index to be optimized and evaluated.

According the fluctuation and orders of magnitude of
workloads, each J belongs to one of three different
workflows. For convenience in the succeeding discus-
sions, we name these workflows as Wy, where k =
1V normal, 2 Vv uniform, 3 V fluctuation.

Every given type of Wy has the same stochastic run pro-
cess and hence the minimum and maximum numbers of
required containers can be predicated.

VOLUME 7, 2019

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

IEEE Access

Several definitions are introduced as following.

Generally, W = {DG, T, DI, C} used to describe cloud
workflow sets, where, DG represents DAG rule for workflows
ensembles W, T is the total CPU run time of the process W,
DI = {DI; | j € [1, m]}, is a lease lifetime for containers, and
C is the service fee for W per unit time.

It is noted that a large body of research modelled as
DAGs as: G = {V,E, S}, where V. = {v(, v, v3, ..., vy} is
the task node set of DAG graph, v; is the ith task, n represents
the number of tasks; E is a set of edges, where, E = {e;},
i,j € O, e; represents the precedence constraint relations
such that j; cannot complete its execution before j; begins.
S is the set of servers, S = {S1, S2, ..., Sk}, Sk represents the
kth server, k represents the number of servers.

In this work, we assume one job, or a scientific workflow
that ensembles as an integrated unit. Therefore,

Definition 1: G = {J, E, V, Map}, where, J represents a
set of jobs in W, j; means ith job of this set; J = {J1, J2, J3,
..., Jn}, where n is the number of jobs.

V = {vi,v2,..., vy} represents the sets of containers,
where v; presents ith container, m is the number of containers
(machines). E = {E; | j € [l, H]} represents job depen-
dencies in W, where H is the length of schedule (scheduling
horizon). In addition, dependency between j; and j; can be
stated as, j; is precursor node of jj, and j; is successor node
of ji. Map = {(J, vi) | vin € Vi}, expounded the mapping
relationship between job J and container v,,, Map, —,,, means
that the job J is assigned for vy,.

Definition 2: v; = {Uv_,.,Revj, CV_/.,PeV_,.} is attribute sets
of one container, where U,,, represents the resource usage
of a job j; for a container vj; Re,, represents the capability of
container vj, PVJ. = {ijg | e € [1, n]} represents n processors
which belongs to the same container v;, and Cvj is the cost of
container v; per unit time.

Definition 3: j; = (S}, Ej;, Rej;, Earj,, Tard;;} denotes
attribute sets of one job, where S, Ej;, Tj;, standing for
start time, end time and execution time of the job, where
Ej, = S}, + Tj,, stands for a sub-makespan of J. The Re;, =
{reji-] } |[31:1} represents the type, size and configuration of
resources that job j; acquired, include CPU, memory and
storage.

If Tj, < Ej;, earliness occurs and if Tj, > Ej, tardiness
occurs, Earj, and Tard;, will be used to represent earliness of
Jji and tardiness of j; in scheduling process, respectively.

Revj — Re;

f(Deviation) = %f Ldt, [-1, 1] ()

T Rer

Basic performance matrix are defined as following:

Definition 4: makespan = max(< E; >| ji € J).
makespan represents the total time needed to execute an
entire J, that is, equal to the end time of the last task to be
completed.

Definition 5: cost = (ijzl(Cvj x t(j, Vi), §), cost repre-
sents the service price of J per unit time for server S.

VOLUME 7, 2019

Definition 6: . .,
utilization(J, V) = 1 — Z= 2 2im <Re
Zf:l Xlhy;
the resource utility of job J, where, n is the number of jobs,
and m the number of containers, while Map;j_,,,.

The problem then can be formulated as: Given a weighted
DAG G = {J,E,V,Map} and m containers, the optimal
problem consists of minimize the makespan, cost and max-
imization utilization of J, as described in equation (2):

-
L represents

min(makespan) < DI;(i € [1, m])
min(cost) < Cv;(i € [1, m]) 2)

maximize(utilization(J , V.))

f(Requirement) =

In the following, the constraints of scheduling problem are
described.

H
2 k=1 kEj; < Ej
SH kS, <Sypiedii=1,2,...,m
H
D=1 kTj; =T
k=1,2,...,H—1 3)

Equation (4) ensures that each J is separated into n opera-
tions, which have different unit execution time.
n

YTl k=12
k=1

H—1 “

Equation 4 ensures that in each time slot, most one part of
job can be performed or the container may be idle at the time
slot.

B. CONTAINER PRE-PLANNING STRATEGY
In this section, we introduce a container pre-planning strat-
egy. This strategy obtains flexibility instances for current
jobs according to the specific context. In a cloud environ-
ment, there are three usual provision strategies. They are
on-demand, reserved and spot resource [36]. For on-demand
strategy, it is a popular one which is charged in a short-term
in a pay as-you-go manner, but performance is unpredictable
due to a possible external load. The reserved strategy is a
simple and native one to provide fixed instances (resource
capacities of CPU, memory and disk for selection) and that
does not change over time. Reserved instances require a high
upfront investment, but have 2 to 3 times lower per-hour cost
than on demand resources. For spot strategy, we ignore it
as they do not provide any availability guarantees. To offer
better availability and consistent resource for batch mode jobs
introduced above, a hybrid resource provision mechanization
is adopted. This process can be considered as on demand
provision at the initial step.

There are three steps in this pre-process. Firstly, according
a set of required resources Rej;, for each j; € J, convert
the workload histogram to maximum likelihood distribution
fitting by using maximum likelihood distribution fitting func-
tion [37]. While workload type and corresponding instances

127947

IEEE Access

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

Container pre-planning Cloud service provider

l DAG

Get image of
ji €]

Y
R
Workload distribution %G
fitting curve of j;
‘ Start VM instance

-

/nstancss meet 7 (Reqwremem‘))*—

%

Update 7 (Deviation)| g,

——»Update f (instance,J) | s———=
Revjfc ‘

FIGURE 4. Hybrid container pre-planning provision model.

