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ABSTRACT Demand response (DR) is a critical enabler for promoting the integration of significant
renewable energy sources (RES) into power systems. However, the contribution of each customer to the
amount of integrated RES in the entire system cannot be quantified based on current studies, which hinders
the deployment and promotion of DR programs. To address this problem, an index to quantitatively evaluate
the marginal impact on the amount of integrated RES in the whole system caused by a customer (MIR) was
proposed in this paper. The MIR proved to be reasonable for the evaluation of the renewable energy share
of a customer’s electricity consumption (RSC). We subsequently proposed an RSC-based DR scheme, in
which customers are motivated to individually reshape their load profiles to obtain a higher RSC, which
accordingly facilitates integrating RES in the whole system. Optimal load reshaping strategies were derived
from a bilevel optimization model, which was converted into a mathematical program with primal and dual
constraints (MPPDC). The test system was generated based on the load data from Open Energy Information
and RES data from the PJM.We corroborated the RSC evaluation result analytically and numerically. Further
tests on the RSC-based DR scheme showed it could help facilitate integrating considerably more RES into
the power system.

INDEX TERMS Demand response, renewable energy sources, marginal impact, MPDDC.

NOMENCLATURE
ABBREVIATIONS AND DEFINITIONS
RES Renewable energy sources
CBL Customer baseline load
LSE Load services entity
HEMS Home energy management system
MIR Marginal impact on the amount of integrated

RES in the whole system caused by a customer
MIB Marginal impact on the power balancing burden

for conventional units caused by a customer
RSC Renewable energy share of a customer’s daily

electricity consumption
RSS Renewable energy share of the system-level

consumption per time slot
DRSS Daily renewable energy share of the system-

level electricity consumption
M-DRSS Maximal available DRSS
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approving it for publication was Bin Zhou.

SETS
T Time slots set indexed by t, with the cardinality of

T
T−1 T−1 := {2, 3, . . . ,T}
I Customer set indexed by i, with the cardinality of

I
J Typical load profiles indexed by j, with the cardi-

nality of J
K Unit set indexed by k , with the cardinality of K

VARIABLES
ρt RSS at timeslot t
ρAgg DRSS
PRt Integrated RES at timeslot t in the

whole system
R Daily integrated RES in the whole

system
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Lt Load at timeslot t in the whole system
PGk.t Power generation of unit k at times-

lot t
PGupk.t Upward reserve offered by unit k at

timeslot t
PGdnk.t Downward reserve offered by unit k

at timeslot t
xk.t Commitment state of unit k at timeslot

t(binary variable)
SCk.t Star-up cost of unit k at timeslot t
LP∗j.t The jth typical load profile after DR

(multiple plans for customers)
umaxj.t , u

min
j.t , vj.t , λj Dual variables

Gmax Peak value of the aggregated unit gen-
eration

GAvg Average value of the aggregated unit
generation

tpeak Time slot when unit generation is
maximal

tvalley Time slot when unit generation is
minimal

tRup1/2 Successive timeslots when the ramp-
up rate of units is maximal

tRdn1/2 Successive timeslots when the ramp-
down rate of units is maximal

PARAMETERS
ρAgg.max Maximal available DRSS (M-DRSS)
Rmax Maximal aggregated daily MW value of RES
L Daily aggregated load
ak , bk , ck Cost coefficients of unit k
cupk , c

dn
k Price for upward/downward reserve of unit k

W up
t ,W

dn
t Upward/downward reserve requirement

ψ Curtailment price of RES
PLi.t Load of customer i at timeslot t
LPi.t Load profile of customer i at timeslot t
LPj.t Typical load profile j at timeslot t
αi RSC of customer i(evaluated in hindsight)
π Retail price
LDayi Daily consumption of customer i
PG.maxk Upper power generation limit of unit k
PG.mink Lower power generation limit of unit k
XON/OFFk.t−1 ON/OFF time of unit k at timeslot t-1
TON/OFFk Minimal ON/OFF time of unit k
rampk Ramping rate of unit k
PL0t Inflexible load at timeslot t
LDayj Daily consumption of typical load profile j
δj Tolerance of comfort loss for typical load

profile j

I. INTRODUCTION
Achieving widespread use of renewable energy sources
(RES) is one of the most important targets of future
power systems [1], [2]. Due to the intermittent and volatile
characteristics of RES, it is too costly or even infeasible to

balance the power supply and demand by only relying on the
conventional units under significant RES penetration. Cur-
tailments of RES will occur if the flexibility of the conven-
tional units is not sufficient to compensate for the fluctuations
in the RES. For instance, in 2016, China curtailed 49.7 TWh
of wind power, with a national average curtailment rate of
17.1% [3].

The demand response (DR) has been widely studied to
help integrate RES [4]–[8]. Its applications include, but are
not limited to, frequency regulation, ramping or following
reserves, additional unit commitment, and load reshaping or
shifting [7], [8]. In this paper, theDR is studied as an approach
to reshape the load curve to reduce the burden of power
balancing for conventional units (such as ramping, valley
demand, and peak demand) and to facilitate integration of a
significant amount of RES.

Current DR programs can be categorized into price-based
DR (PDR) and incentive-based DR (IDR) [9]. Various PDR
programs have been studied, such as [10]–[13], where cus-
tomers’ load profiles are controlled indirectly by price sig-
nals sent by the DR providers. Although the local marginal
pricing (LMP) has been widely used in the wholesale market,
customers on the retail side are risk-aware to be exposed to
wholesale dynamic price. Many recent studies (e.g., [9], [14],
and [15]) have examined the potential obstacles of PDRs
when deployed on a large scale. In practice, the retail price
for residential customers cannot be directly adjusted by the
utilities in countries or regions where the electricity market
has not been in operation. Thus, in this paper, we focus on
IDR, where the retail prices require no changes and customers
face a flat retail price, similar to a the scheme in [9].

To ensure the performance of a DR program, two crucial
issues should be resolved: how to evaluate a customer’s per-
formance in theDR and how to operate theDR resources [16].
The former issue determines the objectives of customers
who reshape their load profiles and obtain the corresponding
rewards, while the latter issue focuses on designing an effec-
tive DR scheme to induce customers to reshape their loads
curves.

Although considerable work has been performed regarding
DR and RES integration, there remains no method for the
direct evaluation of the renewable energy share of a cus-
tomer’s daily electricity consumption(RSC). It is difficult to
quantify different customers’ real contributions to the amount
of integrated renewable energy, whichwill result in the unfair-
ness and ineffectiveness of the DR and hinder the deployment
and promotion of DR programs.

To address these problems, this paper aims to determine
i) how to evaluate the RSC and ii) how to design an efficient
scheme to help customers increase the RSC through the
DR and accordingly facilitate integrating RES in the whole
system.

A. FIRST CONTRIBUTION AND ITS RELATED WORK
In the current IDR, the methods for evaluation of the cus-
tomers’ DR performances are not related to the customers’
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real contributions to the integrated RES, while the customer
baseline load (CBL) is widely used [16]–[20]. The CBL
denotes a predicted load curve in the absence of a DR event,
and the difference between a customer’s actual load after
the DR and the CBL is regarded as the contribution of the
customer. We argue that the CBL-based method faces two
potential problems.

The first problem is determining how to calculate the CBL
accurately and efficiently for numerous DR customers. One
of the most widely used CBL calculation methods is the
HighX of Y method adopted by the PJM, New York ISO,
and California ISO [16]. In [18], three metrics, the mean
absolute error, the bias, and the overall performance index,
were used to assess the HighX of Y CBL, and the results
belied substantial inherent inaccuracies that could not be
ignored. However, the improvedmethods based on regression
or clustering are too complicated to be used in practice due
to their heavy computational burdens, especially when the
DR is deployed on a large scale [19]. Meanwhile, some
customers are capable of strategically adjusting their CBL
to acquire high rewards, which is called the ‘‘moral hazard’’
problem [20]. In addition, the CBLs must be calculated in
a centralized form according to orders such as the Federal
Energy Regulatory Commission’s (FERC) order 745, which
was related to incentives and put considerable pressure on
the data storage and computation requirements of the DR
provider [20].

The second problem is that CBL-basedmethods only focus
on the load curtailment quantity but ignore the different
impacts on the amount of integrated RES of different load
profiles, failing to link the customers’ responses with their
real contributions to the objective of the DR program, i.e.,
increasing the renewable energy share of the whole system.
In practice, a greater power balancing burden is put on the
conventional units, and the curtailment of the RES is also
more likely to occur when the aggregated load is inconsistent
with the maximal available RES than when the aggregated
load is always synchronous with the available RES. In partic-
ular, if two customers have heterogeneous load profiles, they
will have different impacts on the profile of the aggregated
load, thereby resulting in different amounts of integrated
RES. Therefore, even if the first problem, i.e., the CBL’s
calculation, is solved by improving the existing algorithms,
then the second problem will not be addressed unless a novel
evaluation method is adopted.

