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ABSTRACT The natural sources of the vitamins, which come from a balanced diet (as recommended by
the World Cancer Research Fund and the American Institute for Cancer Research) contribute to protecting
the body from advancing progressive of cancer stages. Thus, in this study, we analyze the effect of the
intervention of vitamins on delaying the growth of cancer cells based on the dynamics of a normal cell
cycle when the tumor cells appear in a tissue as a resulting for progressing abnormal cells due to the weak
response of the immune system. We developed a mathematical model, called tumor–normal–vitamins model
(TNVM), which is governed by a system of ordinary differential equations and refers to twomain populations
normal cells and tumor cells. This model considers the intervention of vitamins as a moderating factor within
thirty days. The models are discussed analytically and numerically by utilizing the Runge–Kutta method to
simulate them. The results of the analysis and simulation of free model illustrate that the model will be stable
if the tumor cells succeed in eliminating normal cells in the tissue.Whereas, the analysis and simulation of the
TNVM showed a case of coexistence between normal cells and tumor cells occur if an individual consumes
a regular rate of vitamins that have been simulated to be 87% per day from a natural food source. Even
though the response of the immune system is weak, the daily consumption of enough vitamins can play an
essential role in delaying the development of an early stage of cancer. This study contributes to the increasing
awareness regarding a healthy diet to reduce the risk of some deadly diseases, especially cancer.

INDEX TERMS Dynamic system, numerical simulation, tumor-normal model, healthy diet.

I. INTRODUCTION
Cancer is classified as a civilization disease nowadays, where
GLOBOCAN 2018 database estimated that 9.6 million cases
of death have occurred owing to cancer. The number of new
cases of cancer is predicted to be about 18.1 million [1].
Lung cancer is common for both sexes. A previously con-
ducted study indicated that the mortality rate of lung cancer
is about 18.4% of the total mortality rate of cancer, and
the percentage of new cases of cancer is about 11.6% of
the total cancer cases. This is followed by breast cancer
among females, with a mortality rate of about 11.6% com-
pared to 7.1% of prostate cancer among males. In 2018,
Australia and New Zealand recorded the highest mortality
rate of 94.2% due to cancer, which comprised 571.2 per
100000 male and 362 per 100000 female deaths compared
to 95.6 per 100000 males in Western Africa. Among females,
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the mortality rates are 362 and 96.2 per 100000 in Australia,
New Zealand, and South–Central Asia, respectively. In gen-
eral, the mortality rate of cancer among males is higher than
that among females. However, in Eastern Europe, the mor-
tality rate due to cancer is about 171 per 100000 males and
about 92 per 100000 females [1]. Note that this disease rarely
occurred in the early history of humanity, when humans lived
as hunter–gatherers [2]. The study indicated that only about
5 − 10% of cancers occur because of internal factors, such
as inherited mutations, hormones, and immunity conditions,
while 90 − 95% of cancers occur due to some inappropriate
lifestyle and environmental factors [3]. Civilization is the key
factor for understanding the causes of increasing cases of
cancer. A disadvantage of the development of society is that
our dietary habits have changed to fast food or processed
food. These types of diets contain low fiber, low carbohy-
drates, more proteins, and high calories in comparison with
a healthy diet, which is rich in natural sources of minerals,
such as vitamins, fiber, and carbohydrates, as needed by the
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body [4]. Cancer has been studied biologically, nutritionally,
medically, and clinically. Several mathematical models have
been proposed to demonstrate the interaction between the
immune system and tumor cells [5] and prognosis cancer
and its treatment plan [6]. Most of the mathematical can-
cer models refer to three populations: normal, tumor, and
immune cells [7], [8] and aimed to answer the following
questions: how can we measure cancer [9]? and how can
we treat cancer [10]?. Recently, a strong dynamical rela-
tion has been observed between the tumor and normal cells,
where these cells depend on each other and may be mutually
tuned. The investigation of dynamic cells has contributed to
the development of the therapy method and determination
of an appropriate time for eliminating and inhibiting tumor
cells. In 1982, the first mathematical model that illustrated
the mutual interaction between tumor and normal cells was
proposed by Witten [11]. Based on this model, several other
models have been proposed to evaluate the dynamic system
by applying various therapeutical types, such as virotherapy,
chemotherapy, and immunotherapy [12]–[15]. In addition,
the mathematical and numerical models are applied to inves-
tigate the effect of resistant-deferent levels of a drug on the
cells and determine the tumor cells that respond and those
that are resistant to drugs [16]–[19]. In 1966, Burton [20]
observed that nutrient consumption might limit the growth
of solid tumor. Based on Burton’s result, some models were
developed, which discussed the characteristics of spatiotem-
poral interactions between the population of tumor cells and
nutrients [21], [22]. Other study showed that a dynamically
modified diet is more healthy and can avoid abnormal cells
from developing into tumor cells [23] such that the simulation
model refer to [23] indicated that the consumption of a regular
rate and sufficient vitamins which has been simulated to
be 16% per day, as suggested by [24]–[26], can boost the
immune system.