Instance config

> Fan— . .
instances Expert customization

(_log

Workloads histogram

fit curve

m workloads

Number of tasks

Job submission queue

FIGURE 5. Part of workloads histogram by using Weinman’s model.

be identified, the resource provision is a static process for the
whole job J. A specific process is shown in Fig. 4. It is noted
that the part of the idea comes from Genady et al. [38].

Secondly, to ensure asymptomatic accuracy of selecting
appropriate instance size and configuration, this provision
model adopted Weinman’s measurement model [39], [40] as a
deviation function. This model illustrates how much resource
is needed for the jobs to work properly. Fig. 5 illustrates
examples, the curves show a hypothetical situation with a
normal distribution variation in demand (solid blue line),
linearly increasing resource provision (dotted black line), and
white perpendicular lines represents idle time. Weinman’s
measure is a weighted combination of the areas between
curves. According this conceptual model, we improved the
deviation function in this work as in equation (5).

L. 1 Revi — Rej,
f(Deviation) = —(/ ——dt), [-1, 1] ©)

T T Revj
where, Re,; and Rej; are the provisioned and the demanded
resources respectively at time ¢. T is the time period in which

127948

250
RC",'
200 | T ——
5 R
3o - nderprovisiomn:
5 150 | P 9 ;
2
100 | e
50 i &\/%T prowsmnlng
0 i i L
0 20 40 100 120 140

Tlme (mm)

FIGURE 6. Geometric view of f(deviation) for normal workloads.

we measure the two metrics. The integral value measures the
relative squashed area enclosed by the resource values of Re;,
and Re,,; for time period 7. The value of deviation ranges
between [—1, 1], indicating an under-provisioning situation
when f(Deviation) € [—1, 0); and an over-provisioning case
when ff (Deviation) € (0, 1]. Fig. 6 shows the geometric
view of deviation result. The zero value indicates an accurate
provision of resources according to the demanded resources.
The bigger the result of f(Deviation) close to 1, a larger
correction is needed between Re,; and Rej; for Cloud service.

For each J € G, f(Instance, job) is a function used to
identify and save optimal instance and job sets. By using
above optimal distribution fitting diagram, when most of the
utilization of containers can reach 90% or more, the detail
capacity of instances will be locked and saved. Each instance
here including three index values of resource, which corre-
sponding the peak, average and minimum Re,,; of current W,
respectively. Finally, all instances scheme for past scenarios
saved to historical log. While workloads of new scenarios are
close to one of Js in this historical log, corresponding the set
of pair < instance, job > will be recommended directly.

Algorithm 1 shows the pseudo-code of the container
pre-planning algorithm.

C. CONTAINER-BASED TASK-RESOURCE

MAPPING ALGORITHM

In this section, we introduces an advanced scheduling policy
to fully exploit containers. As mentioned, Docker has some
simple policies with low time complexity [29], [41]. Amongst
these polices, the core idea is to deploy jobs to machines with
higher CPU usage and higher memory usage and bin packing
algorithms, such as First Fit, Best Fit, Best Fit Decreas-
ing, etc., have been proposed to solve this problem [42].
The disadvantage of this policy is that it naturally spreads
the workload over the entire cluster of machines, which in
turn leads to overload some nodes easily [43]. Based on a
bin packing algorithmic enhancement, we set up a worst-
case first bin packing job-resource mapping algorithm and
assume worse-case often has maximum makespan and bot-
tleneck in scheduling lines. This algorithm parallelizes each

VOLUME 7, 2019

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes IEEEACC@SS

Algorithm 1 Container Pre-Planning Algorithm Algorithm 2 Container-Based Task-Resource Mapping
Input: W = {DG, T, DI, C}; Algorithm

J=Ji,J2, ..., Jn;

Ji =1{Sj;. Ej;, Tj;, Rej;; Eary;, Tard;;};

Vi = {Uv/-v Rer1 CV/'V Per};

V. = {0}.

Output: find Optimal Re,, for V,
obtain instances sets: < instances,J >.

Begin

(1)For each j; € J, convert the workload histogram to max-
imum likelihood distribution fitting and search maximize
resource requirement Re;,;

(2) If exist < instance, J >, then update V, with instances;
(3) If Rej; < Rej; and f (requirement) = True;

/l 'whether the container vj can meet the resource require-
ment of job ji.

Revj < Rej;, Update Revj,VC < V.U V;; move J; from J;
(4) Else deviation = f(Deviation);

(5) If deviation < 0, Rey, is over-provision, decrease level
of instance;

(6) else vy, ++; Revj is under-provision, increase the level
of instance;

(7) End If

(8) End If

(9) Update Re]/.[_, Re;j <« Rej/.[_; Goto (2)

(10) If average(C,,) > 90%, and J = {0}, instances =
instances U f (instance, J),

(11) update historical log;

(12) End If
(13)ji = ji + +; Goto (1)
(14) End For
End
oo b & i o o 5oyt s/
T P D 7,
l T P P 7, 7,
1 i L
< T 7, T

»(o)—

(ﬁm (2) w:

FIGURE 7. The process of parallel job merging.

job according to their maximum finished time and available
resources. The basic idea is illustrated in Fig. 7.