Except for the CBL-based methods, some researchers have
also considered directly providing the desired load profiles as
the load reshaping objective to customers without using the
CBL [14], [15], [21]. The calculation problem of the CBL can
be approached to some extent, but it remains unclear how cus-
tomers impact the RES integration. To analyze a customer’s
impact on some system-level features, themarginal impact on
system-level features of the load profiles was proposed [22]
and is adopted in this paper. However, the focus in the pre-
vious study [22] was on the optimal retail rate but not RES
integration.

To solve the DR performance evaluation problem, we pro-
pose a method for calculating the marginal impact of a cus-
tomer on the amount of integrated RES in the whole system
(MIR). We then prove the MIR is reasonable to evaluate the
renewable energy share of a customer’s daily consumption
(RSC). The concept and evaluation method of MIR and RSC
are the first contribution of this paper and they are both
proposed for the first time in the researches of power systems.

As a metric for DR performance evaluation, the RSC
can solve the potential problems of the CBL-based method
summarized above, while it bridges the real contribution of
a customer in the DR program. Moreover, to numerically
validate the proposed evaluation methods, several kinds of
the marginal impacts on the power balancing burden for
conventional units caused by a customer (MIBs) were tested
in the case study.

B. SECOND CONTRIBUTION AND ITS RELATED WORK
Based on the first contribution, the proposed RSC will be
tailored in the DR program. Thus, we present an RSC- based
DR which is defined as one that provides an incentive to cus-
tomers to increase the RSC by reshaping their load profiles,
which accordingly increases the amount of integrated RES
in the whole system. How to induce massive customers to
increase their RSC is also the second work of this paper.

Current DR schemes can be categorized into two types,
depending on whether the customers are passively scheduled
or if they actively make decisions. In the first type, several
DR customers are aggregated, modeled as a virtual power
plant (VPP), and dispatched in the unit commitment [23],
optimal power flow [24], and frequency regulation [25]. This
approach is easily deployed in practice. However, it does
not represent a user-friendly approach because it is difficult
to ensure utilities for the customers, especially for residen-
tial customers. In the second type, customers can control
the tradeoff between the reward and comfort loss to max-
imize their utilities. Interactions between the DR providers
and customers are often included in these schemes due to
coupled dependent variables in the model. For instance, in
[9] and [17], customers could continuously adjust the load
reduction according to the coupon (incentive) level until con-
vergence. Also, in another literature [26], the interactions
between customers were studied from a game perspective.
Compared with the above VPP-based schemes, customers
could individually make optimal decisions. However, it is
not practical to interact with numerous customers frequently
due to potential challenges, such as the process being too
complex for residents [27] and communication reliability
problems [28].

Recent surveys on the retail market have found that cus-
tomers prefer to follow principles such as multi-options that
are utilized successfully in the customer-centric IT indus-
try [29]. In the PDR program, customized retail prices have
been studied based on the consumption regularity of cus-
tomers, where multi-price plans have been designed [30].
Meanwhile, the energy-aware demand-side recommendation

129202 VOLUME 7, 2019



S. Fan et al.: Evaluating and Increasing the Renewable Energy Share of Customers’ Electricity Consumption

systems have been studied to help customers choose a suitable
plan from the customized plans [27], [31]. In this way, fre-
quent interactions between customers and the DR providers
can be avoided, while customers can also make optimal deci-
sions. However, similar techniques are not applicable to the
IDR because there is no direct metric to evaluate the DR
performance on the integrated RES. The RSC proposed in
this paper can play that role.

As a result, the second contribution of this paper is a
novel DR scheme to facilitate the integration of RES in
the whole system by increasing the renewable energy share
of customers’ consumption (RSC). In this scheme, frequent
interactions are avoided, while customers can make a cus-
tomized choice. To obtainmultiple reshaped load profiles that
can help customers increase their RSC, a bilevel optimization
problem is modeled and converted to amathematical program
with primal and dual constraints (MPPDC). A case study
shows that the proposed scheme considerably reduces the
power balancing burden for conventional units and prevents
the curtailment of RES accordingly.

The remainder of the paper is organized as follows.
A method for calculating the MIR and RSC is presented in
Section II. In Section III, the proposed RSC is tailored in
DR programs, and the RSC-based DR scheme is introduced.
A case study and analysis are shown in Section IV. Finally,
conclusions and future research are provided in Section V.

II. MIR AND RSC
A. PRELIMINARIES
Before evaluating the RSC, we first study three metrics that
can be easily derived based on measurements. For an inde-
pendent power system, we define the renewable energy share
of the system-level consumption (RSS) as the ratio between
the integrated RES and the total load at timeslot t . The RSS
is denoted by ρt and calculated as follows:

ρt =
PRt
Lt
× 100% ∀t (1)

where PRt and Lt are the MW magnitudes of integrated RES
and load in the entire system at timeslot t , respectively. Let
T := {1, 2, . . . ,T } denote a set of time index. For the
sake of simplicity, ∀t denotes ∀t ∈ T in this paper, and
similar notation is used throughout the paper. In addition to
the RSS, the daily renewable energy share of the system-level
consumption (DRSS) is defined as the fraction of the daily
integrated RES and load, denoted by R and L, respectively.
Let ρAgg denote the DRSS, thus it is determined by:

ρAgg =
R
L
=

∑
t∈T PRt∑
t∈T Lt

=

∑
t∈T ρtLt∑
t∈T Lt

× 100%. (2)

Except for these two system-level indexes, we subsequently
define an individual-level metric, i.e., the load profile. Let
I := {1, 2, . . . , I } collect a set of customer index, and we
calculate a customer’s load profile as follows:

LPi.t =
PLi.t∑
t∈T PLi.t

∀i,∀t (3)

where PLi.t and LPi.t denote the kW magnitude of load and
the load profile of customer i at timeslot t , respectively. It
is not difficult to get a remark that the load profiles for any
given customer sum to unity over the course of a day i.e.,∑

t∈T LPi.t= 1.
The above-mentioned metrics, including load profile, RSS

and DRSS are the bases for our further study about the
evaluation of RSC. In practice, although the actual integrated
RES depends on the system’s operation status and is unknown
in advance, it can be measured in hindsight, and the RSS and
DRSS can be calculated accurately based on measurements,
as shown in the upper left side of Fig. 1. Similarly, each
customer’s load profile can be obtained by smart meters
easily, as shown in the upper right side of Fig. 1. However,
our goal is to get the RSC, i.e., the lower left side of Fig. 1.
Note that the RSC cannot be directly measured due to a lack
of power tracing of the RES for customers. Thus, our work
in this section is to investigate a reasonable method to map
the measured system- and individual-level knowledge to an
evaluation metric, i.e., RSC.

FIGURE 1. Relationship between RSS, DRSS, load profile and RSC.

Before continuing to investigate the RSC, we need to claim
that when it comes to a DR program (increasing the RSC)
but not only evaluation, the scheduling should be completed
beforehand instead of relying on measurements in hindsight.
Thus, in Section III, the load service entity (LSE) will be con-
sidered. Generally, the LSE has the ability to mimic the ISO’s
day-ahead unit commitment (UC) and predict the RSS and
DRSS, which have been widely used in DR schemes [9], [17].
Meanwhile, the load profile is treated as a control variable.
TheDR scheme considers day-ahead predictions will be illus-
trated in detail in Section III, while the next two subsections
continue to focus on the evaluation method of RSC.

B. MIR
As mentioned above, our work is to map the RSS and load
profiles to the RSC, namely the lower right red frame in
Fig. 1. Since the power tracing to the end-customers is
impractical, we will investigate the RSC evaluation method
from the perspective of the customers’ impact and contribu-
tion to the amount of integrated RES.

To quantify the impact of a load profile on the system’s
operation status, the concept ofmarginal impact is leveraged.
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We can represent the system load Lt and customer i’s load
profile LPi,t respectively as vectors

−→
L and

−→
LPi, where the

relevant vector space is spanned by the timeslots and has
the cardinality of T as its dimension. Because we assess the
impact on RES integration from demand sides, we assume the
supply-side settings have been given. Then, we can consider a
function f·(

−→
L ) which denotes a system-level feature of inter-

est (for example, fR(
−→
L ) denotes the daily integrated RES,

and fPVD(
−→
L ) denotes the peak/valley difference [32]) and

depends on the entirety of the daily system load. Although we
do not know the explicit structure of f·(

−→
L ), the abstract func-

tion form is sufficient for further study. Note that f·(
−→
L ) can be

treated as continuous over a small domain, similar to the study
of marginal system-cost impact presented previously [22].

To determine the marginal impact of a given customer i’s
usage on that system-level feature function we consider the
result of a small perturbation to that customer’s load which
preserves that customer’s load profile. Such a perturbation
must take the form PLi.t −→ PLi.t + (1P)LPi.t , where 1P
is a small amount of energy. The system load is thereby
perturbed by the same amount, so that Lt−→Lt+(1P)LPi.t
or in equivalent vector notation as

−→
L −→

−→
L +(1P)

−→
LPi. The

marginal impact of the perturbation on the function f·(
−→
L ) is

defined as the ratio of the corresponding perturbation on the
function f·(

−→
L ) divided by 1P in the limit that 1P vanishes,

Fi = lim
1P→0

f·[
−→
L + (1P)

−→
LPi]− f·(

−→
L )

1P
(4)

Roughly speaking, we proportionally allocate a very small
increment (1P) to the original load of customer i based on his
load profile and subsequently calculate the marginal change
in index f·(

−→
L ) at the system level, and the result accordingly

represents the marginal impact of this customer on the given
system-level feature.