The tissues and organs of the body are formed from 1013

tiny cells. There is a one-to-one correspondence between
cells and the body growth. The more increased the num-
ber of cells, the more tissue grows. The cells between con-
ception and adulthood divide and grow very quickly [27].
Yet, the functions of these cells vary, and as a result the
division and growth of the cells depend on their functions.
Concerning the multiplication of cells, it is possible for them
to multiply as many as 60 times before dying, as a result of
the signals that control cellular growth and death [28], [29].
Conversely, they can become damaged during the process
of division, which can lead to self-elimination. This process
is known as apoptosis and it protects the body from cancer.
Conversely,cell division is sometimes abnormal when there
is damage during cell division, with very unique charac-
teristics [27]–[29]. Thus, Cancer results from an abnormal
division of the normal cells that failed to be destroyed auto-
matically [27]–[29]. The process by which abnormal cells
develop into tumor cells, and then, cancer takes ten years and
above [27]–[29]. However, it is affected by numerous inter-
nal factors, such as immunity, maturation, and hormones,

in addition to some external factors, such as diet, physical
activity, stress, and sleeping habits [30]–[32].

The diet pattern is classified as one of the main risk factors
that cause cancer due to civilization. These days, most peo-
ple depend on processed and frozen food, which is readily
available anytime and everywhere. Such foods impact the
response of the immune system to avoid abnormal cells from
growing and dividing as cancer cells [33]–[36]. In 2019,
Alharbi and Rambely inferred dynamically that an unhealthy
diet, such as a Western diet, can weaken the functions of the
immune system, which play a crucial role in protecting the
body from developing cancer [37]. This challenge motivated
us to develop the tumor–normal model (TNM) by using the
ordinary differential equations, which shows that when the
immune system is very weak, the development of abnormal
cells into tumor cells might impact the dynamics of nor-
mal cells. This model, which contains two main populations
tumor cells and normal cells, will be discussed mathemat-
ically, analytically and numerically. It is known that some
cells have been competing for nutrients as a cellular-growth
requirement. Thus, modifying the dynamics behavior of the
TNM by considering the intervention of vitamins as an exter-
nal factor which comes from switching back to the healthy
diet (TNVM) will be analyzed and simulated to show the
effect of the intervention of vitamins on the growth of tumor
cells. This study contributes to reducing the number of cases
of cancer and deaths by raising awareness of healthy habits
and promotes healthy eating, especially among youth. Also,
it opens the door for conducting more research regarding the
disadvantages of modern life on our health and determining
a perfect result for avoiding cancer risk based on civilization
and technology.

The rest of this paper is organized as follows.
Section 2 describes the developed free model, and section
3 analyzes the model and discusses the stability of the equi-
librium points. In section 4, the modification of the behavior
of the dynamic TNM by the intervention of vitamins is
presented. The analysis of the model and the study of the
stability of equilibrium points are presented in section 5. The
simulation of the model is illustrated in section 6, and the
conclusion is presented in section 7.

II. FREE MODEL
In this study, we developed a TNM based on a model
presented in [37], which is called immune-unhealthy diet
model (IUNHDM), expressed as follows:

dN
dt
= rN [1− βN ]− ηNI ,

dI
dt
= σ − δI −

ρNI
m+ N

− µNI , (1)

with initial values N (0) = 1 and I (0) = 1.22, where
the dependent variables N and I represent the popula-
tion of normal cells and immune cells, respectively. The
parameters r, β, η, σ, δ, ρ,m, and µ are real and positive.
Additionally, wemade the following hypothesis in ourmodel:
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cell population has significantly grown up, and a competi-
tion exists between normal and tumor cells. In our model,
the entire cell population of human tissues is split up at any
interval of time given.We denote a normal cell byN (t), which
tends to grow or die as it involves a stable deoxyribonucleic
acid (DNA) that rules out all the cell activities. Therefore,
normal cells will not live longer because they have been
targeted and inhabited by tumor cells that have grown up.
The following ordinary differential equation describes the
behaviors of normal cells:

dN
dt
= rN (1− β1 N )− γNT .

Here, r denotes the normal cells that have grown up, β1,
denotes the rate of division of the normal cells into abnor-
mal ones, and γ denotes the rate of the inhibition or attack
on the normal cells made by developing tumor cells. DNA
alteration is the main cause of cancer cells containing an
uninhibited cycle [38]. The independent variable, T , denotes
the tumor cell compartment depicted by an abnormal mass of
tissue. Moreover, one of the signs of cancer is inflammation,
which can be classically grouped into two types: benign and
malignant. These names are reflection names of the tissues
that grow up in different parts of the body, such as breast or
brain cancer [27]–[29]. The following differential equation
illustrates the behavior of tumor cells:

dT
dt
= α1 T (1− α2 T )+ β2 NT .

This equation demonstrates that the limited growth of tumor
cells mainly depends on the rate of the parameter, which is
denoted by α1. The second term, α2, denotes the reduction
in the tumor cells which is due to the ingrown tumor from
the body during metabolism in the diet. In addition, the third
term, β2, denotes the rate of conversion of abnormal cells into
tumor cells. For instance, an excess estrogen causes DNA
transfer due to dietary types that increase the production of
tumor cells [31]. Thus, A TNM is expressed as follows:

dN
dt
= rN (1− β1N )− γNT ,

dT
dt
= α1T (1− α2T )+ β2NT . (2)

Remark 1: According to the physiological meaning of cell
cycle life, we can deduce that the rate of division normal cell
as abnormal cells is very small compared with the rate of the
natural divide of cell.

