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ABSTRACT Visible light communication (VLC) based on light emitting diodes (LEDs) has attracted much
attention because of its high data rate and energy efficiency. However, the shadowing caused by any mobile
obstacles could block the light-of-sight (LoS) link which may have a dramatical effect on the indoor VLC
channel state information (CSI). Instead of investigating the shadowing channel characteristics, wemodel the
link blockages as the incomplete channel matrix with sparsemissing elements and reconstruct the transmitted
signal by the `0-minimization with additional constraint on shadowing loss. However, the indoor VLC
channel is highly correlated especially in cases with small emitter separation. To further improve the accuracy
performance, we design the transmit beamforming to reduce the total coherence. Simulation results illustrate
the effectiveness of the proposed signal recovery algorithm with incomplete channel and further significant
enhancement via the proposed beamforming design.

INDEX TERMS Visible light communication, signal recovery, beamforming, transmit coherence, incom-
plete channel.

I. INTRODUCTION
The VLC could offer a strong wireless communication alter-
native to radio frequency (RF) used in indoor communication
because of its advantages such as cost-effective, high secu-
rity, license-free and immunity to RF interference [1], [2].
In general, the system performance of VLC depends heav-
ily on perfect CSI, which however is not available due
to feedback delays, quantization errors, channel estimated
errors in practice. Beside the invertible channel imperfec-
tions, the communications link may experience temporary
blockage or shadowing in dynamic environments (i.e. mobile
people and obstacles), which may lead to severe degradation
on system performance.

Many effects have been made against shadowing effect in
terms of the system configuration [3], [4], the channel mod-
eling [5]–[9]. The radiation angle at the transmitter is con-
figured which can guarantee the low probability of shadow-
ing with negligible power penalty caused by shadowing [3],
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while the number of LED is designed to provide robust-
ness against shadowing over the downlink transmission [4].
Besides the system configuration, the statistical properties
of the shadowing are investigated. For instance, under the
assumption of ideal Lambertian LED source, the random
shadowing is represented as a weighted Possion process [7].
Considering the small number of the obstacles, the obstacle
is modeled as a convex hull and the beam steering technology
is designed to detect the obstacles based on the division
of the illumination area [9]. Moreover, the tray tracking is
another approach including the triangulation algorithm [10]
and probabilistic filtering approach [11], under the assump-
tion that one lamp is shadowed. In realistic VLC scenario,
the blockage or shadowing would be at random positions
with any shape, size and number, resulting in the incom-
plete channel which may be changed dramatically. There-
fore, the conventional channel uncertainty models such as the
statistical error and the deterministic error [12]–[16] cannot
be used to present the shadowing effect, which motivates
us to propose a new channel uncertainty model for link
blockages.
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Recently, generalized spatial modulation (GenSM) that
takes full advantage of the spatial domain to transmit
more information is extended to the VLC system. The
combination can improve its spectral efficiency and energy
efficiency [17]–[21], in which some of transmit LEDs are
activated at the same time to transmit information, leading the
sparsity of transmitted signal. Due to its sparsity, the trans-
mitted signal can be recovered via `0-minimization under
the compress sensing (CS) frameworks, such as matching
pursuit (MP) [22], orthogonal matching pursuit (OMP) [23],
compressive sampling matching pursuit (CoSaMP) [24], and
`0smooth-norm (SL0) [25]. More specifically, the MP algo-
rithm has a slow convergence speed and high computation
complexity, while the OMP algorithm improves the con-
vergence speed but limited tolerance on the channel errors.
Meanwhile, due to the slow continuous function, the CoSaMP
and SL0 algorithms can only achieve inaccurate recovery.
The `0-norm problem can be further solved by alternating
direction method of multipliers (ADMM) or fast iterative
shrinkage thresholding algorithm (FISTA). It is worthy to
note that most of the aforementioned CS-based optimiza-
tion problems only involve one observation constraint under
noiseless scenario, i.e. the perfect measurement matrix (or
channel matrix).