As shown in Fig. 7, in the first phase, jobs are descending
according to Tj;. The worst-case with maximum execution
time was moved as the first job and *“guide one” for other
jobs. In the second phase, it computes the execution time T},
of other jobs. If 7}, do not exceed the “guide one” and the idle
time also is minimum according to Equation (3), these tasks
will be merged with next one until it cannot be merged. In the

VOLUME 7, 2019

Input: W = {DG, T, DI, C};

J=J1,J02, ..., In;

Ji = {8, Ej;, Tj;, Rej;, Earj;, Tard;;};

Vi = {Uvj-v Rers CVjv Pev]'};

V=,Lvy...,vul

Output: Re-schedule G and assigned each J to certain
container and processors.

Begin

(1) For each Wy;

(2) If number of Earj; ~ number of Tard;,, k = normal v 1,
if number of Earj, > number of Tard;,, k = uniform v 2;
else k = fluctuation v 3;

(3) End If

(4) End For

(5) For each V; € V, descending sorted according to their
maximum resource usage u,;; Update V = Vv’

(6) End For

(7) For each j; € J, descending sorted according to their
maximum execution time 7j,. Update J = J';

(8) End For

(9) For each J € DG

(10) While k == 1;

(11) If Tj, < makespan(J') and V. # {#};

(12) Re’vj = min{Re},};

(13) Mapj, ;i < i+ +;

(14) End If

(15) Update Re/’.l_, Re(,j = ReJ’.’_; Goto (7)

(16) If J = {0}, instances = instances U f (instance, J);
(17) Remove j; and update J/; Goto (7)

(18) End If

(19) While k == 2 or k == 3;

(20) ji < maximum{T}};

QD If Ej; < Tj; and V. # {4};

(22) Re(,j = min{Re;;};

(23) Mapj,_;;

(24) Else j; < j; Uji + +) ; recalculate Ej, + (Ej; + +);
(25) End If

(26) If Ej;, + (Ej; + +) < DI;

(27) Update makespan(J") = Tj;;

(28) Re’vf = min{Re;;};

(29)ji < ji++s

(30) Mapj;—y;; i < i+ 13

(31) Remove j;; Update J/;

(32) Else j; < j;Ujiyy; recalculate Ej, + Ej;4 4 ; Goto (25);
(33) End If

(34)Mapj —,,,; Updated G; // The job is mapped to resource.
(35) End For

End

final phase, each job will be assigned to processors which has
the earliest Sj; in a container.

Detailed flow and pseudo-code of this strategy is discussed

in Algorithm 2.

127949

IEEE Access

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

IIl. RESULTS AND DISCUSSION

Given the inherent dynamical environment of a private cloud
computing environment and the prohibitive costs, it is diffi-
cult to conduct physical performance evaluation in a repeat-
able, scalable and controllable manner [11]. Even when we
restrict the application to the same implementations of the
same algorithm, substantial variations in performance will
still exist on the same distributed computers. Therefore,
we used a simulation package CloudSim based tool [44] to
evaluate the effectiveness of the proposed framework and
algorithms. To be able to present clearly, three terms will
further explain here. “Workload” is the whole amount of
work (or jobs) an MTC CMH running to ending. Hence,
workload can be classified as type, size etc. As mentioned
above, we named it Wi, W), W3 as three typical work-
loads. ““Scenario” describes the different run environment
for workloads, such as isolated workstation, private cloud,
container-based cloud etc. We named it P1, P2, P3 in our
experiments. “Case’” used in our paper relates to real world
engineering applications and more details listed in Table 7.
We then compared with the baseline bin packing algorithm,
Docker adopted currently, under three different scenarios.
Next, to compare computational performance and acceler-
ated impact, we conducted three typical case studies on both
physical container-based private cloud and traditional work-
stations. Simulation and experiment results are presented and
analysed as follows.

TABLE 5. Parameters setting of cloudsim in Private cloud.

Entities Parameters Value
Containers
o Type f1 o CPU MIPS 4685; Memory 128
o Type #2 o CPU MIPS 9320; Memory 256
o Type #3 e CPU MIPS 18636; Memory
e Storage 512
e 500GB
Data centre
e Number of e 1 (100 hosts)
data centre
Job
e Total num- e 103;10°%;108
ber of tasks e 5000 - 15000MI
e Length of
task

A. TESTING IN SIMULATION
1) IMPLEMENTATION SETTING
The algorithm was programmed in ContainerCloudSim 4.0 in
Windows server 2016. In addition, we assume memory and
disk capability are unlimited in a private cloud environment,
and only considerate CPU in our simulation environment.
Table 5 shows main simulation parameters. Network band-
width is assumed to be 1 GBps and 400 KBps for servers and
containers.

By using ContainerCloudSim, for simulating scientific
computing job sets, we simulated three workload patterns,

127950

TABLE 6. Basic class used in containercloudsim.

Name Function

Workload Management
CloudletScheduler
CloudInformationService

support variable workloads
share processor

share of processing power among
Cloudlets
ContainerAllocationPolicy allocate containers to VMs

VmAllocationPolicy support optimize allocation method

Penality for job profiling and classificaton

30 |- ;
25| — arrived task

<
L
=0,
5 20|
E 15
Faol

M -

51 ,‘m_;l \-"\.__l'nu"\ﬂ,__f\'ap\u"\J\.‘/"\fﬁlf\,___r._/ ’rﬁm
0 20 40 60 80 100 120 140 160 180
3-hours observation period imin

FIGURE 8. An example of processing time of module 1.

Penality for container re-planning

__30F — arrived task
g 251
= 201
& =
B ¥ /_“’m
E 1ol Fr/‘\\./_\w \J\\N:

| T

5 L L 1 1 1 1 1 1 L

0 20 40 60 80 100 120 140 1e0 180
3-hours observation period imin

FIGURE 9. An example of processing time of module 2.

uniform, normal and random as mentioned. For specific pro-
vision and placement policy, we extended our algorithms by
overriding the functionalities with some classes of CloudSim.
Major related classes we used are shown in Table 6. For each
workload scenario, its ideal duration has no scheduling delays
or node failures.