III. MODEL ANALYSIS
A. BOUNDARIES AND POSITIVITY OF SOLUTIONS
The dynamic system of TNM demonstrated by (2) was pro-
posed to illustrate the cellular population behavior of the
normal and tumor cells. Thus, the variablesN (t) and T (t) and
all parameters are real, nonnegative and less than or equal one.
The feasible region is defined as follows:

� = {(N ,T ) ∈ R2+}.

An objective of this study is to compare the behavior of
normal and tumor cells. Therefore, we assume that the initial
values are equal and given as follows:

N (0) = T (0) = 1.

Furthermore, the solutions of the nonnegative conditions are
also nonnegative for all time, t . Consequently, we obtain the
following theorem:
Theorem 1: The region of the dynamic system of TNM,� ⊂

R2+, is nonnegativity-invariant, and there exists a nonnegative
solution for all time, t.

Proof: Let

� = �c := {(N ,T ) ∈ R2+,N =
1
β1

and T =
1
α2
}.

Thus, all solutions (N (t),T (t)) of TNM (2) are nonnegative
for all time, t . From the first population of TNM (2), we have

dN
dt
≤ rN (t)− rβ1N 2(t). (3)

By applying Bernoulli’s method, the solution of equation (3)
is given as

N (t) ≤
1

β1 + ce−rt
.

As t →∞, the solution is given by

N (t) ≤
1
β1
.

Similarly, the solution of the second population of TNM (2)
is nonnegative for all time, t, and given by

T (t) ≤
1
α2
.

B. EQUILIBRIUM POINTS OF FREE MODEL
The steady states occur when the left hand side of the dynamic
system of TNM presented in (2) is set to zero, as follows:
•

dN
dt = 0⇔

N (r(1− β1N (t))− γT (t)) = 0. (4)

•
dT
dt = 0⇔

T (α1(1− α2T (t))+ β2N (t)) = 0. (5)

Thus, the equilibrium points of TNM (2) compute by
solving the equation (4) and (5), as follows:

First, the solutions of the equation (4) for N , are given by,

N = 0, or N =
r − γT
rβ1

.

Now, substitute N = 0 into the equation (5) and we get

T = 0 or T =
1
α2
.

Thus, the first two equilibrium points are represented by

p0 = (0, 0) and p1 = (0,
1
α2

).
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Next, substitute N = r−γT
rβ1

into the equation (5) and we get

T = 0 or T =
r(α1β1 + β2)
rα1α2β1 + γβ2

Thus, the others equilibrium points are represented by

p2 = (
1
β1
, 0)

and

p3 = (
α1(rα2 − γ )

rα1α2β1 + γβ2
,
r(α1β1 + β2)
rα1α2β1 + γβ2

).

Remark 2: Since the feasible region of the TNM (2) is
defined as � = {(N ,T ) ∈ R2+}. Thus,

p3 /∈ R2+ where α1(rα2 − γ ) < 0.

Hence, the TNM has only three types of dead equilibrium
points in the feasible region, p0, p1, and p2, which are classi-
fied based on their biological meaning, where the tumor cells
are in stage I or II as follows:
1) Type 1 dead equilibrium point: The dead equilibrium

points of TNM imply that the cell death is related to
the compartment populations of the normal and tumor
cells. In this case, if the tumor cells begin to appear
in a tissue, the death of the normal cells occurs due to
the attack from the tumor cells [31]. If there does not
exist any tumor cell, then the death of the normal cells
occurs due to metabolic equilibrium, where the death
of the tumor cells probably means that the abnormal
cells are yet to develop into tumor cells [27]–[29], [37].
Furthermore, the death of the tumor cells can be
a result of internal factors, such as glucose rate in
the blood, where the tumor cells do not have dying
property automatically in comparison with the normal
cells [27]–[29]. This equilibrium point is called the
origin point, and is denoted by p0 = (0, 0).

2) Type 2 dead equilibrium point (free normal cells):
This equilibrium point shows that tumor cells begin to
attack normal cells in tissues, and the DNA mutation
stimulates the abnormal cells to develop into tumor
cells. Moreover, this process is associated with the
food pattern and the high level of estrogen [38]. This
equilibrium point is denoted by p1 = (0, 1

α2
).

3) Type 3 dead equilibrium point (free tumor cells):
This equilibrium point illustrates that there are internal
factors that inhibit the abnormal cells from developing
into tumor cells due to the effect of diet and lifestyle
factors. These factors play a central role in indirectly
protecting our body from pathogen attack, as illustrated
dynamically by [7], [37]. This equilibrium point is
denoted by p2 = ( 1

β1
, 0).

C. STABILITY OF THE EQUILIBRIUM POINTS OF THE
FREE MODEL
This section analyzes the behavior of an equilibrium point
of TNM (2) by applying the Hartman–Grobman theorem,

which states that the hyperbolic equilibrium point in the
neighborhood and a nonlinear dynamical system is topo-
logically equivalent to its linearization [39]. For studying
the behavior of the aforementioned equilibrium points, we
evaluate the Jacobian matrix of TNM (2) as follows:

J [N ,T ] =
[
FN [N ,T ] FT [N ,T ]
GN [N ,T ] GT [N ,T ]

]
, (6)

where F[N ,T ] = dN
dt and G[N ,T ] = dT

dt .