Moreover, due to the small emitter separation of the PDs,
the indoor VLC channel responses among the users could
be highly correlated, handicapping the performance of the
aforementioned signal recovery. Besides the development
on physical devices [26], [27], the precoding approach is
introduced to eliminate channel correlation [28]–[31]. More
specifically, the correlated VLC indoor channel is decom-
posed into several independent parallel sub-channels through
the singular value decomposition (SVD)-based precoding
with low channel coherence achieved [28], [29]. Moreover,
the zero-forcing (ZF) precoding method chooses the trans-
mission mode according to the ratio of the maximum eigen-
value to the sum of all eigenvalues of the channel. The
channel correlation can be significantly reduced, especially
when the maximum eigenvalue of the channel correlation
matrix accounts for a large proportion of the sum of all
eigenvalues [30], [31]. However, the aforementioned schemes
are designed based on perfect CSI, which cannot be directly
implemented in the shadowing scenario where the channel
matrix might be ill-conditioned or not full rank due to the link
blockages.

In this work, we consider an indoor multiple-input-
multiple-output (MIMO) system in which the LEDs cover
the surface of the ceiling. Considering the dynamical shad-
owing caused by the movement of people and obstacles,
we model the LoS links as the incomplete channel matrix
in which the missing elements present the link blockages.
Under the incomplete channel matrix, the `0-minimization is
introduced to reconstruct the signal with additional constraint
to limit the shadowing effect. Further approximation of the
`1 − `1 minimization is developed and the optimum solu-
tion is achieved via ADMM algorithm iteratively. Moreover,

FIGURE 1. Shadowing effect caused by obstacle in MIMO VLC system.

it is noted that the highly-correlated indoor VLC channel
may result in large sum-of-square error (SSE) of recovered
signals, which motivates us to reduce the channel coherence
further. According to the restricted isometry property (RIP)
constraint of CS framework, it indicates that the sufficiently
low channel coherence guarantees the exact recovery of the
sparse signal vector [32]–[34]. We are inspired to design
the transmit beamforming to reduce the total coherence in
which the coherence of the equivalent channel is minimized.
Simulation results illustrate the effectiveness of the proposed
signal recovery algorithm with incomplete channel and the
significant improvement by minimizing the total coherence.
The main contributions of this paper can be summarized as
follows,

• We propose the incomplete channel model to present the
dynamical link blockages, in which the random-selected
missing elements indicate the temporarily blocked trans-
mission links.

• We introduce the `0-minimization to reconstruct the
transmitted GenSM signals with additional constraint
that eliminates the shadowing effect, which is further
approximated as the `1− `1 optimization and solved by
ADMM algorithm.

• We further design the transmit beamforming to mini-
mize the total coherence of the equivalent channel and
improve the recovery accuracy of the transmitted signal.

The remainder of the paper is organized as follows.
Section II presents the incomplete channel model and for-
mulates the `0-minimization problem. The proposed sig-
nal recovery problem is solved in Section III with further
improvement on beamforming design in Section IV. Sim-
ulation results are presented in Section V, followed by a
conclusion in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider an optical wireless MIMO system with LED
arrays, in which NT identical LEDs are utilized for illumi-
nation and data transmission and NR photodetectors (PDs)
installed. We assume the Lambertian radiation pattern for the
LEDs, and only consider the LoS between the LEDs and
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PDs. The corresponding LoS channel matrix H ∈ RNR×NT

between the transmitters and receivers can be given by

H =


h11 h12 ... h1NT
h21 h22 ... h2NT
...

...
...

...

hNR1 hNR2 ... hNRNT

 , (1)

where each element hij of H is defined as the channel gain
between the i-th receiver and j-th transmitter, that is,

hij =


Ai
d2ij
R0(φij) cos(ϕij) 0 ≤ ϕij ≤ ϕc

0 ϕij > ϕc,

(2)

with the distance dij between the i-th receiver and j-th trans-
mitter, the emission angle φij, the incidence angle of the light
ϕij, the collection area of the i-th receiver Ai and the receiver
field of view (FOV) ϕc. The R0(φ) is given by