2) ALGORITHM EFFECTIVENESS
Overheads: In the presented strategies, the mapping algo-
rithm includes two pre-treatment process modules as shown
in Fig. 2. They are Module 1, job profiling and classification,
Module 2, container re-planning with on-demand instances.
In Fig. 8 and 9, the pre-processing time related with con-
tainer is shown, while considering the normal distribution
scenario with a typical 107 run matrix in 3 hours.

Fig. 8 shows that job profiling and classification takes
5 to 10 seconds on average and only happens at the first
time after a job is submitted. Fig. 9 shows that container
re-planning does not exceed 20 seconds. Totally, it induces
lower than 0.1% overheads to the execution time of jobs by
comparing without using our strategy. Therefore, container-
based cloud works well in our research with similar perfor-
mance to nature machine and hence extra penalty of time
consuming can be ignored.

VOLUME 7, 2019

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

IEEE Access

Number of jobs
< 10°

|
A
|
1
|
|
.
|
|
|
il
|
4
|
|
L
|
|
|
|
il
|
|

5 8 8
T T
[

l——i——
|

.
|
|
[
1
[

-

rod
NES

[

|

_T-l__
| |
|
i L
[

-
[
N
[
|

_T__—_
[

L 1

Reduction ratio in job
completion time (%)

o 3
T
|
2
|
|
i}
|
el
|
1
|
S
|
|
]
|
|
|
|
|
i
|
|
|
|
i
|

FIGURE 10. Reduction ratio with different type and size of workloads.

Number of jobs

<10° < 10°

=1
[=]

&
[
2[s
|
|
|
|
+
[
|
|
1
|
il
|
|
+
|
|
|
|
|

___:__l__.'__
-

:jz:‘_f;‘_li::_‘j;‘_i;‘i:::::ji::i:;:

o
=

Utilization (%)

@

=1

|

|

|
Lo

|

|
+

i

|

|

|

1

|
—

|
-: "
o

|

|

28]
o

(=]

W, W, W, W, W. W, W, W. W,

FIGURE 11. Utilization ratio with different type and size of workloads.

Makespan VS number of jobs L

—— W5 I

—e— 5

3 _.G__wm’
i /%
W Number of submitted jobs

0 10? 10° 104 10° 10° 107 108

Makespan (weeks)

FIGURE 12. Makespan Vs number of tasks.

Adaptability: Tt is clear from Fig. 10 and 11 that all types
of workloads Wy,W;,W3, benefit significantly from the pro-
posed strategy in both CPU run time and utilization of
resources by using our strategy. These results show under
the heavy batch mode loads, the strategy also exhibits a
good performance. Specifically, Fig. 10 shows that proposed
strategy is most effective for W3 and W; workloads. While
the number of jobs increased significantly, the time-reduction
ratio trend declined around 10 percent or so.

Fig. 11 shows the utilization ratio by using our strategy.
The strategy is most effective for W and W, workloads, and
this trend is stable along with the increased run matrix. Com-
pared with W and W», resource utilization of W3 achieves a
reduction of 17% to 30%.

Fig. 12 and 13 show the specific impact of average
makespan for these scenarios Wi, W, W3 under a different
size of jobs and a different number of processors, respectively.

VOLUME 7, 2019

- W,

Makespan VS number of processors
p p S W ||

—e— W,

(%,

i

b’ﬂ:\?—eﬁ—e\

—

Number of processors

w

Makesapn (hours)

8]

T T T
0 100 200 400 600 800 1000 1200

FIGURE 13. Makespan Vs number of processors in 5-hours periods.

Process time comparasion of 3 strategies

150

20— | =#=Proposed
==fll==Binpack
Spread

90

-)_/'_/_-0-"

Total placementtime (Mins)

307~

Number of submitted jobs

10° 10? 10° 104 108 10°

FIGURE 14. Makespan Vs number of tasks.

As expected in container pre-planning strategy, Fig. 12
demonstrates the effectiveness of the proposed algorithm
even run matrix up to 108. Fig. 12 also shows that our pro-
posed approach work best for the type of W3. In Fig. 13,
we observed the change of makespan in 5-hours periods for
the same J while we increased the number of processors.
The result shows that the proposed strategy can be converged
to an ideal state to find the maximum size of instances.
In other words, for batch mode computing, computational
performance is not always increased when the number of
processors is increased.

Total placement time comparison: The developed
advanced worst-case-first bin packing algorithm is compared
with other two original task placement algorithms, they
are spread, and bin packing algorithm, respectively. As can
be seen in Fig. 14 and 15, the total execution time of the
proposed algorithm is better than the other existing task
placement algorithms. It is noted when running job achieve
to 103, it achieves an optimal point for Binpack. However,
the current algorithm increases the processor utilization by
7% to 10% while the number of running jobs is increased to
103 or more as shown in Fig. 14.

127951

IEEE Access

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

=—Proposed
Utilization comparasion of 3 strategies s Bin pack
10 Spread

Processor utilization average (%)

10° 107

Number of submitted jobs

FIGURE 15. Makespan Vs number of processors.