Theorem 2: The type 1 dead equilibrium point, p0, of TNM
equation (2) is unstable for all time t.
Proof: To study the behavior of the equilibrium point, p0,

the Jacobian matrix equation (6) at p0 is given by

J [N ,T ]p0 =
[
r 0
0 α1

]
. (7)

Since tr(J [N ,T ]p0 ) and det(J [N ,T ]p0 ) are positive, the dead
equilibrium point p0 is unstable.
The instability of this point is physiologically considered

as a risk case if and only if there exist some tumor cells that
can be activated as a consequence of the failure of the internal
factors to retard the growth of tumor cells.
Theorem 3: The type 2 dead equilibrium point, p1, of TNM

(2) is asymptotically stable if and only if γ > rα2; otherwise,
the point is unstable.

Proof: To study the behavior of the equilibrium point,
p1, we compute the Jacobian matrix (6) at p1 as follows:

J [N ,T ]p1 =


rα2 − γ
α2

0

β2

α2
−α1

 . (8)

The eigenvalues are given by λi =
rα2−γ
α2

,−α1, for i =
1, 2. It is obvious that the equilibrium point p1 is stable if and
only if γ > rα2; otherwise, the equilibrium point is unstable,
for all t ≤ 0. Since

tr(J [N ,T ]p1 ) =
rα2 − γ
α2

− α1 < 0,

det(J [N ,T ]p1 ) = −
α1(rα2 − γ )

α2
> 0,

and

1 = (tr(J [N ,T ]p1 ))
2
− 4det(J [N ,T ]p1 )

= (
rα2 + α1α2 − γ

α2
)2 − 4(−

α1(rα2 − γ )
α2

)

= r2 + 2rα1 + α21 −
2 rγ
α2
−

2γα1
α2
+
γ 2

α22

= (
rα1 + α1α2 − γ

α2
)2

> 0.

then the eigenvalues are real, distinct and have the same sign

where 0 < det(J [N ,T ]p1 ) <
(tr(J [N ,T ]p1 ))

2

4 . This shows that
the equilibrium point p1 is asymptotically stable node if and
only if γ > rα2.
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The existence of tumor cells physiologically demonstrates
that they are capable of attacking the other cells in a tissue.
In addition, their number increases through DNA mutation.
One of the reasons for the occurrence of this mutation is
excess estrogen, which repopulates the tumor cells [31].
Consequently, the population of tumor cells is denoted
by 1

α2
.

Theorem 4: The type 3 dead equilibrium point, p2, of the
TNM equation (2) is unstable for all time t.
Proof: To study the behavior of the equilibrium point, p2,

we compute the Jacobian matrix (6) at p2 as follows:

J [N ,T ]p2 =

−r
γ

β1

0
α1β1 + β2

β1

 . (9)

Since the rate of normal cell division with respect to
abnormal cells is very small (0 < β1 < 0.1), then

tr(J [N ,T ]p2 ) = −
(r − α1)β1 − β2

β1
> 0,

det(J [N ,T ]p2 ) = −
r(α1β1 + β2)

β1
< 0,

and

1 = (tr(J [N ,T ]p2 ))
2
− 4 det(J [N ,T ]p2 )

= (
(α1 − r)β1 + β2

β1
)2 +

4 r(α1β1 + β2)
β1

> 0.

Thus, the eigenvalues are real and have opposite sign where
1(J [N ,T ]p2 ) > 0 and det(J [N ,T ]p2 ) < 0. This shows that
the dead equilibrium point p2 is unstable.
Remark 3:Note that there exists a correspondence between

the mathematical results and physiological properties, where
themodel does not have a coexistence point when the immune
system is very weak. The coexistence case means that the
tissue can include both normal and tumor cells without
any side-effect [7]. In addition, the model is stable if the
tumor cells succeed in attacking all normal cells in a tissue.
The behavior of all equilibrium points is shown in
FIGURES 1 and 2.

IV. MODIFICATION OF A FREE MODEL BY
THE INTERVENTION OF VITAMINS
Based on the model of Alharbi et al. [23], we developed the
behavior of the free model by the intervention of a regular
rate of vitamins. These authors amended the diet pattern to be
more healthy, as recommended by theWorld Cancer Research
Fund (WCRF) and American Institute for Cancer Research
(AICR) [25]. As shown by the food pyramid in FIGURE 3,
Alharbi et al. [23] deduced that the food contains at least 16%
of vitamins, which can support the immune system and pro-
tect the body from cancer. Glucose is necessary for the growth
of a cell but there is a difference between the metabolic
glucose of cancer cells and that of normal cells [40]. Here,
we investigate the effect of the intervention of vitamins when

FIGURE 1. Phase portrait of TNM and its solutions around the origin
point and free normal cell equilibrium points.