R0(φ) = [(m+ 1)/2π ]cosm(φ), (3)

where m is the order of Lambertian emission.
In this work, we consider the practical scenario that con-

tains certain obstacles, such as in the furniture equipped office
room or corridor, instead of empty room. To simplify the
model, the rays are assumed to be absorbed after meeting the
obstacle while they are scattered after meeting the walls, ceil-
ing, and floor. Thus, the rays transmitted from the light source
that are blocked by the obstacle cannot be received. With the
link blockages, the channel could be dramatically degraded,
followed with total received power reduced at PDs. Hence,
a proper channel model that includes obstacles would be in
great need for high reliable VLC system design. The stan-
dard channel uncertainty models, such as the norm-bounded
error [12]–[14] and statistical error [15], [16], cannot be
implemented in the shadowing scenario. The obstacle, such
as, human body is modeled in the form of a rectangular shape
object [5]–[9]. It shows that the corresponding positions of
the luminance level drop to very low where the normalized
received optical power is distributed along the receiver plan
with obstacles [5]. Moreover, [9] further demonstrates that
the blocked ray modeled as zero is valid when the receiver at
PD is inside the shadowing hull of the obstacle. Therefore,
when the receiver at PD is inside the shadowing area of the
obstacles, the corresponding link is blocked, and the corre-
sponding elements in channel matrix is reasonable to be zero.
Consequently, the channel matrix is modeled as two parts,
that is, incomplete matrix that represents the link-blocked
channel and shadowingmatrix that represents themissing ele-
ments due to the obstacles. Considering the obstacles would
be at random positions with any shape and size, we model
the shadowing as random missing elements, and the perfect
channel H can be represented as

H = Ĥ+1, (4)

where Ĥ ∈ RNR×NT is the incomplete channel with sparse
missing elements, and the shadowing channel 1 ∈ RNR×NT

contains a lot of zeros and only a few nonzero elements where
the non-zeros present the missing elements due to the block-
age of the links. More specifically, when the receiver at PD is
inside the shadowing area of the obstacles, the corresponding
link is blocked, that is,

1) Point-missing case in which total k2 (k2 ≤ NT × NR)
elements are selected to be non-zero. For instance,
when the shadowing projection of the obstacle on the
PD is relatively small compared with the receiver at
PD, only the link between j-th transmitter and the i-th
receiver is blocked, that is, the (i, j)-th element of 1 is
non-zero.

2) Line-missing case in which total k1 (k1 ≤ NT or NR)
row or column are randomly set to be non-zero. For
instance, when the shadowing projection of the obstacle
on the PD is relatively large compared with the receiver
at PD, all links to the i-th receiver is blocked, that is,
the i-th column of 1 is non-zero.

With GenSM, some of the LEDs are activated at the
same time to transmit information and the combinations of
the indices of the activated LEDs are utilized to transmit
spatial-domain information as well. According to the prin-
ciple of GenSM [17]–[21], the transmitted signal x ∈ RNT×1

contains L non-zero elements, such as,

x=Ws= [0, . . . , s1, . . . , sk , sk+1, . . . , sL , . . . , 0]T , (5)

where s ∈ RL×1 (L < NT ) is the intended modulated
signal, and the precoder W ∈ RNT×L works as antenna
selection under the GenSM scheme, i.e. ‖Wi‖2 = 1. Note
that, the transmitted signal x is sparse and zero-dominant.
Moreover, followed the assumption in [17], [19], the chan-
nel impulse responses are estimated under the downlink of
time-division duplexing (TDD)-based architectures, and the
L-length intended symbols s are transmitted through the
selected antenna via the precoder matrix W. Let δ = 1x ∈
RNR×1, the received signal vector y ∈ RNR×1 can be written
as

y = Hx+ n =
(
Ĥ+1

)
x+ n = Ĥx+ δ + n , (6)

where n ∈ RNR×1 is the noise vector that follows the
zero-mean Gaussian distribution, i.e. n ∼ N (0, σ 2

e I). Note
that, the vector δ would be sparse because of the sparsity of
the transmitted signal in (4) and (5).

We propose the CS-based framework to reconstruct the
transmitted signal by utilizing the sparsity of δ and x, that
is,

min
x

‖x‖0 (7a)

s.t. ‖δ‖0 ≤ τ ‖y− Ĥx− δ‖22 ≤ NRσ
2
e , (7b)

where the additional constraint ‖δ‖0 ≤ τ strives to limit the
shadowing effect with the sparsity level τ > 0. Due to the
‖ · ‖0 terms, (7) is NP-hard, and the `1-norm is introduced
as an alternative surrogate. As the result, the underlying
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problem (7) can be further approximated as

min
x
‖x‖1 (8a)

s.t. ‖δ‖1 ≤ τ ‖y− Ĥx− δ‖22 ≤ NRσ
2
e , (8b)

which can be cast as a second order cone programming
problem and could be solved via interior point methods.