Also, we found Amdahl’s law [45], [46] is applicable for
container-based Cloud computing, that meaning processor
utilization is not always increasing with the number of jobs.
For the two traditional mechanisms with many containers, it is
possible being useful only for highly parallelized programs
but not good for MTC codes. The implied reason could be
that non-parallelization part of the MTC codes determines
whole processing time. For proposed algorithm, it is also
can find a threshold. As shown in Fig.15, when running jobs
achieves to 10°, processor utilization presented a decreasing
trend. However, the Binpack strategy packs containers into
machines as few as possible, that it is too easy to overload
some nodes; The Spread strategy places tasks evenly based on
the specified value and hence it is inelastic. These are reasons
why they can not maximize the resource reuse while com-
pared with proposed algorithm. In our proposed techniques,
as introduced in section 2 we developed a hybrid allocation
with container pre-planning strategy to determine required
resources according context. This method not only consider
benefits of cloud provider but also customers. The proposed
algorithm has the ability to scale the number of processors
along with increased tasks, which provides higher returns in
resource utilization as we can seen in Fig.15.

B. EXPERIMENTAL RESULTS

The sensitivity of previous findings in simulation to marine
engineering practice was evaluated. In the experiment three
marine engineering cases with real-world datasets were set
up by using software Rotorysics as benchmark application as
shown on 127953. The basic purpose is to test the effect of
changes in the size of input parameters and type of workflow.
CPU time of each job can be tracked easily as left part of in
Fig. 1. In addition, detailed configuration of cloud environ-
ment is listed in Table 8. As containers are OS-specific, to run
windows image, Docker is chosen as container. We repeated
the experiments three times in a mini private cloud (one
data centre and configuration similar to Table 5) and an
isolated DELL workstation (6-cores CPU, 128GB memory
and 1TB HDD), respectively. It is noted that our mini cloud

127952

1000 Three typical workflow scenarios
| I et SN S N i v N o S o U= WPy o8|
900
o«
S 800
S e =
[v] > s T ——
< /_5—0—‘ "‘-_.\
w700 -
] | ", S 5 Y (RN W S VI S VY 5 e R YT
o
+ 600 = = -\
E (r'-/«q{:"‘- —bf g g el Aot oo o S x\'ﬁ
T 500) \
7]
= 00
g- e S W B e e e - small
2 300 N\
I —t W (Normal s W2 (Uniform) W3 (Fluctuation,) — — instance of W3
200 ¢
100
Time (min)
0
o] 20 40 60 80 100 120 140 160 180

FIGURE 16. Example of the process stream of bath-mode application.

Completion ratio of overall job

HMCasel MCase? M Case3d

05
04
03
02
01
X B
P P2 P3

FIGURE 17. Completion rate of overall job in a 5-hour period.

Completion rate of jobs (%)

infrastructure closely resembles a private IaaS cloud that
one would find easily in small to medium scale enterprise
environments.

Fig. 16 illustrates the results of algorithm1, Model 2. For
the three practical cases, the required resources for the job
can be assigned with certainty. Instance family is identified
as large, medium and small ones.

As can be seen in Fig. 16, for the uniform scenario,
the aggregated resource requirements are 59 cores. The dif-
ference between the maximum and the minimum load is
10% and each individual job is 0.9 hours shorter. For normal
scenarios, the minimum load requires an average of 47 cores,
while the maximum load requires 89 cores and most job lasts
1 to 2 hours. For a fluctuation scenario, the minimum load
drops at 36 cores, while the maximum load requires 97 cores.
On an average 55% jobs it needs 4 hours but other jobs less
than 1 hours. The experiments show that our strategy is a high
customized resource allocation and hence with a high CPU
utilization.

Next, suppose P1, P2, P3 to represent 3 experimental plat-
forms, they are container-based cloud with the new proposed
algorithm, container-based cloud without new algorithm and
traditional workstation with batch mode solution, respec-
tively. All study cases 1, 2 and 3 where to be performed in
P1, P2 and P3 three times. The comparison of computing
performance of these platforms are shown in Fig. 17 and 18.

VOLUME 7, 2019

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

IEEE Access

o Case 1 ____i_______l N
10 Hl Case ? |
9‘-03393————| —————— |——_

Mean makespan (weeks)

T
.
|
!
1
-
o
I 1
|
11
1]
1
I
||

FIGURE 18. Mean makespan for 3 cases in 3 platforms.

TABLE 7. Application cases.

Case No. ‘Workloads Distribution characteristics Application goals
Case 1 medium taskset with 103 normal New series of turbine rotors
Case 2 medium taskset with 10° uniform Liu and Bose (2012)

Case 3 nmedium taskset with 10° fluctuation Optimization design of Wing-In-Ground

TABLE 8. Environment parameters setting.

Entities Parameters
Operating system Windows server 2016
Test applications Rotorysics
Cloud development platform Microsoft Azure 2017

Container cluster systems Docker Swarm 2017 (modified)

Docker monitor DocSnap or DocLite
Container orchestration Apache Marathon

Benchmark Apache Benchmark

As can be seen in Fig. 17 and Table 8, in terms of the 5 ini-
tial hours observed period, assuming on the same workload
and same case, processing in P1 and P2 are far more than
P3 in completion rate as expected. Fig. 18 shows the mean
makespan with variance in P1, P2, P3; the mean CPU run
time saving of P1 is 6 and 3 times of P3 and P2, respectively;
The results are similar to the simulation results shown in
Fig. 12. These results are further proved that our approach
was efficacious in computational performance.

Finally, customer satisfaction rate, which is generally
used as a comprehensive market index [47]. In our work,
it is calculated from 3 parameters which feedback from
monitor, including overall time to completion, waiting time
for resource and resource utilization. By comparing with
f (Requirement), the final comparison can be seen in Fig. 19.
There are large margins between P1, P2 and P3: while the

VOLUME 7, 2019

TABLE 9. Mean makespan of different cases.

Case P1 P2 P3

Casel 025 1.18 2.9
Case2 1.1 2.3 7.4
Case3 2.15 3.6 10.8

Mean makespan 1.166667 2.36 7.033333

=] e e

8 08

&

=

o

T 06

.