In the evaluation, we have two types of system-level fea-
tures. The first one is the daily integrated RES for the whole
system, which corresponds to a customer’s marginal impact
on the amount of integrated RES (MIR). The second type is a
set of features that reflects the extent of the power balancing
burden on the units, such as the demand peak, peak/valley
difference, and ramping rate. These correspond to the respec-
tive marginal impacts on the power balancing burden for units
caused by a customer (MIBs). The MIR directly quantifies
the contribution of a customer to the integrated RES, while
the MIBs indirectly impact the integrated RES from multiple
dimensions. As a result, the MIR is studied in detail and used
to evaluate the RSC in this section, while MIBs are used to
validate the evaluation results in the case study (Section IV),
while they are detailed in the Appendix.

Based on the definition ofmarginal impact described above
and Equation (4), the MIR of customer i is defined as the
instantaneous change in the daily integrated RES (R) when
the customer increases his load but maintains the same load
profile. Thus, f·(

−→
L ) in Equation (4) is detailed by fR(

−→
L ),

and Fi represents MIRi. Following the definition above, we

can get that MIRi = lim
1P→0

fR[
−→
L +(1P)

−→
LPi]−fR(

−→
L )

1P . For fur-

ther derivation, we assume the RSS after the perturbation,
i.e., ρt , is the same as that in the previous perturbation,
which means the generation structure does not change in
the perturbation process. The assumption can hold because
1P is very small. Because fR(

−→
L ) denotes the daily inte-

grated RES, it can be calculated as a sum of each times-
lot’s product of the RSS and the MW magnitude of the
system load, i.e., fR(

−→
L ) =

∑
t∈T ρtLt . Concurrently, the

daily integrated RES after the perturbation holds a similar
structure, i.e.,fR[

−→
L +(1P)

−→
LPi] =

∑
t∈T [ρt (L t+1P·LPi.t )].

Therefore, the MIR can be calculated as follows:

MIRi = lim
1P→0

fR[
−→
L + (1P)

−→
LPi]− fR(

−→
L )

1P

= lim
1P→0

∑
t∈T [ρt (Lt +1P · LPi.t)]−

∑
t∈T (ρtLt)

1P

= lim
1P→0

∑
t∈T (ρt1P · LPi.t)

1P
=

∑
t∈T

ρtLPi.t ∀i

(5)

Thus, the MIR can be regarded as a weighted average of
the RSS, where the weight coefficients are the proportion of
each timeslot’s demand to the daily total demand, i.e., the load
profile. Note that the RSS and the customer’s load profile
both affect his MIR. The RSS is determined by the system
operation status, where the capability of the units and the
profile of available RES play the leading roles. Therefore,
given a certain system status, i.e., the RSS, a customer’s
contribution to the integrated RES is determined by his load
profile.

C. RENEWABLE ENERGY SHARE OF A CUSTOMER’S
CONSUMPTION (RSC)
Based on the quantified contribution to the integrated RES of
each customer, i.e., MIR, the RSC can be evaluated.
Assumption: The loss in the transmission or distribution

is not considered in the evaluation. If taking the loss into
account, we can regard it as a virtual consumer and evaluate
it with other real customers jointly. However, as the ratio
between the loss and total load is relatively small [33], the
loss is assumed to be negligible.

Because the RSC is the percentage of a customer’s daily
consumption that can be reasonably attributed to the RES,
several conditions should be satisfied:

1) Let αi be the evaluated RSC of customer i, then αi ∈
[0, 1] since it is a percentage.

2) If MIRi 6= 0 and MIRj 6= 0, then αi
αj
=

MIRi
MIRj

. Evaluating
the RSC is a profit allocation problem, and allocating in
proportion to the marginal impact, i.e., MIR, denotes a fair
allocation method. Namely, the evaluation of RSC should be
proportional to each customer’s MIR, while there exists the
same proportional coefficient for all the customers.
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3) The sum of the RES consumption of all the customers
should be equal to the integrated RES at the system level:∑

i∈I

(
αi
∑

t∈T
PLi.t
)
= R (6)

There exists a unique solution that satisfies all the conditions
above, and it is given by αi = MIRi.
Proof: Because of the second condition, we can write

αi = θMIRi, where the coefficient θ is the common ration
of αi and MIRi. Replacing αi with θMIRI i on the left side of
Equation (6) yields the following:∑

i∈I

(
αi
∑

t∈T
PLi.t
)

=

∑
i∈I

(
θMIRi

∑
t∈T

PLi.t
)

=

∑
i∈I

(
θ
∑

t∈T
(ρtLPi.t)

∑
t∈T

PLi.t
)

= θ
∑
i∈I

∑
t∈T

(
ρtLPi.t

∑
t∈T

PLi.t

)

= θ
∑
i∈I

∑
t∈T

ρt PLi.t∑
t∈T

PLi.t

∑
t∈T

PLi.t


= θ

∑
t∈T

∑
i∈I

ρtPLi.t = θ
∑
t∈T

ρt
∑
i∈I

PLi.t = θ
∑
t∈T

ρtLt = θR.

(7)

The unique solution that satisfies Equation (6), and there-
fore condition 3), is θ = 1. Furthermore, since 0 ≤ MIRi ≤ 1,
condition 1 is automatically satisfied when θ = 1. As a
result, αi = MIRi is the unique solution that satisfies all the
necessary conditions of the RSC.

In conclusion, the resultant RSC evaluation approach, i.e.,
αi = MIRi =

∑
t∈T ρtLPi.t , converted the system- and

individual-level measurement-based indices, the RSS and
load profile, to an evaluation index, RSC, as shown as Fig. 1.

Intuitively, the percentage of energy that can be treated as
coming from RES for a customer depends on the RES perfor-
mance in the whole system together with the shape of his load
curve. The evaluation can be performed in hindsight without
any RES and load forecasting, which means that the evalua-
tion result will not be affected by prediction errors. However,
if customers want to obtain a higher RSC, the most direct
way is to reshape his load profile according to the RSS. Thus,
the system operation states should be predicted beforehand.
To address this problem, a bilevel optimization model that
accounts for upward/downward reserves to compensate for
the RES and load stochastic fluctuations (prediction errors)
will be presented in the next section.

III. RSC-BASED DR SCHEME
The contribution of each customer to the amount of inte-
grated RES can be quantitatively evaluated based on the
above method. In this section, we will present a novel DR
scheme to motivate customers to obtain a higher RSC, which
accordingly facilitates the integration of the RES.

A. ASSUMPTIONS
In the proposed scheme, the following assumptions are made:

1) The LSE has the ability to mimic the ISO’s day-ahead
UC and predict the available RSS, similar to DR schemes
reported previously [9] [17]. Simultaneously, the upward
and downward reserve requirements are incorporated in the
optimization model to compensate for stochastic fluctuations
(prediction errors) of the RES and load [33].

2) Considering climate change, the energy shortage, and
sustainability in future energy systems, integrating as many
RES as possible will be the final solution to these challenges
and will be significantly more economical than using conven-
tional energy [1]. Thus, in the cost function of the UC model,
i) the capital and generation cost of RES is negligible, and
ii) the penalty for curtailment of the RES is included [33], and
iii) the monetary incentive given to customers to facilitate the
integration of RES is neglected.

3) The customers who participate in the DR program are
rational and will increase the RSC by choosing a reshaped
load profile to follow from the multi-plan that is most similar
to the original load profile because it brings the smallest
comfort loss. Customers behaviors with bounded rationality
are left for future study.

B. RSC-BASED DR
1) INCENTIVE
The RSC can directly evaluate the contribution to the inte-
grated RES of a customer, and thus, the RSC-based DR
is defined as follows. To integrate more RES in the entire
system, the DR provider motivates customers to reshape their
load profiles to obtain a higher RSC by giving an incentive,
such as an electric bill discount. Customers with a higher
RSC will obtain a higher incentive rate. The incentive rate
is discussed, but the absolute incentive value is not, because
the absolute incentive value is also related to the daily con-
sumption. The discount rate a customer can receive is a
monotonically increasing function of his RSC, such as linear,
quadratic, or exponential function. For the sake of simplicity,
we use the linear form in this paper, defined as Equation
(8). When it comes to other forms, the customer’s response
model introduced in Section III.C needs to be modified as
a consequence, while further discussions about the different
incentive functions will be studied in the future.

Di(αi) = καi (8)

In the incentive function, κ is a positive coefficient and καi
is the discount rate the customer can receive, which is pro-
portional to his RSC. Let π denote the retail price and LDayi
denote the daily consumption of customer i, then the actual
monetary incentive the customer can get is καi(πL

Day
i ). Note

that the setpoint of the proportional coefficient κ is adjustable
for the DR providers but will not influence the result of our
model in this paper.