III. SIGNAL RECOVERY VIA ADMM WITH INCOMPLETE
CHANNEL
The aforementioned optimization problem (8) can be solved
via standard CVX toolbox. However, the incomplete channel
is ill-conditioned due to the shadowing loss, which may lead
to inaccurate signal recovery. Moreover, the infeasible solu-
tionmay be easily achieved because of the improper specified
boundaries, especially when the boundary is specified empir-
ically. The `1-regularization is one of the effective approaches
to jointly optimize multiple variables, such as

min
x
‖ y− Ĥx− δ ‖22 +λ1 ‖ x ‖1 +λ2 ‖ δ ‖1, (9)

where the first term prompts the noise sensitivity to be small,
the second term encourages a sparse solution, and the regu-
larization parameters λ1 and λ2 (λ1 + λ2 = 1) weight the
recovery accuracy and noise sensitivity, respectively. How-
ever, the underlying problem includes only one variable x and
its three terms cannot be minimized separately. Therefore,
the ADMMalgorithm that blends the decomposability of dual
ascent with the superior convergence properties of themethod
of multipliers is introduced to offer a linear convergence rate
and a natural extension to a decentralized implementation
[35]. By introducing an intermediate variable z ∈ RNR×1 as
bridge parameter to establish consensus among x, the prob-
lem (9) can be reformulated as

min
x,z,δ

‖ y− Ĥx− δ ‖22 +λ1 ‖ z ‖1 +λ2 ‖ δ ‖1, (10a)

s.t. z = x. (10b)

The corresponding augmented Lagrangian function over x, z
and δ can be written as,

Lρ(z, x, δ,2)=‖ y− Ĥx− δ ‖22+λ1 ‖ z ‖1
+λ2 ‖ δ ‖1+ρ/2 ‖ z− x+2/ρ ‖22, (11)

where 2 ∈ RNR×1 is a dual variable and ρ > 0 is a positive
penalty parameter. In each iteration of ADMM, we perform
alternating minimization of the augmented Lagrangian over
x, z and δ by taking ∂L/∂x = 0, ∂L/∂z = 0 and ∂L/∂δ = 0,
respectively. More specifically, each variable is updated by

xk+1 = (2ĤT Ĥ+ ρI)−1(ρzk + 2ĤT (y− δk )+2k ),

(12a)

zk+1 = shrink(xk+1 −
2k

ρ
,
λ1

ρ
), (12b)

δk+1 = shrink(y− Ĥxk+1,
λ2

2
), (12c)

2k+1
= 2k

+ ρ(zk+1 − xk+1), (12d)

where the shrinkage function is defined as

shrink(ω, τ ) =


ω − τ ω > τ

ω + τ ω < −τ

0 otherwise.

(13)

The iteration is stopped when the difference between the
objective functions of two successive iterations is less than
a predefined threshold or the iteration number reaches the
predefined maximum number.

Algorithm 1 Signal Recovery: `1-Minimization With
ADMM
Input: Ĥ ∈ RNR×NT , y ∈ RNR×1, itermax
Initializations:20

← 0, x0← 0
for k=1... itermax do

xk+1← (2ĤT Ĥ+ ρE)−1(ρzk + 2ĤT (y− δk )+2k )

zk+1← shrink(xk+1 − 2k

ρ
, λ1
ρ
)

δk+1← shrink(y− Ĥxk+1, λ22 )

2k+1
← 2k

+ ρ(zk+1 − xk+1)

if | objk+1 − objk |≤ ε then
break

end if
end for
x̂← x(k+1)

return x̂
Output: x̂ ∈ RNT×1

Remark 1: In this work, we specify the regularization
multipliers λ1 and λ2 and penalty parameter ρ empirically.
The effect of the multipliers and penalty parameter on the
system performance is discussed in Section V. The optimum
selection of λ1, λ2 and ρ is beyond the scope of this work,
which will be considered in further researches.