[

=

m

w

= 04

[

£

o

- —— 1

3 02| — —8—P2

o ——P3
Case 1

Case 2 Case 3

0

FIGURE 19. Customer satisfaction rate vs. Input data matrix.

amount of input data increases to 10°, the satisfaction rate
of P1 and P2 is 35% and 41% higher than that of P3,
respectively; while the amount of input data increases to 108,
the satisfaction rate of P1 and P2 is 27%,47% respectively,
higher than P3.

IV. CONCLUSION

In this paper, we address a new and important problem
concerning the long CPU time consuming issue for CMH
codes under limited cloud resources over containerized pri-
vate clouds. The developed scheduling algorithm propose a
new task-resource match stragety to facilitate the collabora-
tion between end-users and service providers efficiently.

The simulation results show that our approach delivers
improvements over baseline algorithms at fast scheduling
level, resource utilization and overall performance. The
experimental results show that compared with research on tra-
ditional workstation, container-based private cloud could be
used as an accessible lightweight high-performance comput-
ing platform to accelerate their research circle significantly.
The proposed approach presents an enhancement of 6 times,
44% in achieved makespan reduction and average custom
satisfaction rate, respectively.

To the authors’ knowledge, this work is the first systematic
research and development study to use predictable instances
and limited paralleled containerized resource to reduce CPU
execution time for CMH codes. This proposed algorithms can
be applied to other large-scale batch processing situations in
other disciplines.

127953

IEEE Access

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

The limitations of our methodology were also observed.
Container used in our work is exclusive in a whole job
execution time. It is clear that conflict exists and affects
other business services in the private cloud. This effect is
not currently measured in the work. However, as the mean
utilization of CPU of data centre was low and the technique to
exploit edge computing capacity of user nodes was developed
these years, the related problem can be further solved.

ACKNOWLEDGMENT

The Harbin Institute of Technology, Weihai, and the Guangxi
University of Science and Technology, China, are provided
support to the Y. Xu with Cloud facilities and technical
assistance.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

K. A. Hoffmann and S. T. Chiang, Computational Fluid Dynamics (Engi-
neering Education System), vol. 1. Wichita, KS, USA: Engineering Edu-
cation System, 2000.

D. Ashby, M. Dudley, S. Iguchi, L. Browne, and J. Katz, Potential Flow
Theory and Operation Guide for the Panel Code PMARC (Engineering
Education System). Moffett Field, CA, USA: NASA Ames Research Cen-
tre, 1991.

J. Xiao, J. R. Travis, W. Breitung, and T. Jordan, ‘“Numerical analysis of
hydrogen risk mitigation measures for support of ITER licensing,” Fusion
Eng. Des., vol. 85, no. 2, pp. 205-214, 2010.

P. Liu, “Software development on propeller geometry input processing
and panel method predictions of propulsive performance of the R-class
propeller,” MMC Eng. Res., Newfoundland, BC, Canada, Tech. Rep. 1,
1996.

P. Liu and N. Bose, “An unsteady panel method for hihgly skewed pro-
pellers in non-uniform inflow,” in Proc. Propeller RANS/Panel Method
Workshop (ITTC), Grenoble, France, B. Gindroz, T. Hoshino, and
J. Pyllkanen, Eds., Apr. 1998, pp. 343-350.

P. Liu, “A time-domain panel method for oscillating propulsors with both
chordwise and spanwise flexibility,” Ph.D. dissertation, Memorial Univ.
Newfoundland, Newfoundland, BC, Canada, 1996.

P. Liu and N. Bose, “Propulsive performance from oscillating propulsors
with spanwise flexibility,” Proc. Roy. Soc. London A, Math., Phys. Eng.
Sci., vol. 453, no. 1963, pp. 1763-1770, 1997.

P. Liu, “A computational hydrodynamics method for horizontal axis
turbine—Panel method modeling migration from propulsion to turbine
energy,” Energy, vol. 35, pp. 2843-2851, Jul. 2010.

P. Liu and N. Bose, “Prototyping a series of bi-directional horizontal axis
tidal turbines for optimum energy conversion,” Appl. Energy, vol. 99,
pp. 50-66, Nov. 2012.

K. A. Iskra, R. G. Belleman, G. D. van Albada, J. Santoso, P. M. A. Sloot,
H. E. Bal, H. J. W. Spoelder, and M. Bubak, “The polder comput-
ing environment: A system for interactive distributed simulation,” Con-
currency Comput., Pract. Exper., vol. 14, nos. 13-15, pp. 1313-1335,
2002.

R. Buyya, S. K. Garg, and R. N. Calheiros, “SLA-oriented resource pro-
visioning for cloud computing: Challenges, architecture, and solutions,”
in Proc. Int. Conf. Cloud Service Comput., Dec. 2011, pp. 1-10.

S. Sakr, A. Liu, D. M. Batista, and M. Alomari, “A survey of large scale
data management approaches in cloud environments,” IEEE Commun.
Surveys Tuts., vol. 13, no. 3, pp. 311-336, 3rd Quart., 2011.

G. Mateescu, W. Gentzsch, and C. J. Ribbens, “Hybrid computing—
Where HPC meets grid and cloud computing,” Future Gener. Comput.
Syst., vol. 27, no. 5, pp. 440-453, May 2011.

V. Kindratenko and P. Trancoso, “Trends in high-performance comput-
ing,” Comput. Sci. Eng., vol. 13, no. 3, pp. 92-95, 2011.

A. W. Z. Chew, T. Vu, and A. W.-K. Law, “High performance compu-
tational hydrodynamic simulations: UPC parallel architecture as a future
alternative,” in Proc. Int. Conf. Comput. Sci., Jun. 2018, pp. 444-455.