The advantages of the RSC-based DR are as follows:
(1) The CBL-based method in the DR is replaced by the

RSC, which means the inaccuracy, the centralized calcula-
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tion, and the moral hazard problems are all avoided. Accord-
ing to Equation (5), all the variables of the RSC can be
measured but not forecasted. Although the DR scheme intro-
duced in the next subsection is also based on some predicted
information, the final evaluation and reward are based on
measurements without predictions.

(2) The DR performance and the corresponding reward
allocation are related to the MIR, which represents the great-
est equity method.

2) DEPLOYMENT
Under the proposed scheme, DR customers are motivated to
obtain a higher RSC to receive more incentive. Considering
the structure of the RSC evaluation method, customers can
increase their RSC by reshaping their load profiles to better
match the RSS while being subject to some physical con-
straints.

However, the RSS is unknown for customers in advance,
and it depends on the system operation status. In general,
the LSE will link the customers and the DR providers and
provide a professional DR service. As described in the first
section, customers, especially residents, prefer to follow
multi-options [29]. Following this perspective, we require the
LSE to provide multiple RSC-increasing plans to allow the
customers to choose the most convenient one. Multi-plans
are multiple reshaped load profiles that can increase the
RSC.

To obtain these reshaped load profiles, the LSEwill formu-
late an optimization model. Nevertheless, the dimensionality
of the optimization model will be a significant challenge
if we incorporate all the customers’ load profiles into the
model. Due to the structure of the MIR and RSC (Eq.(5)),
two customers who share the same load profile must have the
same RSC because the RSS is unique for the entire system,
while the RSC is related to the load profiles but not related
to the load level. Thus, in lieu of applying every customers’
load profile, clustered typical load profiles are applied in our
model. Many researchers have proposed various approaches
for clustering [30], [31], [35]. Therefore, the LSE is only
required to design the optimal RSC-increasing plans for these
clustered typical profiles and publish the plans to the demand
side. The customer’s HEMS will choose the most conve-
nient one to follow by scheduling flexible loads and his own
distributed energy resources.

Human behaviors are not the focuses of this paper.
Assumption (3) in Section III.A ensures that customers will
rationally reshape their load profile following the RSC-
increasing plans in the DR. Thus, problems such as a cus-
tomer’s irregular behavior are not considered.

C. MULTI-PLANS FOR INCREASING RSC
In this subsection, we formulate a bilevel optimization
problem to address how to obtain multiple RSC-increasing
plans.

Firstly, at the upper level, the LSE mimics the ISO’s day-
ahead unit commitment to decide the RSS at each timeslot

based on an optimization model similar to those reported pre-
viously [33], [34]. Therefore, the upper-level model, denoted
asP1. Because all the notations used in the model are tabled
and described before the Section I and are general in many
similar researches, we do not introduce them in detail here.

min
4UC

C =
∑

k∈K

∑
t∈T

[ai(PGk.t )
2
+ biPGk.t + cixk.t

+ SCk.t + c
up
i P

Gup
k.t + c

dn
i P

Gdn
k.t +

ψ
(
PR.max
t − ρtLt

)
] (9a)

SCk.t = max{0, xk.t (1− xk.t−1)} ∀t ∈ T−1, ∀k
(9b)

xk.tPG.max
k ≤ PGk.t ≤ xk.tP

G.max
k ∀t, ∀k (9c)∣∣∣PGk.t − PGk.t−1∣∣∣ ≤ rampk ∀t ∈ T−1, ∀k (9d)

(XONk.t−1−T
ON
k )(xk.t−1−xk.t ) ≥ 0 ∀t ∈ T−1, ∀k

(9e)

(XOFFk.t−1−T
OFF
k )(xk.t−xk.t−1)≥0 ∀t ∈ T−1, ∀k

(9f)∑
k∈K

PGupk.t ≥ W
up
t ∀t (9g)

PGupk.t ≥ 0 ∀t, ∀k (9h)∑
k∈K

PGdnk.t ≥ W
dn
t ∀t (9i)

PGdnk.t ≥ 0 ∀t, ∀k (9j)

PGk.t + P
Gup
k.t ≤ xk.tP

G.max
k ∀t, ∀k (9k)

PGk.t − P
Gdn
k.t ≥ xk.tP

G.min
k ∀t, ∀k (9l)

PGk.t + P
Gup
k.t − P

G
k.t−1 ≤ rampk ∀t ∈ T−1 ∀k

(9m)

PGk.t − P
Gdn
k.t − P

G
k.t−1 ≥ −rampk ∀t ∈ T−1 ∀k

(9n)

0 ≤ ρtLt ≤ PR.max
t ∀t (9o)∑

k∈K
PGk.t = (1− ρt )Lt ∀t (9p)

Lt =
∑

j∈J

∑
t∈T

LDayj · LP∗j.t + P
L0
t ∀t

(9q)

xk.t = {0, 1} ∀t ∀k (9r)

The objective of this model is to minimize the total
cost, which is composed of the generation and start-up
costs of the conventional units, upward and downward
reserve costs offered by the units, and the cost of RES
curtailment. The optimization variable set is expressed as:
4UC

=

{
xk.t ,PGk.t , ρt , SCk.t ,P

Gup
k.t ,P

Gdn
k.t

}
. The start-up cost

is defined by Equation (9b). The constraints include the max-
imal and minimal power output, ramping rate, and minimal
ON/OFF times, which are given by Equations (9c)–(9f). To
compensate for stochastic fluctuations (prediction errors) of
the RES and load, the upward and downward reserves, i.e.,
PGupk.t and PGdnk.t , should be provided by the units. There-
fore, Equations (9g)–(9n) describe constraints on the reserve
offered by each unit. Note that each unit’s reserve at timeslot
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t is treated as an optimization variable for better minimizing
total cost. Equation (9o) shows the upper and lower bounds
of the actual integrated RES. Furthermore, Equation (9p)
defines the power balance equality constraint. Equation (9q)
shows theMWvalue of a load at timeslot t . The available RES
output and the aggregated daily consumption of each typical
load profile together with the inflexible load are both assumed
to be forecasted, while the prediction errors can be compen-
sated by the upward and downward reserves. Note that LP∗j.t
is the optimization variable in the lower-level model.

The lower-level problem denoted as P2 is modeled for
every RSC-increasing plan, namely, to optimize the load pro-
files to get higher RSC. As a customer, the objective function
is to minimize the electricity bill minus the incentive in the
DR:

min πLDayi − καi

(
πLDayi

)
(10)

We only reshape the load shape but do not increase
or decrease the daily consumption, i.e., LDayi is not an
optimization variable. Therefore, the objective can be trans-
lated to maximize the RSC. Additionally, as mentioned in
Section III.B, two customers who share the same load profile
must have identical RSC. Therefore, a lower-level model is
formulated for each clustered typical load profile in lieu of
formulating a model every customer, i.e., for ∀j ∈ J :

max
LP∗j.t

∑
t∈T

ρtLP∗j.t (11a)∑
t∈T

LP∗j.t = 1 : λj (11b)

LP∗j.t ≥ (1− δj)LPj.t : µmin
j.t ∀t (11c)

LP∗j.t ≤ (1+ δj)LPj.t : µmax
j.t ∀t (11d)

(LP∗j.t − LP
∗

j.t−1)(LPj.t − LPj.t−1) ≥ 0 : νj.t ∀t ∈T−1
(11e)

The objective function given by (11a) is converted from
Equation (10). Equation (11b) shows that the daily electricity
consumption will not change after a DR, which means the
RSC increase arises only from the load profile reshaping
and not the load consumption curtailment or incentive. The
comfort loss tolerance (δj) is between 0 and 1. Therefore,
Equations (11c) and (11d) define the regulation range con-
straint at timeslot t . A larger δj implies that there are more
load flexibilities but also results in more comfort loss to the
customers. Equation (11e) indicates that the trends of any
two successive timeslots should be the same as the original
one, and thus, the reshaping will not undermine the original
behavior.

D. ALGORITHM
A bilevel optimization problem is formulated by P1 and
P2 defined above. We transform it into single-level mixed-
integer linear programming (MILP), which can be solved
efficiently.

1) MPPDC
The lower-level optimization problem, i.e., P2, is a lin-
ear programming problem (LP), so its Karush-Kuhn-Tucker
(KKT) conditions are necessary and sufficient. There are two
approaches to convert a bilevel problem into a single-level
problem. The first one is to recast the lower level problem,
i.e., P2, as its KKT condition and adding it to the upper-
level problem, i.e., P1, as a set of additional complimentary
constraints, which is known as a mathematical program with
equilibrium constraints (MPEC) approach [17], [36]. Another
approach is based on the primal-dual approach and formu-
lates the bilevel problem as a mathematical program with
primal and dual constraints (MPPDC) [37], [38]. Generally,
the MPPDC approach can avoid complementarity and slack-
ness constraints that must be solved by the big-M approach
in the MPEC, and thus, it presents a smaller computational
burden [38]. Therefore, we adopt the MPPDC approach in
this paper.