However, the channel gain of the MIMO indoor VLC sys-
tem is highly correlated in general, due to the system config-
uration including spatial positions of the transmitter (LEDs)
and the receiver (PDs), inter-LED spacing, inter-PD spacing,
radiation pattern of the LEDs, FOV of the PDs, etc. It may
cause severe performance degradation. Although the trans-
mitted signal can recovered by solving the `1-minimization
problem under the assumption of the incomplete channel
matrix, the property of the high-correlated VLC channel
is unchanged, which may result in large sum-of-square
error (SSE)1 [36], especially with highly correlated channel,
as Fig. 2 shown. In order to further improve the accuracy of
the signal recovery, it is necessary to develop an approach that
could reduce the channel coherence.

1The SSE is defined as ‖x− x̂‖2F , which is sensitive to the high coherence
of channel.
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FIGURE 2. SSE against transmit coherence with different uncertainty
rates (12.5%, 25%, 50%) under NT = NR = 9 MIMO configuration.

IV. COHERENCE-MINIMIZATION BEAMFORMING DESIGN
In CS theory, one of the fundamental mathematical problems
is to recover signal vector accurately from equivalent sensing
matrix. In order to understand the effect of channel coherence
on signal recovery, we need to recall the definition of the
mutual coherence [32]–[34], [37].
Definition ( [32]): For a dictionary D, its mutual

coherence is defined as the largest absolute and normal-
ized inner product between different columns in D, that
is,

µm{D} = max
1≤i,j≤k and i 6=j

| dTi dj |
‖di‖‖dj‖

. (14)

It presents the worst similarity between the dictionary
columns. Under the noiseless scenario, the signal x0 is guar-
anteed to be exactly recovered, once the inequality is satisfied
[32]–[34], [37], that is,

‖α0‖0 <
1
2

(
1+

1
µm{D}

)
, (15)

where the signal x0 has been constructed by x0 = Dα0.
It indicates that if themutual coherence is as small as possible,
a wider set of candidate signals are allowed with consequent
of more accurate signal recovery.

Inspired by the above inequality and its hints behind,
we strive to design the precoder matrix W under the noise
case, in which the minimum mutual coherence of the equiva-
lent sensing matrix

(
ĤW

)
can be achieved. However, it is

difficult to compute the mutual coherence of the equiva-
lent sensing matrix, especially when the number of trans-
mit/receive antenna is large. Moreover, the mutual coherence
represents the extreme pair-wise correlation between any two
columns (atoms) which may lead to conservative perfor-
mance [34], [37]. Therefore, considering that the recovery
accuracy is more related to the average coherence [27], [37],
we introduce the total coherence as an alternative coherence
metric.

The incomplete channel Ĥ can be rewritten as

Ĥ = UH3HVH
H , (16)

where UH and VH are the left and right unitary matrix,
respectively, and3H is the singular value matrix of Ĥ. At the
transmit side, suppose 0 = (WTV∗H ), the total coherence
µ(0) can be defined as

µ(0) =
NT∑
m=1

NT∑
n=1,n 6=m

(
0(m)H0(n)

)2
. (17)

In order to minimize the total coherence, we design the beam-
forming W to making the total coherence of the equivalent
sensing matrix as close as possible to the identity matrix, that
is,

min
W
‖WTW− INT ‖

2
F , (18a)

s.t. ‖W(n)‖22 = 1, n = 1, . . . ,NT , (18b)

where the objective function can be further rewritten as

‖0H0 − INT ‖
2
F

= tr
(
0H00H0 − 20H0 + INT

)
= tr

(
00H00H − 200H + IL

)
+ (NT − L)

(a)
= ‖00H − IL‖2F + (NT − L)