FIGURE 2. Phase portrait of TNM and its solutions around the free tumor
cell equilibrium points.

a tissue has a tumor cell from stages I , II . By consuming
a moderate rate of glucose and vitamins from a natural or
supplemental source (external factor), we can support the
growth of normal cells, where the rate of the affected vitamins
of the normal cells is denoted by c1. In addition, to maintain
a regular rate of glucose in the blood, we should inhibit
the growth of tumor cells, where the rate of the affected
vitamins of tumor cells is denoted by c2. Consequently,
the developed model is called tumor–normal–vitamins model
(TNVM), which is given by

dN
dt
= rN [1− β1N ]− γNT + c1NV ,

dT
dt
= α1T [1− α2T ]+ β2NT − c2TV , (10)

dV
dt
= k1 − k2V ,

where the last equation demonstrates the intervention of
vitamins as an external factor denoted by the variable V . The
parameters k1 and k2 are positive, where k1 denotes the rate
of the external vitamins, while k2 denotes the rate of vitamins
that affects the behavior of the model.
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FIGURE 3. Management of a diet based on the recommendation by WCRF
and AICR, where the amounts of food are estimated by nutritional and
practical considerations.

V. MODEL ANALYSIS
A. BOUNDARIES AND POSITIVITY OF SOLUTIONS
Since the dynamic of TNVM (10) illustrates the behavior of
normal and tumor cells by considering the intervention of
vitamins as an external factor, the variables N (t),T (t), and
V (t) are real and nonnegative. Hence, the feasible region is
given by

� = {(N ,T ,V ) ∈ R3+}.

To determine the initial values of vitamins, we conduct an
experiment by utilizing Mathematica software and observe
that the best response occurs when V (0) = 5. Hence, the
initial value of the dynamic TNVM (10) is given by

N (0) = T (0) = 1, and V (0) = 5.

In addition, all solutions with positive conditions are positive
for 0 ≤ t <∞. Then, we obtain the following theorem based
on Theorem 1:
Theorem 5: The region � ⊂ R3+ is nonnegativity invariant

with respect to the model (10), and there exists a nonnegative
solution for 0 ≤ t <∞.
Proof: Let

� = �d

= {(N ,T ,V ) ∈ R3+,N =
1
β1
,T =

1
α2
, and V = 1}.

Then, the solutions (N (t),T (t),V (t)) of TNVM (10) are
positive for all time t with 0 ≤ t < ∞. The positivity of the
solutions of N and T can be shown by applying Theorem 1.
Now, we show that the solution is V (t) = 1. Since

dV
dt
≤ k1 − k2V (t) (11)

and by applying the separable method, the solution of (11) is
given by

V (t) ≤ 1+ ce−kt .

As t →∞, we obtain that

V (t) ≤ 1.

Since the feasible region of TNVM is denoted by � =
{(N ,T ,V ) ∈ R3+}, we have V (t) = 1 as t →∞.

B. EQUILIBRIUM POINTS OF FREE MODEL
The steady states occur when the left hand side of the dynamic
system of TNVM presented in (10) is set to zero, as follows:
•

dN
dt = 0⇒

N (r(1− β1N )− γT + c1V ) = 0. (12)

•
dT
dt = 0⇒

T (α1(1− α2T )+ β2N − c2V ) = 0. (13)

•
dV
dt = 0⇒

k1 − k2V = 0

V =
k1
k2
. (14)

Thus, the equilibrium points of TNVM (10) compute by
solving the equations (12), (13) and (14), as follows:

First, the solutions of the equation (12) for N, are given by,

N = 0, or N =
r + c1 V − γT

rβ1
.

Now, substitute N = 0 into the equation (13). We get

T = 0, or T =
α1 − c2 V
α1α2

=
α1k2 − c2k1
α1α2 k2

.

Thus, the first equilibrium points is represented by

q1 = (0, 0,
k1
k2
) and q2 = (0,

α1k2 − c2k1
α1α2 k2

,
k1
k2
).

Next, substitute N = r+c1 V−γT
rβ1

into the equation (13).
We get

T = 0,

or

T =
(α1 − c2 V )rβ1 + (r + c1 V − γT )β2

(rα1α2β1 + γβ2)k2

=
(α1β1 + β2)rk2 + (c1β2 − c2k1)

(rα1α2β1 + γβ2)k2
.

Thus, the others equilibrium points are represented by

q3 = (
c1k1 + rk2
rk2β1

, 0,
k1
k2
)

and

q4 = (
(c1k1 + rk2)α1α2 + (c2k1 − α1k2)γ

(rα1α2β1 + γβ2)k2
,

(α1β1 + β2)rk2 + (c1β2 − rc2β1)k1
(rα1α2β1 + γβ2)k2

,
k1
k2
).

Remark 4: As a resulting of the intervention of vitamins,
the TNVM (10) does not have a type 2 dead equilibrium point
comparing by the equilibrium point of the TNM (1) such that
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the type-2 dead equilibrium point illustrates that the normal
cells die when tumor cells become active. This point is given
by

q2 =
(
0,
α1 k2 − c2 k1
α1α2 k2

,
k1
k2

)
.

An obvious reason for the intervention of vitamins is to
moderate the level of glucose and estrogen hormone in the
blood, considered as a healthymedium to simulate the growth
of tumor cells [41]–[43]. Hence,

q2 /∈ R3+ where c2 k1 > α1k2.

Thus, the TNVM has only two types of dead equilibrium
points in the feasible region which are given by

q1 = (0, 0,
k1
k2
)

and

q3 = (
c1k1 + rk2
rk2β1

, 0,
k1
k2
).

The coexistence equilibrium point occurs based on a special
case and is given by

q4 = (
(c1k1 + rk2)α1α2 + (c2k1 − α1k2)γ

(rα1α2β1 + γβ2)k2
,

(α1β1 + β2)rk2 + (c1β2 − rc2β1)k1
(rα1α2β1 + γβ2)k2

,
k1
k2
).