The MPPDC approach consists of replacing the lower-
level problem, i.e., P2, by its primal constraints, which are
defined by Equations (11b)–(11e), the dual constraints given
by Equations (12)–(14), and the strong duality equality given
by Equation (15):

−ρt − λj + µ
max
j.t − µ

min
j.t = 0 t = 1,∀j, (12)

−ρt − λj + µ
max
j.t − µ

min
j.t − νj.t (LPj.t − LPj.t−1) = 0

∀t ∈ T−1,∀j (13)

µmin
j.t , µ

max
j.t , νj.t ≥ 0 ∀t,∀j, (14)∑

t∈T
ρtLP∗j.t + λj −

∑
t∈T

µmax
j.t (1+ δj)LPj.t

+

∑
t∈T

µmin
j.t (1− δj)LPj.t = 0 ∀j (15)

Further details about the MPPDC can be found elsewhere
[38]. Aside from the constraints of the MPDDC approach,
additional constraints should also be included to ensure the
RSC of all the typical load profiles will increase:∑

t∈T
ρtLP∗j.t ≥ αj ∀j (16)

The LSEwill mimic the ISO’s day-ahead unit commitment
to obtain the RSS, as mentioned in Section III.A, while
the RSC before the DR in Equation (16) can be obtained
accordingly.

Following the above procedure, the equivalent single-
level optimization problem denoted by P3 is formulated as
follows:

min
4UC , 4Dual , LP∗j.t

C (17a)
Eq.(9b) ∼ Eq. (9r), Eq.(11b) ∼ Eq. (11e)
Eq. (12) ∼ Eq. (15)
Eq. (16)

(17b)

where 4Dual
=

{
λj, umaxj.t , u

min
j.t , vj.t

}
denotes a set of dual

variables, Equations (9b)–(9r) define the primal constraints
of the upper-level problem, Equations (11b)–(11e) define
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the primal constraints of the lower-level problem, Equations
(12)–(15) define the dual constraints and strong duality equal-
ity used to convert a bilevel problem into a single-level prob-
lem, and Equation (16) defines the additional constraints.

2) LINEARIZATION
Although the bi-level problem is accurately converted
to a single-level problem, P3 can still not be readily
processed due to the bilinear product terms ρtLP∗j.t in
Equations (15) and (16). Therefore, we employ the binary
expansion method [36] to linearize these terms. We use 2Z

discrete points to approximate possible values of ρt in its
feasible interval [0, 1]:

ρt = 1ρt ·
∑Z

z=1
2z−1ut.z ∀t, (18)

where ut.z, z = 1, 2, . . . ,Z are the auxiliary binary variables
that control the approximate value of ρt , and the step size1ρt
is given as 1

2Z . ρt in the bilinear product term can be replaced
by the right side of Equation (18):

ρtLP∗j.t = 1ρt ·
∑Z

z=1
2z−1LP∗j.tut.z ∀t,∀j. (19)

Letting LP∗j.tut.z = qj,t,z, z= 1, 2, · · · ,Z , Equation (19)
can be converted to Equation (20a), with extra constraints
given by (20b) and (20c):

ρtLP∗j.t = 1ρt ·
∑Z

z=1
2z−1qj.t.z ∀t,∀j, (20a)

0 ≤ LP∗j.t − qj.t.z ≤ (1+ δj)LPj.t (1− ut.z)∀t,∀j,∀z

(20b)

0 ≤ qj.t.z ≤ (1+ δj)LPj.tut.z ∀t,∀j,∀z. (20c)

Two extra constraints are used to ensure that qj.t.z= 0 when
ut.z= 0 and qj.t.z = LPj.t when ut.z= 1. Details are provided
elsewhere [36].

Except for the bilinear product terms, the generation cost of
units is a quadratic function, and the constrained cost variable
(CCV) method is utilized to segmentally linearize it [39].
Note that both binary expansion method and CCV method
have been proved to be accurate and efficient [36], [39]. As a
consequence, P3 is transformed into the MILP based on the
MPPDC and accurate linearization, which can be solved by
various solvers, such as GUROBI and Cplex.

IV. CASE STUDY
In this section, we test and validate the RSC and run the RSC-
based DR program on the generated test system.

A. SIMULATION SETUP
First, the test system was generated. For the customers, we
used a large number of residential load curves provided by
OpenEI [40] and clustered them using the k-means algo-
rithm [35]. Fifteen typical load profiles were generated. The
daily consumption was set to 20,000 MWh. Without loss of
generality, the daily consumption of all typical loads was set
to be the same. Data from 10 units were taken from a previous

report [42]. The upward and downward reserve requirements
for the whole system represented 10% of the available RES
at each timeslot, and the reserve price offered by each gener-
ating unit was assumed to be 10% of the marginal generation
cost of the last segment. Each typical load’s tolerance of the
comfort loss (δj) was initially set to 0.2 and sampled from
0.1 to 0.3 in the latter test. In the binary expansion method,
Z was set to 11, and thus, we used 211= 2048 discrete points
to approximate the value of ρt .

For the RES data, we normalized the solar and wind power
curves of the PJM [41] collected on July 2nd, 2017 and
used them to obtain the basic trend of the maximal available
RES output in our test system. The maximal available DRSS
(M-DRSS) were sampled from 10% to 70%, and the daily
maximal available RES output was determined as follows:
Rmax = ρAgg.MaxL. Seven available RES curves were gener-
ated and are shown in Fig. 2. Aside from a certain RES profile
with various M-DRSS, we also adopted the RES profiles on
the 2nd of each month in 2017 and specified that the M-DRSS
at 60% generated 12 different available RES curves, as shown
in Fig. 3.

FIGURE 2. Seven available RES curves with different M-DRSS values
based on a certain RES profile.

FIGURE 3. Twelve available RES curves with the M-DRSS fixed at 60%
based on 12 different RES profiles.

B. MARGINAL IMPACTS ON THE POWER BALANCING
BURDEN FOR UNITS
Before running our model, some MIBs were defined to
validate our test results. As is introduced in Section II,
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a customer whose RSC is higher should have lower MIBs
than a customer with a lower RSC. Therefore, based on four
typically used quantitative power-balancing burden indices,
the peak-to-average ratio (PAR) [43], peak/valley load differ-
ence (PVD) [32], maximal ramp-up rate (Rup), and maximal
ramp-down rate (Rdn), four MIBs can be derived based on
the definition of marginal impact and Equation (4), where
f·(EL) is denoted by PAR, PVD, Rup, and Rdn, as shown in
Equations (21a)–(21d). Furthermore, the DRSSwas also con-
sidered, and the marginal impact on the DRSS was derived
as Equation (21e). The derivation processes of each MIB is
provided in the Appendix.

Note that smaller values for the first four indices corre-
spond to fewer balancing burdens for the units, while a larger
value of MIDRSS corresponds to a more integrated RES.

MIBPAR =
TGAvgLPj.tpeak − G

max

T · (GAvg)2
(21a)

MIBPVD = LPj.tpeak − LPj.tvalley (21b)

MIBRup = |LPj.tRup2 − LPj.tRup1 | (21c)

MIBRdn = |LPj.tRdn2 − LPj.tRdn1 | (21d)

MIDRSS =
∑

t∈T
ρtLPj.t − ρAgg (21e)

C. RSC EVALUATION TEST AND ANALYSIS
We evaluated the RSC of 15 typical load profiles in the
M-DRSS range of 10–70% with a certain RES profile, i.e.,
the RES curves in Fig. 2. Fig. 4 shows the RSC of all the
typical load profiles, and several key observations weremade.
First, the DRSS equaled the M-DRSS when their values
were not very large, which means that there was no RES
curtailment because the balancing burden for the units was
not severe. However, when the M-DRSS increased to 40%,
the DRSS was less than the M-DRSS, which means that
curtailment of the RES occurred. Second, the RSCs of some
load profiles were clearly higher than those of others. For
instance, customer type-15 obtained the highest RSC, while
customer type-12 obtained the lowest. Meanwhile, the dif-
ference in the customers’ RSCs increased with the M-DRSS.
The RSCs of some customers, such as type-15, were higher
than the M-DRSSs. This occurred because some customers
had significantly lower RSC, e.g., customer type-12. Thus,
the renewable energy share of some customers was occupied
by others due to different contributions to the integrated RES.
If these customers want to increase their RSC, they must
reshape their load profiles.

In addition to the observations above, we also found that
when the RES profile is specified, the rank of RSC of these
15 typical load profiles did not change significantly with
increasing M-DRSS. Overall, regardless of the M-DRSS,
customers who shared load profile type-15 were always
evaluated as good customers that facilitated integrating the
RES, but type-12 had a negative impact on RES integration.
Alternatively, we can specify a certain M-DRSS but adopt
different RES profiles, i.e., the RES curves in Fig. 3, as a
further test. Fig. 5 shows the RSC evaluation results of two

FIGURE 4. RSC of 15 typical load profiles under different M-DRSS.