= ‖WTW− IL‖2F + (NT − L) , (19)

with the equality (a) following from VHVH
H = INT . Note

that, the computational complexing can be reduced signif-
icantly under the expression of (19), especially when the
number of transmit antenna is large. However, the underly-
ing problem is non-convex because of the individual power
constraint on each beamforming (18b), which can be further
relaxed as the sum of all the individual constraints, such as,∑L

n=1 ‖W(n)‖22 = L.
Proposition : The minimization of the total coherence

in (18) can be achieved by

min
W
‖WTW− IL‖2F (20a)

s.t.
L∑
n=1

‖W(n)‖22 = L , (20b)

with the optimum solution that is

W = U
[
IL , 0L,NT−L

]T VH , (21)

where U ∈ CNt×Nt and V ∈ CL×L are arbitrary unitary
matrices.
Proof: Suppose the singular value decomposition (SVD)

of W = UW3WVH
W with the unitary matrices UW ∈ CNt×Nt

and VH
W ∈ CL×L and 3W = [diag(λ1, . . . , λL) 0L,Nt−L)]

T ,
the corresponding objective function can be rewritten as

min
W

‖WTW− IL‖2F

= min
λ
‖VW3

T
WUH

WUW3WVH
W − IL‖2F
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FIGURE 3. Convergence under varied missing rates (12.5%, 25%, 50%).

= min
λ
‖VW (3T

W3W − IL)VH
W ‖

2
F

= min
λ
‖3T

W3W − IL‖2F

= min
λ

L∑
n=1

(λ2n − 1)2. (22)

As the result, the underlying problem now can be expressed
as

min
λ

L∑
n=1

(λ2n − 1)2 (23a)

s.t.
L∑
n=1

λ2n = L . (23b)

The corresponding Lagrangian function can be presented as

L(λ2, ς) =
L∑
n=1

(λ2n − 1)2 + ς (
L∑
n=1

λ2n − L) , (24)

in which the optimum solution λ2n can be achieved by solving

∂L(λ2, ς)
∂λ

= 0 , (25)

2λ2n + ς − 2 = 0 , (26)

that is, λ2n = 1, ∀n. Therefore, the optimalW can be achieved
as (21) with the optimal matrix 3W =

[
IL , 0NT−L

]T . �
Remark 2: The optimum solution (21) indicates that any

unitary U and V with the optimum singular values can min-
imize the total coherence. Later in the simulations, it shows
that the system performance can be improved significantly
after minimizing the total coherence.
Remark 3: The proposed beamforming minimizes the

mutual coherence without requiring CSI or the backhaul
links, which is compatible with the features of the propaga-
tion of the VLC.

FIGURE 4. Effect of parameter selection on MSE performance.

V. SIMULATION
In this work, we consider a typical 5 × 5 × 5 m3 room
which is composed of 2 LED arrays. Each LED array with
4 LEDs is uniformly distributed over the entire surface of
the ceiling with 1m spacing. The receivers with 2 × 4 PDs
are placed at a height of 1m with 0.1m separation. The
proposed `1-minimization via ADMM with minimum total
coherence (abbr. as ADMM with MTC) is compared to the
`1-minimization via ADMMwith zero-forcing beamforming
(abbr. as ADMM with ZF) [31], the `1-minimization via
ADMMwith SVDbeamforming (abbr. as ADMMwith SVD)
[28], the `1-minimization via ADMM without beamform-
ing design (8) (abbr. as ADMM), the `1-minimization via
FISTA without beamforming (abbr. as FISTA) [38]. More-
over, the parameters λ1, λ2, ρ and ε are set to be λ1 = 0.3,
λ2 = 0.7, ρ = 1.1, and ε = 10−4, respectively. Except Fig. 7,
the rest of all figures are under the system configuration with
NT = NR = 8. Note that, the line-missing case is considered
in the following simulations.

A. CONVERGENCE, PARAMETER SELECTION AND
COHERENCE EFFECT
The proposed algorithm is designed to minimize the trans-
mit coherence and improve the system performance. Before
demonstrating its effectiveness, the convergence and effect of
the transmit coherence are explored first. Fig.3 illustrates the
convergence of the proposed algorithm with varied missing
rate under SNR = 15dB, in which the proposed design can
converge monotonically within a few iterations. Moreover,
the missing rate may slow down the convergence speed,
since the iteration number becomes large when the missing
rate increases. It is worth to note that the high missing rate
however has limited effect on the achievable value of the
objective function.

Fig.4 illustrates the effect of the selection of regular-
ization multipliers and penalty parameter on mean square
error (MSE) performance where SNR = 15dB and missing
rate is 25%. The MSE is followed the definition in [36],
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FIGURE 5. MSE performance versus transmit coherence and missing rate.

that is,

MSE =
1
NT
‖x− x̂‖2F .