Therefor, the equilibrium points of The TNVM (10), q1, q3
and q4, are classified based on their biological meaning as the
following:

1) Type 1 dead equilibrium point: This equilibrium point
demonstrates that both normal and tumor cells diewhen
vitamins enter the body. By comparing with type 1 dead
equilibrium point of TNM (2), we deduce that the
modification of this equilibrium point causes vitamins
to appear in the blood. This equilibrium point is given
by

q1 = (0, 0,
k1
k2
).

2) Type 3 dead equilibrium point: This equilibrium point
differs from the type 3 dead equilibrium point of
TNM (2), where the population of the normal cells
changes due to the intervention of vitamins. This point
is positive everywhere, and is given as

q3 = (
c1k1 + rk2
rβ1 k2

, 0,
k1
k2
).

3) Coexistence equilibrium point: The coexistence equi-
librium point is considered as an emergency equilib-
rium point, which means the success for survival of the
tumor cells with the normal cells, and may spread into
the tissue. In addition, tumor cells have a higher chance
of invasion than the neighboring tissues, as shown by
the following equation:

q4 = (
A

(rα1α2β1 + γβ2)k2
,

B
(rα1α2β1 + γβ2)k2

,
k1
k2
),

where

A = (c1 k1 + rk2)α1α2 + (c2 k1 − α1 k2)γ,

B = (α1β1 + β2)rk2 + (c1β2 − rc2β1)k1.

The studies conducted on cancer have revealed an
association between the dietary pattern and cancer.
According to them, the consumption of the Western
diet leads to insulin resistance, which increases the
level of glucose, obesity, and cancer [33]–[35]. Hence,
switching back to a healthy diet, which includes a suf-
ficient amount of vitamins, which dented by k1 and k2,
canmoderate the level of glucose in the blood and affect
the behavior of tumor growth [41]–[43]. Thus, based on
these studies, an appropriate coexistence occurs when

c2k1 − α1 k2 > 0.

C. STABILITY OF THE EQUILIBRIUM POINTS
OF MODIFIED FREE MODEL WITH THE
INTERVENTION OF VITAMINS
This section discusses the stability of equilibrium points for
investigating the effect of the intervention of vitamins as an
inhibitor of tumor cells. The following is the Jacobian matrix
of TNVM (10):

J [N ,T ,V ]

=

FN [N ,T ,V ] FT [N ,T ,V ] FV [N ,T ,V ]
GN [N ,T ,V ] GT [N ,T ,V ] GV [N ,T ,V ]
HN [N ,T ,V ] HT [N ,T ,V ] HV [N ,T ,V ]

 , (15)

where

F[N ,T ,V ] =
dN
dt
,

G[N ,T ,V ] =
dT
dt

and

H [N ,T ,V ] =
dV
dt
.

Theorem 6: The type 1 dead equilibrium point, q1, of the
TNVM (11) is an unstable point for all time t

Proof: To study the behavior of this equilibrium point,
we compute the following Jacobian matrix (15) at q1:

J [N ,T ,V ]q1 =


c1k1 + rk2

k2
0 0

0
α1k2 − c2k1

k2
0

0 0 − k2

 , (16)

where the eigenvalues of the matrix (16) are given by

λi = −k2,
α1 k2 − c2 k1

k2
,
c1k1 + rk2

k2
, for i = 1, 2, 3.

From the condition of the type 1 dead equilibrium point,
α1 k2 − c2 k1 < 0, it is obvious that λ1,2 < 0 and λ3 > 0.
Thus, the type 1 dead equilibrium point, q1, is unstable for all
time t.
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J [N ,T ,V ]q3 =


−
c1k1 + rk2

k2
−
(c1k1 + rk2)γ

rβ1k2

c1(c1k1 + rk2)
rβ1k2

0
(α1k2 − c2k1)rβ1 + (c1k1 + rk2)β2

rβ1k2
0

0 0 −k2

 . (17)

A comparison of the type 1 dead equilibrium point of
models (2) and (10) shows that both of them are unstable
points, but the death of q1 is considered as positive, where
the death of the cells occurs by switching back to a healthy
diet and intake of sufficient vitamins. Ourmodel also assumes
that the effect of the immune system is very weak, and there
is a cycle life for normal cells. An instability of q1 is a natural
case, which physiologically means that the body can avoid
tumor cells from developing.
Theorem 7: The type 3 dead equilibrium point, q3, of the

TNVM (10) is an unstable for all time of t.
Proof: To study the behavior of this equilibrium point,

we compute the Jacobian matrix (15) at q3 as (17), as shown
at the top of this page.

To find the eigenvalue of the matrix (17), we compute the
det(J [N ,T ,V ]q3 − λI ) as follows

det(J [N ,T ,V ]q3 − λI )

= (−k2 − λ)(−
c1 k1 + rk2

k2
− λ)

× (
(α1 k2 − c2 k1)rβ1 + (c1k1 + rk2)β2

rβ1 k2
− λ).