FIGURE 5. RSC of typical load profiles with different RES profiles.

representative types of loads, type-12 and type-15, and the
DRSS. Although type-15 obtained a higher RSC than type-12
in most months, in agreement with the cases when the RES
profile was specified, there were several irregular results,
such as in June and August. Also, both the RSC and DRSS
fluctuate over the 12 different RES profiles. The reason is
that the evaluation of RSC depends not only on the load
profile but also the RSS, which is related to system-level RES
output. When a load profile approximated the RES profile,
it was more likely to obtain a higher RSC. Thus, when we
adopted different RES profiles to test the RSC of each load
type, we cannot assert which customer will always get higher
RSC. For instance, type-12 obtained an RSC higher than that
of type-15 in June and August. Intuitively, the test results
in Fig. 4 and Fig. 5 obey the mathematical structure of the
proposed evaluation method.

D. VALIDATION OF RSC
The previous subsection showed the evaluation results of the
RSC. To validate the RSC evaluation results analytically and
numerically, in this section we show detailed operation states
and the results of several MIBs defined in Section IV.B.

First, the operation states of the whole system with the
maximal available RES output from Fig. 2 at an M-DRSS of
60% were simulated, and they are shown in Fig. 6, while typ-
ical type-15 and type-12 load profiles are shown in Fig. 7. An
extreme ramp-up rate was required between timeslots 9 to 10,
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FIGURE 6. Operation states of the whole system.

FIGURE 7. Load profiles of type-15 and type-12 (left-15 and right-12).

while an extreme ramp-down rate was required between
timeslots 14 to 16, where the curtailment of the RES occurred
due to insufficient ramping capacities of the units. Type-12
was evidently more responsible for these ramping events,
while type-15 experienced a positive impact on preserv-
ing ramping flexibility. Meanwhile, the RES was adequate
between timeslots 1 and 6 and curtailment occurred. The peak
for type-15 also occurred during these timeslots. Conversely,
the peak load of type-12 occurred between timeslots 10 and
13, but the RES was not adequate. As a result, when more
customers were sharing the load profiles, such as type-15 but
not type-12, a reduced power balancing burden was placed on
the units, and the RES would be better integrated.

To quantitatively validate our RSC evaluation results,
MIBPAR, MIBPVD, MIBRup, MIBRdn, and MIDRSS were intro-
duced above. Four maximal available RES output curves in
Fig. 2 with the M-DRSS samples of 20%, 40%, 60%, and
70% are tested, successively. The five indices for type-15
and type-12, and the average value of 15 load profiles are
shown in Fig. 8. For a more intuitive representation, the
axis representing MIDRSS is reversely plotted, so an outside
circle (a larger circle) indicates a worse impact on the power
balancing and integration of the RES. Based on the presented
results, the following observations were made. First, type-15
performed better than type-12 under different M-DRSS con-
ditions, since the blue circle is always larger than the red
circle. Type-15 exhibited a negative marginal impact on the
first four power balancing burden indices, i.e., PAR, PVD,
Rup, and Rdn, which means the generation capacities and
ramping of units were reduced for type-15. Type-15 also

FIGURE 8. Radar charts of the MIBs at different M-DRSS magnitudes.

had a positive impact on the DRSS, which facilitated greater
RES integration. Conversely, a larger power balancing burden
occurred when customers shared the load profile, such as
type-12. The five indices for verification matched the RSC
evaluation results.

In this subsection, the evaluation results of the RSC were
validated through the analysis of operation states and several
MIBs indices. Thus, our proposed evaluation method is cor-
roborated to be reasonable.

E. RSC-BASED DR TEST AND ANALYSIS
In practice, not all the customers will take part in the
DR. Therefore, the DR participation percentage was defined
before running the DR program as the ratio between DR
customers’ daily consumption and the total load daily con-
sumption in the whole system.

DR% =
∑

j∈J
LDayj /L × 100%. (22)

We adopt the maximal available output curve in Fig. 2 with
M-DRSS=60%. The RSC-based DR program is run with
DR% setting to be 60%. The 15 typical load profiles and
their reshaped load profiles after the DR, i.e., multi plans,
are shown in Fig. 9. Because of the physical constraints in
the model, the load profiles after the DR did not change
significantly, and the rhythm was also maintained. Addition-
ally, the RSC values for all typical load profiles increased
after the DR, as shown in the brackets in Fig. 9. From the
perspective of the system, the RSC-based DR could reduce
the power balancing burden for conventional units and facil-
itate the integration of additional RES. As shown in Table 1,
PAR, PVD (MW), Rup (MW), and Rdn (MW) all decreased
after the DR. Meanwhile, the DRSS increased from 54.05%
to 57.54%, which means that 418.8 MWh of RES curtail-
ment was avoided because the amount of available RES was
12,000 MWh. Meanwhile, the total operation cost of the
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TABLE 1. Five system-level features before and after the DR.

FIGURE 9. Load profiles before and after the DR with the RSC.

units (except the curtailment cost) in the whole system also
decreased from $225,148 to $202,416. This result was due
not only to more integrated RES but also to fewer regulating
requirements for the units.

Then, we tested the impact of the DR participation percent-
age and comfort loss tolerance δ on the RES integration and
total cost. The ratio of the DRSS to the M-DRSS was used to
evaluate the integration performance, which was expected to
approach 1. The M-DRSS varied from 20% to 70%. For the
case presented in Fig. 10, the comfort loss tolerance was set
to 0.2 while the DR participation percentage changed from 0
to 100%. Furthermore, the DR participation percentage was
fixed at 60% but δ changed from 0 to 0.3. The results are
shown in V. Both the DR percentage and δ represented a pos-
itive DR level, where the larger value of the former indicated
that more customers were responsive to the RSC-based DR,
while a more significant value of the latter indicated a more
flexible load.

The following observations were made. First, under
a certain DR participation percentage or δ, the DRSS/
M-DRSS ratio decreased with the increase in the M-DRSS
(See Fig. 10 (a) and V (a)). This occurred because the ramp-
ing or regulation capacities of the units were insufficient to
integrate all the available RES when the M-DRSS was high.
Thus, a curtailment of some RES was necessary to ensure
the reliability of the power systems. Meanwhile, the total cost

FIGURE 10. Impact of the DR percentage on integrated RES.

FIGURE 11. Impact of the comfort loss tolerance on integrated RES.

decreased with the increase in the M-DRSS at the beginning,
because more RES was integrated whose generation costs
were negligible. However, when the RES penetration was
significant (more than 50%), the total cost increased with
the increase in the M-DRSS (See Fig. 10 (b) and V (b)).
The reason is that the curtailment of the RES occurred, and
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MIBPAR = lim
1P→0

fPAR(
−→
L +1P ·

−→
LPj)− fPAR(

−→
L )

1P

= lim
1P→0

Gmax+1P·LPj.tpeak
GAvg+1P/T

−
Gmax

GAvg

1P

= lim
1P→0

TGAvgLPj.tpeak − G
max

T · (GAvg)2 +1P · GAvg
=
TGAvgLPj.tpeak − G

max

T · (GAvg)2
(24a)

MIBPVD = lim
1P→0

fPVD(
−→
L +1P ·

−→
LPj)− fPVD(

−→
L )

1P

= lim
1P→0

(Gtpeak +1P · LPj.tpeak )− (Gtvalley +1P · LPj.tvalley )− (Gtpeak − Gtvalley )

1P
= LPj.tpeak − LPj.tvalley (24b)

MIBRup = lim
1P→0

fRup(
−→
L +1P ·

−→
LPj)− fRup(

−→
L )

1P

= lim
1P→0

|(GtRup2 +1P · LPj.tRup2 )− (GtRup1 +1P · LPj.tRup1 )| − |GtRup2 − GtRup1 |

1P
= |LPj.tRup2 − LPj.tRup1 | (24c)

MIBRdn = lim
1P→0

fRdn(
−→
L +1P ·

−→
LPj)− fRdn(

−→
L )

1P

= lim
1P→0

|(GtRdn2 +1P · LPj.tRdn2 )− (GtRdn1 +1P · LPj.tRdn1 )| − |GtRdn2 − GtRdn1 |
1P

= |LPj.tRdn2 − LPj.tRdn1 | (24d)

MIDRSS = lim
1P→0

fDRSS (
−→
L +1P ·

−→
LPj)− fDRSS (

−→
L )

1P

= lim
1P→0

∑
t∈T

ρt (Lt+1P·
−→
LPj)

L+1P −

∑
t∈T

ρtLt

L

1P

= lim
1P→0

L
∑
t∈T

ρtLt −
∑
t∈T

ρtLt

L(L +1P)

=

∑
t∈T

ρtLt −

∑
t∈T

ρtLt

L
=

∑
t∈T

ρtLt − ρAgg (24e)

the curtailment cost played a crucial role in the total cost.
Furthermore, more reserve was required for the uncertainty
of the RES when the M-DRSS was high, and the reserve cost
increased. Thus, significant RES penetration is environmen-
tally friendly, but the curtailment of RES is difficult to avoid.