It shows the different combination of λ1, λ2 and ρ results in
varied MSE. The combination of either small λ2 and high ρ
or large λ2 and small ρ can achieve the low MSE. The best
combination of λ1, λ2 and ρ will be discussed in our further
research.

Furthermore, we investigate the effect of the transmit
coherence and missing rate on the MSE performance which
is presented in three-dimensional space with SNR= 15dB,
shown in Fig.5. It shows that the obtained MSE value
increases slowly as long as the increased transmit coher-
ence and missing rate, which demonstrates that the proposed
ADMM with MTC outperforms that without beamforming
design. It is because that the MTC beamforming design
can reduce the transmit coherence significantly. Moreover,
the effect of the transmit coherence on all mentioned algo-
rithms with SNR = 15dB and 50% missing rate is presented
in Fig.6. It shows that the beamforming framework, including
ZF, SVD and MTC, can provide further improvement on the
signal recovery. More specifically, the ADMM with MTC
achieves the lowest MSE compared with other schemes, even
the transmit coherence arrives to 0.8. Moreover, the ADMM
withMTC is not sensitive to the increased transmit coherence,
which indicates that the proposed algorithm can effectively
reduce the effect of the transmit coherence on the signal
recovery.

B. EFFECTIVENESS OF PROPOSED BEAMFORMING
DESIGN
The effectiveness of the proposed design is further demon-
strated in terms of MSE and bit error rate (BER) per-
formance, shown in Fig.7, Fig.8 and Fig. 9, respectively.
Fig.7 explores the sensitivity of the achieved MSE under
different MIMO configurations, that is, (8 × 8 and 16 ×
16) with SNR = 15dB. When the missing rate grows,
all the MSEs obtained by aforementioned designs increase.
Because of the transmit coherence reduction by the proposed

FIGURE 6. MSE performance versus transmit coherence.

FIGURE 7. MSE performance under different system configurations
(a) 8× 8, (b) 16× 16 MIMO.

FIGURE 8. MSE performance versus SNR.

beamforming, the ADMM with MTC significantly improves
the MSE performance which provides the lowest MSE, fol-
lowed by ADMMwith SVD and ADMMwith ZF. Moreover,
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FIGURE 9. BER performance versus SNR.

as the MIMO size increases, the impacts of the channel
missing rate on MSE performances become negligible, and
the gap among all mentioned algorithms becomes narrow.
It means that, the small scale MIMO system can earn benefits
on the proposed ADMM with MTC scheme, which becomes
less considerable as the MIMO size increases.

Fig.8 demonstrates MSE performance versus signal-to-
noise ratio (SNR) under 25% missing rate. As we expected,
the MSE value decreases with increasing SNR. The ADMM
with MTC achieves lowest MSE over all SNR region, which
is much lower than that achieved by ADMMapproach. More-
over, the difference between ADMM with ZF and ADMM
with SVD is small in the low SNR,which becomes significant
as the SNR increases.

The BER performance with 25% missing rate is illustrated
in Fig.9. With the increased SNR, the BER performance
monotonously decreases, where ADMM with beamforming
schemes achieve lower BERwhile FISTA algorithm provides
the highest BER. It indicates that the beamforming frame-
work can significantly improve the accuracy of the signal
recovery. Compared with the ZF and SVD beamforming
schemes, the proposed MTC beamforming scheme can effec-
tively reduce the transmit coherence, and obtain the lowest
BER among all mentioned schemes.

VI. CONCLUSION
In this paper, we consider the indoorMIMOVLC systemwith
random shadowing effect. Due to the blockages of the trans-
mit links caused by the shadowing, we model the channel as
incomplete matrix with sparse missing elements, and recon-
struct the transmitted signal by the `1 − `1 minimization in
which the optimum solutions are achieved via ADMM algo-
rithm iteratively. Considering that the high coherence of the
indoor VLC channel might degrade the performance of the
signal recovery, we further develop the beamforming design
to reduce the total coherence. Simulation results validate that
the proposed `1-minimization with ADMM can improve the
performance of the signal recovery and the developed MTC

beamforming can further enhance the accuracy of the signal
recovery.
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