Then, the characteristic equation is given by

(−k2 − λ)(−
c1k1 + rk2

k2
− λ)

× (
(α1k2 − c2k1)rβ1 + (c1k1 + rk2)β2

rβ1k2
− λ) = 0. (18)

Therefore, the solution of (18) shows that the matrix (17)
has three distance eigenvalues are given by

λ1 = −k2,

λ2 = −
c1 k1 + rk2

k2
,

λ3 =
(α1 k2 − c2 k2)rβ1 + (c1k1 + rk2)β2

rβ1 k2
.

To determine the stability case of the type 3 dead equilib-
rium point, q3 we need to examine the sign of λi. It is clear
that λ1,2 < 0. Physiologically, the rate of division normal
cells as abnormal cells is very small compare with the rate of
conversion of abnormal cells into tumor cells. This leads that
(c1k1+ rk2)β2 > (α1 k2−c2 k2)rβ1 then λ3 > 0.Hence, this
type of dead equilibrium point is an unstable point.
Theorem 8: The coexistence of the equilibrium point, q4,

of the TNVM (10) is a stable point.

Proof: To study the behavior of this equilibrium point,
the Jacobian matrix (15) at q4 is computed as follows:

J [N ,T ,V ]q4 =


−
rβ1A
C

−
γA
C

c1A
C

β2B
C

−
α1α2B
C

−
c2B
C

0 0 −k22

 , (19)

where

A = (c1 k1 + rk2)α1α2 + (c2 k1 − α1 k2)γ,

B = (α1β1 + β2)rk2 + (c1β2 − rc2β1)k1
C = (rα1α2β1 + γβ2)k2.

To find the eigenvalue of the matrix (19), we collected
det(J [N ,T ,V ]q4 − λI ) as follows

det(J [N ,T ,V ]q4 − λ)

= (−k2 − λ)[(
−rβ1A
C
− λ)(

−α1α2B
C

− λ)+
γβ1AB
C

]

= (−k2 − λ)(λ2 +
rβ1A+ α1α2B

C
λ

+
(γ 2β2k2 + (1+ γβ1k2)rα1α2)β1AB

C2 ). (20)

Then, the characteristic equation is given by

(−k2 − λ)(λ2 +
rβ1A+ α1α2B

(rα1α2β1 + γβ2)k2
λ

+
(γ 2β2k2 + (1+ γβ1k2)rα1α2)β1AB

(rα1α2β1 + γβ2)2k22
) = 0. (21)

Using the Remark 1, the simplified form of the
characteristic equation (21) is written as follows

k22γ λ
3
+ Dλ2 + Fλ+ k2F = 0, (22)

where

D = γ k32 + rα1α2k
2
2 + α1α2c1k1k2

F = [γ c2 k1 + α1α2c1k1
+ ((r + k2)α2 − γ )α1 k2](c1k1 + rk2)

> 0

Now, we apply the Routh-Hurwitz theorem for (22), giving∣∣∣∣∣∣∣∣∣∣
λ3 γ k22 F
λ2 D k2F

λ1
F(D− γ k32 )

D
0

λ0 k2F 0

∣∣∣∣∣∣∣∣∣∣
.
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FIGURE 4. Parametric solution of TNVM.

FIGURE 5. The behavior solutions of TNVM around the equilibrium
points.

Since,

D− γ k32 = rα1α2k22 + α1α2c1k1k2 > 0.

Therefore, it is obvious that the sign of elements in first
column is positive. This shows that the coexistence of the
equilibrium point, q4, of the TNVM (10) is a stable point.
Remark 5: The effect of switching back to a healthy diet,

which includes sufficient vitamins, on the dynamic system of
TNM can be deduced as follows:
• The intervention of vitamins plays a role in supporting
normal cells to survive even when tumor cells have
appeared.

• There is no equilibrium when tumor cells begin to react
and attack normal cells. In other words, the intervention
of vitamins is an unsuitable medium for the survived
survival tumor cells.

• TNVM is stable when the combined cells survive
together.
The behavior of all equilibrium points is shown in
FIGURES 4 and 5.

VI. NUMERICAL SIMULATION OF THE MODELS
We have used Software Mathematica 11.0 with command
NDSolve to simulate the two models TNM (2) and
TNVM (10). This simulation was designed by applying

FIGURE 6. Residual error at various steps for TNM.

FIGURE 7. Residual error at time t for TNM.

FIGURE 8. Residual error at various steps for TNVM.

FIGURE 9. Residual error at time t for TNVM.

NDSolve using a fourth–order Runge–Kutta method for
getting a more stable and easily convergent solution. The
simulation of TNM and TNVM were done by choosing an
individual time as thirty days and an integration step 1

10000 .
This simulation deduced that switching from an unhealthy
diet to a healthy diet has a significant impact on inhibiting
the growth of tumor cells and might support the normal cells
to survive for a long time if the function of the immune system
is very weak or fails to recognize the activities of tumor cells.
As depicted in FIGURES 6–9, the residual error validates
the accuracy and reliability of the proposed method. The
simulation results of two models TNM (2) and TNVM (10)
were compared with the numerical results of assessing the
effect of estrogen on the dynamics of breast cancer [7].
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FIGURE 10. Behavior of TNM within thirty days where r = 0.4312,
β1 = 2.99 ∗ 10−6, γ = 0.9314, α1 = 0.4426, α2 = 0.4, β2 = 1.1891.