However, the RSC-based DR facilitated integrating con-
siderably more RES in the whole system while reducing the
total cost. Furthermore, a larger DR participation percent-
age and δ both facilitated the performance of the DR. For
instance, when the M-DRSS was 70%, the DRSS/M-DRSS
ratio increased from less than 0.85 to about 0.95 with the DR
participation percentage increasing (See Fig. 10 (a)). Mean-
while, the total cost decreased from $359,982 to $253,508
(See Fig. 10 (b)). Thus, a fraction of the operation cost
saving can be allocated to DR customers for incentive. When
the M-DRSS was low (about 20%), the RSC-based DR
performance was not evident, because all the RES could

be integrated by relying on conventional units. Therefore,
for a DR provider, attracting more customers to join to the
RSC-based DR program or giving more rewards to some
customers to obtain a larger tolerance of comfort loss are two
useful approaches for integrating more RES. Meanwhile, in
practice, the RSC-based DR is more necessary with signifi-
cant RES penetration.

V. CONCLUSION
In this paper, we addressed two crucial issues of the DR:
performance evaluation and deployment scheme. For the
evaluation, the MIR of a customer was proposed and proven
to be reasonable for evaluating the RSC. The CBL was
replaced by the RSC to directly evaluate customers’ contri-
butions to the integrated RES and the performance in the
DR. An RSC-based DR scheme was also proposed, where
customers were motivated to reshape their load profiles to
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obtain a higher RSC, which contributed to the reduction
of the power balancing burden for conventional units and
integration of more RES. We corroborated the evaluation
method analytically and numerically, while the DR program
performed well on integrating considerably more RES into
the power system.

The limitations of the proposed method are as follows.
First, the network constraints were not considered. Addi-
tionally, customers’ decisions with bounded rationality were
also ignored. As a result, future work will focus on a more
comprehensive MIR evaluation method and the DR scheme
will account for customers’ behaviors.

APPENDIX
We will show how to obtain the MIBs in Section IV.

First, we leverage several system-level metrics to evaluate
the power balancing burden of units and performance of RES
integration.

1) Peak-to-average ratio (PAR) [43]:

fPAR(
−→
L ) =

Gmax

GAvg
(23a)

where Gmax and Gavg denote the peak and average value of
the aggregated generation of units, respectively.

2) Peak/valley difference (PVD) [32],

fPVD(
−→
L ) = Gtpeak − Gtvalley (23b)

where tpeak and tvalley are the timeslots when the peak and
valley value of the aggregated generation of units occur.Gtpeak
andGtvalley are the magnitudes of generation at tpeak and tvalley,
respectively.

3) Maximal ramp-up rate (Rup):

fRup(
−→
L ) = |GtRup1 − GtRup2 | (23c)

where tRup1 and tRup2 are two successive timeslots when
the ramp-up rate of the aggregated generation of units is
maximal. GtRup1 and GtRup2 are the magnitudes of generation
at tRup1 and tRup2, respectively.
4) Maximal ramp-down rate (Rdn)

fRdn(
−→
L ) = |GtRdn1 − GtRdn2 | (23d)

where tRdn1 and tRdn2 are two successive timeslots when
the ramp-down rate of the aggregated generation of units is
maximal. GtRdn1 and GtRdn2 are the magnitudes of generation
at tRdn1 and tRdn2, respectively.
5) Daily RSS (DRSS)

fDRSS (
−→
L ) =

∑
t∈T

ρtLt

L
(23e)

Then, we can obtain the corresponding Marginal Impacts
Indexes on corresponding system-level metrics based on the
definition of marginal impact, i.e., Eq. (4), (24a)–(24e), as
shown at the top of the previous page.

REFERENCES
[1] J. Li, F. Liu, Z. Li, C. Shao, and X. Liu, ‘‘Grid-side flexibility of power sys-

tems in integrating large-scale renewable generations: A critical review on
concepts, formulations and solution approaches,’’ Renew. Sustain. Energy
Rev., vol. 93, pp. 272–284, Oct. 2018.

[2] L. Che, X. Liu, X. Zhu, M. Cui, and Z. Li, ‘‘Assessment of dispatch
intervals in power systems with high wind penetration,’’ IEEE Trans.
Sustain. Energy, to be published.

[3] C. Dong, Y. Qi, W. Dong, X. Lu, T. Liu, and S. Qian, ‘‘Decomposing driv-
ing factors for wind curtailment under economic new normal in China,’’
Appl. Energy, vol. 217, pp. 178–188. May 2018.

[4] H. Han, S. Gao, Q. Shi, H. Cui, and F. Li, ‘‘Security-based active demand
response strategy considering uncertainties in power systems,’’ IEEE
Access, vol. 5, pp. 16953–16962, 2017.

[5] Q. Shi, C.-F. Chen, A. Mammoli, and F. Li, ‘‘Estimating the profile of
incentive-based demand response (IBDR) by integrating technical models
and social-behavioral factors,’’ IEEE Trans. Smart Grid, to be published.

[6] Q. Hu, F. Li, X. Fang, and L. Bai, ‘‘A framework of residential demand
aggregation with financial incentives,’’ IEEE Trans. Smart Grid, vol. 9,
no. 1, pp. 497–505, Jan. 2018.

[7] C. Chen, M. Cui, X. Wang, K. Zhang, and S. Yin, ‘‘An investigation
of coordinated attack on load frequency control,’’ IEEE Access, vol. 6,
pp. 30414–30423, 2018.

[8] J. Aghaei and M.-I. Alizadeh, ‘‘Demand response in smart electricity
grids equipped with renewable energy sources: A review,’’ Renew. Sustain.
Energy Rev., vol. 18, pp. 64–72, Feb. 2013.

[9] H. Zhong, L. Xie, and Q. Xia, ‘‘Coupon incentive-based demand response:
Theory and case study,’’ IEEE Trans. Power Syst., vol. 28, no. 2,
pp. 1266–1276, May 2013.

[10] W. Wei, F. Liu, and S. Mei, ‘‘Energy pricing and dispatch for smart
grid retailers under demand response and market price uncertainty,’’ IEEE
Trans. Smart Grid, vol. 6, no. 3, pp. 1364–1374, May 2015.

[11] Z. Chen, L. Wu, and Y. Fu, ‘‘Real-time price-based demand response man-
agement for residential appliances via stochastic optimization and robust
optimization,’’ IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1822–1831,
Dec. 2012.

[12] R. Li, Q. Wu, and S. S. Oren, ‘‘Distribution locational marginal pricing for
optimal electric vehicle charging management,’’ IEEE Trans. Power Syst.,
vol. 29, no. 1, pp. 203–211, Jan. 2014.

[13] S. Fan, Z. Li, J. Wang, L. Piao, and Q. Ai, ‘‘Cooperative economic schedul-
ing for multiple energy hubs: A bargaining game theoretic perspective,’’
IEEE Access, vol. 6, pp. 27777–27789, 2018.

[14] C. Chen, J. Wang, and S. Kishore, ‘‘A distributed direct load control
approach for large-scale residential demand response,’’ IEEE Trans. Power
Syst., vol. 29, no. 5, pp. 2219–2228, Sep. 2014.

[15] S. Fan, G. He, K. Jia, and Z.Wang, ‘‘A novel distributed large-scale demand
response scheme in high proportion renewable energy sources integration
power systems,’’ Appl. Sci., vol. 8, no. 3, p. 452, 2018.

[16] T. K. Wijaya, M. Vasirani, and K. Aberer, ‘‘When bias matters: An
economic assessment of demand response baselines for residential cus-
tomers,’’ IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1755–1763, Jul. 2014.

[17] X. Fang, Q. Hu, F. Li, B. Wang, and Y. Li, ‘‘Coupon-based demand
response considering wind power uncertainty: A strategic bidding model
for load serving entities,’’ IEEE Trans. Power Syst., vol. 31, no. 2,
pp. 1025–1037, Mar. 2016.

[18] S. Mohajeryami, M. Doostan, and P. Schwarz, ‘‘The impact of Customer
Baseline Load (CBL) calculation methods on Peak Time Rebate pro-
gram offered to residential customers,’’ Electr. Power Syst. Res., vol. 137,
pp. 59–65, Aug. 2016.

[19] Y. Zhang, W. Chen, R. Xu, and J. Black, ‘‘A cluster-based method for
calculating baselines for residential loads,’’ IEEE Trans. Smart Grid, vol. 7,
no. 5, pp. 2368–2377, Sep. 2016.

[20] S. Mohajeryami, M. Doostan, A. Asadinejad, and P. Schwarz, ‘‘Error
analysis of customer baseline load (CBL) calculation methods for res-
idential customers,’’ IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 5–14,
Jan./Feb. 2017.

[21] A. Safdarian,M. Fotuhi-Firuzabad, andM. Lehtonen, ‘‘Optimal residential
loadmanagement in smart grids: A decentralized framework,’’ IEEETrans.
Smart Grid, vol. 7, no. 4, pp. 1836–1845, Jul. 2016.