P. Liu, N. Bose, K. Chen, and Y. Xu, “Development and optimization
of dual-mode propellers for renewable energy,” Renew. Energy, vol. 119,
pp. 566-576, Apr. 2018.

127954

(17]

(18]

(19]

(20]

(21]

[22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]

(37]

(38]

K. Liu, K. Aida, S. Yokoyama, and Y. Masatani, “Flexible container-based
computing platform on cloud for scientific workflows,” in Proc. Int. Conf.
Cloud Comput. Res. Innov. (ICCCRI), May 2016, pp. 56-63.

S. Yokoyama, Y. Masatani, T. Ohta, O. Ogasawara, N. Yoshioka, K. Liu,
and K. Aida, “Reproducible scientific computing environment with over-
lay cloud architecture,” in Proc. IEEE 9th Int. Conf. Cloud Comput.,
Jun./Jul. 2016, pp. 774-781.

Z. Kozhirbayev and R. O. Sinnott, “A performance comparison of
container-based technologies for the cloud,” Future Gener. Comput. Syst.,
vol. 68, pp. 175-182, Mar. 2017.

D. Zhang, B.-H. Yan, Z. Feng, C. Zhang, and Y.-X. Wang, “Container
oriented job scheduling using linear programming model,” in Proc. 3rd
IEEE Int. Conf. Inf. Manage., Apr. 2017, pp. 174-180.

B. Varghese, L. T. Subba, L. Thai, and A. Barker, ““Container-based cloud
virtual machine benchmarking,” in Proc. IEEE Int. Conf. Cloud Eng.,
Apr. 2016, pp. 192-201.

X. Guan, X. Wan, B.-Y. Choi, S. Song, and J. Zhu, “Application oriented
dynamic resource allocation for data centers using docker containers,”
IEEE Commun. Lett., vol. 21, no. 3, pp. 504-507, Mar. 2017.

J. Monsalve, A. Landwehr, and M. Taufer, “Dynamic CPU resource alloca-
tion in containerized cloud environments,” in Proc. IEEE Int. Conf. Cluster
Comput., Sep. 2015, pp. 535-536.

X. Xu, H. Yu, and X. Pei, “A novel resource scheduling approach in
container based clouds,” in Proc. IEEE 17th Int. Conf. Comput. Sci. Eng.,
Dec. 2014, pp. 257-264.

L. Yin, J. Luo, and H. Luo, “Tasks scheduling and resource allocation in
fog computing based on containers for smart manufacturing,” IEEE Trans.
Ind. Informat., vol. 14, no. 10, pp. 4712-4721, Oct. 2018.

Y. Guo and W. Yao, “A container scheduling strategy based on neighbor-
hood division in micro service,” in Proc. IEEE/IFIP Netw. Oper. Manage.
Symp. (NOMS), Apr. 2018, pp. 1-6.

T. Jena and J. R. Mohanty, “GA-based customer-conscious resource allo-
cation and task scheduling in multi-cloud computing,” Arabian J. Sci.
Eng., vol. 43, no. 8, pp. 4115-4130, 2018.

N. Kumar, G. S. Aujla, S. Garg, K. Kaur, R. Ranjan, and S. K. Garg,
“Renewable energy-based multi-indexed job classification and container
management scheme for sustainability of cloud data centers,” IEEE Trans.
Ind. Informat., vol. 15, no. 5, pp. 2947-2957, May 2019.

C. Kaewkasi and K. Chuenmuneewong, “‘Improvement of container
scheduling for docker using ant colony optimization,” in Proc. 9th Int.
Conf. Knowl. Smart Technol. (KST), Feb. 2017, pp. 254-259.

M. S. Q. Zulkar, M. A. K. Azad, S. Abdullah, and R. M. Rahman, “Fuzzy
logic based dynamic load balancing in virtualized data centers,” in Proc.
IEEE Int. Conf. Fuzzy Syst., Jul. 2013, pp. 1-7.

S. K. Pande, S. K. Pande, and S. Das, ““A customer-oriented task scheduling
for heterogeneous multi-cloud environment,” Int. J. Cloud Appl. Comput.,
vol. 6, no. 4, pp. 1-17, 2016.

Y. Li, J. Zhang, C. Jiang, J. Wan, and Z. Ren, “PINE: Optimizing
performance isolation in container environments,” IEEE Access, vol. 7,
pp. 30410-30422, 2019.

J. Kwon, N. L. Kim, M. Kang, and J. WonKim, “Design and prototyping
of container-enabled cluster for high performance data analytics,” in Proc.
Int. Conf. Inf. Netw. (ICOIN), Jan. 2019, pp. 436-438.

J. Zhuang, D. J. Jacob, J. F. Gaya, R. M. Yantosca, E. W. Lundgren,
M. P. Sulprizio, and S. D. Eastham, “Enabling immediate access to earth
science models through cloud computing: Application to the GEOS-Chem
model,” Bull. Amer. Meteorolog. Soc., to be published.

P. Waibel, C. Hochreiner, S. Schulte, A. Koschmider, and J. Mendling,
“ViePEP-C: A container-based elastic process platform,” IEEE Trans.
Cloud Comput., to be published.

C. Delimitrou and C. Kozyrakis, “HCloud: Resource-efficient provision-
ing in shared cloud systems,” ACM SIGARCH Comput. Archit., vol. 44,
no. 2, pp. 473-488, 2016.

D. Cousineau, S. Brown, and A. Heathcote, “Fitting distributions using
maximum likelihood: Methods and packages,” Behav. Res. Methods,
Instrum., Comput., vol. 36, no. 4, pp. 742-756, 2004.