The result of TNM simulation indicated that when the
tumor cells began to grow rapidly, the growth of normal cells
was retarded but continued to divide horizontally. Horizontal
division of normal cells indicates that normal cells divide and
grow by following the signals of control cellular growth and
death [28], [37]. Based on the physiological meaning of the
growth cells, we can deduce that the growth status of cells
is affected when γ = 0.9314 and β2 = 1.1891 cells per
day. These parameters demonstrate the ability of tumor cells
to attack normal cells and develop abnormal cells into tumor
cells. The behavior of the tumor and normal cells of TNM is
illustrated in FIGURE 10.

The result of TNVM simulation indicated that the inter-
vention of vitamins has a significant impact on moderating
the dynamic of TNM. To substitute for the absence of the
function in the immune system, a significant response occurs
when most of the vitamins interact. In this case, the rate of
development of abnormal cells into tumor cells is retarded
from 1.1891 to 0.9817. This can retard the rate of growth
of tumor cells. The rate of activities of tumor cells under
consideration is decreased, where we deduced that the rate
of attack on the normal cells decreased by 75% after the
intervention of vitamins within thirty days.

When tumor cells are retarded but the rate of the retardation
of the normal cell growth is simulating the tumor cell to grow,
the normal cells grow significantly during the first four days
from the intervention of vitamins. Note that there are no new
tumor cells emerging due to the abnormal cells. Hence, there
is an asymmetric relation between these results and those
of analyzing the effect of intervention of vitamins on the
function of the immune system [23]. Herein, we show that
the intervention of vitamins does not allow the development
of the abnormal cells appearing in the tissue for several years.
Based on the results of the TNVM simulation, the simu-
lated rate of consuming a sufficient amount of vitamins is
k1 = 0.8677% per day, where the simulated rate of vitamins
that react with the cells is k2 = 0.9611%. The retarded
growth of tumor cells occurs by enabling vitamins to mod-
erate the level of glucose in the blood [26]. Hence, the vita-
min rate is affected by the tumor cells, i.e., c2 = 0.4975,
while the rest is affected by the normal cells, i.e., c1 =
0.2215. The effect of the intervention of vitamins on the
behavior of the tumor and normal cells is demonstrated
in FIGURE 11.

FIGURE 11. Effect of intervention of vitamins on the behavior of tumor
and normal cells where r = 0.4312, β1 = 2.99 ∗ 10−6, γ = 0.2291,
α1 = 0.4426, α2 = 0.4, β2 = 0.9817, c1 = 0.2215, c2 = 0.4975,
k1 = 0.8976,k2 = 0.9611.

VII. CONCLUSION
Alharbi and Rambely [37] indicated dynamically that the
function of the immune system is affected by the type of diet.
They deduced that the people who observe an unhealthy diet
are at higher risk of being affected by cancer as compared to
those who observe a healthy diet. In 2019, Alharbi et al. [23]
showed numerically that switching back to a healthy diet from
an unhealthy diet, such as the Western diet, can retard or
eliminate the abnormal cells. In this study, we proposed the
TNM to investigate the effect of the development of abnormal
cells into tumor cells due to themalfunctioning of the immune
system on the dynamics of normal cells cycle dynamically,
analytically, and numerically. In addition, we formulated the
TNVM by assuming that the person started to change his/her
diet, as depicted by the food pyramid in FIGURE 3. By com-
paring the results of the analysis and simulation of both TNM
and TNVM, we deduced that the appearance of tumor cells
in a tissue, as well as their activities, affects the dynamics
of the cycle of normal cells. If the rate of development of
abnormal cells to tumor cells is higher than that of the growth
of the normal cells, the TNM model is stable and retards the
activities of tumor cells based on internal factors in the body.
This implies that the tumor cells were at high risk of attacking
and eliminating the normal cells in the tissue, which possi-
bly enabled them to affect the neighboring tissues. Clearly,
the dynamics of TNM were moderated by considering that
a person started to consume a sufficient amount of vitamins
daily. These moderates summarized by disappearing the type
2 dead of equilibrium points, which probably means that the
activity of the tumor cells was decreased by interring the
vitamins. Since tumor cells do not die automatically, the inter-
vention of vitamins could support the tumor and normal
cells to survive together. This may delay the development
of tumor cells and cancer. Based on the simulation of both
models, we deduced that the consumption of a regular rate of
vitamins simulated to at least 87% can dynamically change
the early stage of the tumor cells. In this study, the proposed
models presented the general dynamics of the normal cells
when the tumor cells started to be in the tissue and moderate
their dynamics by consuming the intervention of vitamins.
Mathematical models are useful for understanding the natural
science and can be extensively applied to discuss the dynam-
ics of different types of diseases, but it is difficult to consider
and account for the effects of all variables. Our proposed
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models contribute to highlighting the effect of intervention
of vitamins on the dynamics of normal cells and tumor cells
in a tissue, and we discussed the dynamics of both TNM
and TNVM by adding some constraints. To investigate the
results of our mathematical models and obtain more accurate
results, it is important we conduct more clinical experiments
by considering real-life problems and classify the foods that
can retard the growth of tumor cells in early stages of cancer.
In the future, we hope to develop this study by examining
drugs that are resistant to vitamins and their effects on the
dynamic model of the tumor–normal cells. Finally, the results
of this study will be applied to manage several common types
of cancer.
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