[22] Y. Yu, G. Liu, W. Zhu, F. Wang, B. Shu, K. Zhang, N. Astier, and
R. Rajagopal, ‘‘Good consumer or bad consumer: Economic information
revealed from demand profiles,’’ IEEE Trans. Smart Grid, vol. 9, no. 3,
pp. 2347–2358, May 2018.

VOLUME 7, 2019 129213



S. Fan et al.: Evaluating and Increasing the Renewable Energy Share of Customers’ Electricity Consumption

[23] Y. Sun, Z. Chen, Z. Li, W. Tian, and M. Shahidehpour, ‘‘EV charging
schedule in coupled constrained networks of transportation and power sys-
tem,’’ IEEE Trans. Smart Grid, vol. 10, no. 5, pp. 4706–4716, Sep. 2019.

[24] W. Shi, N. Li, C.-C. Chu, and R. Gadh, ‘‘Real-time energy management in
microgrids,’’ IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 228–238, Jan. 2017.

[25] Y. Zhou, M. Cheng, and J. Wu, ‘‘Enhanced frequency response from
industrial heating loads for electric power systems,’’ EEE Trans. Ind.
Informat., vol. 15, no. 6, pp. 3388–3399, Jun. 2019.

[26] P. Srikantha and D. Kundur, ‘‘Resilient distributed real-time demand
response via population games,’’ IEEE Trans. Smart Grid, vol. 8, no. 6,
pp. 2532–2543, Nov. 2017.

[27] F. Luo, G. Ranzi, X. Wang, and Z. Y. Dong, ‘‘Social information filtering-
based electricity retail plan recommender system for smart grid end users,’’
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 95–104, Jan. 2019.

[28] K. Jia, G. He, S. Fan, G. Lin, S. Lu, and F. Pan, ‘‘Cyber and physical inte-
gration analysis for automated residential demand response in smart grid,’’
in Proc. IEEE PES Asia–Pacific Power Energy Eng. Conf., Nov. 2017,
pp. 1–6.

[29] T. Chen, Q. Alsafasfeh, H. Pourbabak, and W. Su, ‘‘The next-generation
U.S. retail electricity market with customers and Prosumers—A biblio-
graphical survey,’’ Energies, vol. 11, no. 1, p. 8, 2017.

[30] J. Yang, J. Zhao, F. Wen, and Z. Y. Dong, ‘‘A framework of customiz-
ing electricity retail prices,’’ IEEE Trans. Power Syst, vol. 33, no. 3,
pp. 2415–2428, May 2018.

[31] Y. Zhang, K. Meng, W. Kong, and Z. Y. Dong, ‘‘Collaborative filtering-
based electricity plan recommender system,’’ EEE Trans. Ind. Informat.,
vol. 15, no. 3, pp. 1393–1404, Mar. 2019.

[32] S. Wang, N. Zhang, Z. Li, and M. Shahidehpour, ‘‘Modeling and impact
analysis of large scale V2G electric vehicles on the power grid,’’ in Proc.
IEEE PES Innov. Smart Grid Technol., Tianjin, China, May 2012, pp. 1–6.

[33] P. Li, D. Yu, M. Yang, and J. Wang, ‘‘Flexible look-ahead dispatch realized
by robust optimization considering CVaR of wind power,’’ IEEE Trans.
Power Syst., vol. 33, no. 5, pp. 5330–5340, Sep. 2018.

[34] J. Wang, M. Shahidehpour, and Z. Li, ‘‘Security-constrained unit com-
mitment with volatile wind power generation,’’ IEEE Trans. Power Syst.,
vol. 23, no. 3, pp. 1319–1327, Aug. 2008.

[35] J. Kwac, J. Flora, and R. Rajagopal, ‘‘Household energy consumption
segmentation using hourly data,’’ IEEE Trans. Smart Grid, vol. 5, no. 1,
pp. 420–430, Jan. 2014.

[36] R. Li, W. Wei, S. Mei, Q. Hu, and Q. Wu, ‘‘Participation of an energy hub
in electricity and heat distribution markets: An MPEC approach,’’ IEEE
Trans. Smart Grid, vol. 10, no. 4, pp. 3641–3653, Jul. 2019.

[37] C. Zhang, Q. Wang, J. Wang, P. Pinson, J. M. Morales, and J. Østergaard,
‘‘Real-time procurement strategies of a proactive distribution company
with aggregator-based demand response,’’ IEEE Trans. Smart Grid, vol. 9,
no. 2, pp. 766–776, Mar. 2018.

[38] J.M. Arroyo, ‘‘Bilevel programming applied to power system vulnerability
analysis under multiple contingencies,’’ IET Generat., Transmiss. Distrib.,
vol. 4, no. 2, pp. 178–190, Feb. 2010.

[39] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas,
‘‘MATPOWER: Steady-state operations, planning, and analysis tools for
power systems research and education,’’ IEEE Trans. Power Syst., vol. 26,
no. 1, pp. 12–19, Feb. 2011.

[40] Commercial and Residential Hourly Load Profiles for all TMY3 Loca-
tions in the United States. Accessed: Oct. 11, 2018. [Online]. Avail-
able: https://openei.org/doe-opendata/dataset/commercial-and-residential-
hourly-load-profiles-for-all-tmy3-locations-in-the-united-states

[41] Data Miner 2-PJM. Accessed: Oct. 11, 2018. [Online]. Available:
http://dataminer2.pjm.com/list

[42] C.-P. Cheng, C.-W. Liu, and C.-C. Liu, ‘‘Unit commitment by Lagrangian
relaxation and genetic algorithms,’’ IEEE Trans. Power Syst., vol. 15, no. 2,
pp. 707–714, May 2000.

[43] Y. Zhou, R. Kumar, and S. Tang, ‘‘Incentive-based distributed scheduling
of electric vehicle charging under uncertainty,’’ IEEE Trans. Power Sys-
tems, vol. 34, no. 1, pp. 3–11, Jan. 2019.

SHUAI FAN (S’18) is currently pursuing the
Ph.D. degree with Shanghai Jiao Tong University.
His research interests include economic operation,
demand response, and online optimization in elec-
tric power systems.

ZHENGSHUO LI (S’12–M’16) received the bach-
elor’s and Ph.D. degrees from the Department
of Electrical Engineering, Tsinghua University,
Beijing, China, in 2011 and 2016, respectively.
He was a Postdoctoral Fellow with the Tsinghua–
Berkeley Shenzhen Institute (TBSI), from 2016 to
2018. He is currently a Professor with Shandong
University, Jinan, Shandong, China. His research
interests include economic dispatch and security
analysis of transmission and distribution grids and

demand response in smart grids. He was a recipient of the Best Paper Award
of 2015 China National Doctoral Academic Annual Meeting, the Best Paper
of 2016 IEEE PES General Meeting, and the Excellent Doctoral Dissertation
Award of Tsinghua University, in 2016. He was also a recipient of the Best
Reviewer Award for the IEEE TRANSACTIONS ON SMART GRID, in 2015 and the
Proceedings of CSEE, in 2017 and 2018. His dissertation was selected for
Springer Theses.

ZUYI LI (SM’09) received the B.S. and M.S.
degrees from Shanghai Jiao Tong University,
Shanghai, China, in 1995 and 1998, respectively,
and the Ph.D. degree from the Illinois Institute of
Technology (IIT), Chicago, in 2002, all in electri-
cal engineering. He is currently a Professor with
the Electrical and Computer Engineering Depart-
ment, Illinois Institute of Technology (IIT). His
research interests include economic and secure
operation of electric power systems, cyber security

in smart grid, renewable energy integration, and the electric demandmanage-
ment of data centers.

GUANGYU HE (M’04–SM’15) received the B.S.
degree in automation and the Ph.D. degree in
electrical engineering from Tsinghua University,
Beijing, China, in 1994 and 1999, respectively,
where he joined the Department of Electrical Engi-
neering, in 1999. In 2014, he joined the School
of Electronic Information and Electrical Engi-
neering, Shanghai Jiao Tong University, Shang-
hai, China, where he is currently a Professor. His
research interests include power systems analysis

and operations, demand response, machine learning, and nonlinear optimiza-
tion for large-scale problems.

129214 VOLUME 7, 2019


	INTRODUCTION
	FIRST CONTRIBUTION AND ITS RELATED WORK
	SECOND CONTRIBUTION AND ITS RELATED WORK

	MIR AND RSC
	PRELIMINARIES
	MIR
	RENEWABLE ENERGY SHARE OF A CUSTOMER'S CONSUMPTION (RSC)

	RSC-BASED DR SCHEME
	ASSUMPTIONS
	RSC-BASED DR
	INCENTIVE
	DEPLOYMENT

	MULTI-PLANS FOR INCREASING RSC
	ALGORITHM
	MPPDC
	LINEARIZATION


	CASE STUDY
	SIMULATION SETUP
	MARGINAL IMPACTS ON THE POWER BALANCING BURDEN FOR UNITS
	RSC EVALUATION TEST AND ANALYSIS
	VALIDATION OF RSC
	RSC-BASED DR TEST AND ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	SHUAI FAN
	ZHENGSHUO LI
	ZUYI LI
	GUANGYU HE