G. Grabarnik, M. Klems, L. Shwartz, S. Tai, and C. Ward, “Sys-
tem and method for reducing latency time with cloud services,”
U.S. Patent 9098 456 B2, Aug. 4, 2015.

VOLUME 7, 2019

Y. Xu et al.: Task-Resource Mapping Algorithm for Large-Scale Batch-Mode CMH Codes

IEEE Access

[39] J. Weinman, ‘“Time is money: The value of ‘on-demand,” Joe Weinman.
Com, p. 30, Jan. 2011.

[40] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a consumer can measure
elasticity for cloud platforms,” in Proc. 3rd ACM/SPEC Int. Conf. Perform.
Eng., 2012, pp. 85-96.

[41] C. Boettiger, “An introduction to docker for reproducible research,”
SIGOPS Oper: Syst. Rev., vol. 49, no. 1, pp. 71-79, Jan. 2015.

[42] A. Caprara, “Properties of some ILP formulations of a class of partitioning
problems,” Discrete Appl. Math., vol. 87, nos. 1-3, pp. 11-23, 1998.

[43] J. O. Iglesias, M. De Cauwer, D. Mehta, B. O’Sullivan, and L. Murphy,
“Increasing task consolidation efficiency by using more accurate resource
estimations,” Future Gener. Comput. Syst., vol. 56, pp. 407-420,
Mar. 2016.

[44] R. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya,
“CloudSim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Softw.,
Pract. Exper., vol. 41, no. 1, pp. 23-50, 2011.

[45] L. Yavits, A. Morad, and R. Ginosar, “The effect of communication and
synchronization on Amdahl’s law in multicore systems,” Parallel Comput.,
vol. 40, no. 1, pp. 1-16, 2014.

[46] J. Nutaro and B. Zeigler, “How to apply Amdahl’s law to multithreaded
multicore processors,” J. Parallel Distrib. Comput., vol. 107, pp. 1-2,
Sep. 2017.

[47] J.Mei, K. Li, and K. Li, “Customer-satisfaction-aware optimal multiserver
configuration for profit maximization in cloud computing,” IEEE Trans.
Sustain. Comput., vol. 2, no. 1, pp. 17-29, Jan./Mar. 2017.

YIYI XU received the B.A. degree from the Hunan
University of Science and Technology, China,
in 2003, and the master’s degree in computer
engineering from the Huazhong University of Sci-
ence and Technology, China, in 2006. She is cur-
rently pursuing the Ph.D. degree with Australian
Maritime College, University of Tasmania. Prior
to her study, she was an Associate Professor with
the Guangxi University of Science and Technol-
ogy (GXUST), China. She has taught computer
network-related courses for more than ten years at GXUST. Her current
research interests include interdisciplinary field and computational marine
hydrodynamics.

VOLUME 7, 2019

PENGFEI LIU received the B.Eng. degree from
the Wuhan University of Technology (WUT),
China, in 1982, and the M.Eng. and Ph.D. degrees
in naval architecture from the Memorial Univer-
sity of Newfoundland (MUN), Canada, in 1991,
and 1996, respectively. He was a Senior Research
Officer with National Research Council Canada,
from 1999 to 2016. He has been an Associate
Professor with the Australian Maritime College,
University of Tasmania (UTAS), Australia, since
2016. He has been an Adjunct Professor/Researcher with MUN, since 2000;
China Ocean University, from 2002 to 2005; Institute of Mechanics, Chinese
Academy of Sciences, from 2005 to 2008; Harbin Ship Engineering Uni-
versity, China, from 2008 to 2010; UTAS, from 2013 to 2016; and Harbin
Institute of Technology, Weihai, since 2017. He is currently a Professor of
hydrodynamics with the Marine, Offshore and Subsea Technology, School
of Engineering, Newcastle University, Newcastle Upon Tyne, U.K. He has
involved intensively for over two decades in the development of specialty
engineering software, teaching undergraduate, and supervision of higher
degrees by research. He is a Professional Engineer of APEGBC, Canada,
and a member of various international academic committees, including
the Board of Directors of the Computational Fluid Dynamics Society of
Canada, from 2001 to 2007, and the ISSC Ocean Space Utilization Com-
mittee, from 2018 to 2021. He has coauthored over 120 refereed journal
articles and conference articles in engineering software development for
hydrodynamic/aerodynamic applications of rotary and oscillatory wings for
propulsion and renewable energy.

IRENE PENESIS received the Ph.D. degree in
mathematics from RMIT University, Melbourne,
VIC, Australia, in 2002. Her Ph.D. was in the
field of tribology examined the pressure field and
load-carrying capacity specialized in non-smooth
gas-lubricated bearings used in industrial drilling
machinery. She developed mathematical models to
solve the complex elliptic partial differential equa-
tions analytically and numerically that governed
the pressure field. Before joining the Australian
Maritime College (a special institute of the University of Tasmania), she was
a Lecturer with the School of Mathematical and Geospatial Sciences, RMIT
University, and served a short postdoctoral research role with the Department
of Mathematics and Statistics, University of Melbourne, modeling shape
changes of red blood cells. She is currently an Associate Professor and a
Leader of the Marine Renewable Energy Research Group, University of
Tasmania. She is also a Bid Director of Blue Economy CRC. She was a
member of the Royal Institution for Naval Architects (RINA).

GUANGHUA HE received the B.Eng. and M.Eng.
degrees from Tianjin University, and the Ph.D.
degree in atmospheric and marine environmental
engineering from Osaka University, Osaka, Japan,
in 2014. He is currently a Professor and a Ph.D.
Supervisor with the Harbin Institute of Technol-
ogy (HIT), Weihai, China. He was a member of
The International Society of Offshore and Polar
Engineers (ISOPE).

127955

