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ABSTRACT Active disturbance rejection control (ADRC) is a kind of effective tool in dealing with dynamic
instability, simultaneous internal and external disturbances, nonlinearity, etc. However, the application of
ADRC is limited because the input and output signals of the system are not synchronized due to the existence
of time-delay impact in a time-delay system. Modified twice optimal control (MTOC) is a control algorithm
proposed for the time-delay system. It can effectively compensate the time-delay impact, synchronize the
input and output signals of the system, and provide control conditions for a better application of ADRC to
system control. In this paper, a new control algorithm, namely active disturbance rejection modified twice
optimal control (ADRMTOC), is proposed based on the suppression capability of ADRC to system total
disturbance and the compensation ability of MTOC to time-delay impact. The simulation experiments show
that the system under this control method has strong robustness and interference suppression ability, which
makes ADRMTOC have certain industrial practical values.

INDEX TERMS Time-delay system, active disturbance rejection control, modified twice optimal control,
active disturbance rejection modified twice optimal control, robustness.

NOTATION
r(t) Set value
u(t) Control input
y(t) System output
d(t) External disturbance
a′1, a

′

0, b Second-order non-time-delay system
parameters

w System external interference signal
f Total disturbance of system
x1, x2, x3 State vectors
ω(t) Time function
z1, z2, z3 ESO outputs
β10, β20, β30 ESO parameters

The associate editor coordinating the review of this manuscript and
approving it for publication was Bing Li.

ω0 Observer bandwidth
ωc Controller bandwidth
k0 Appropriate constant
kp, kd Controller gain
kc Gain of the closed-loop system
k1 Feedback coefficients of system
k = [k2, k3,
· · · , kµ], kµ+1 Feedback coefficients of time division

model
α = [α1, α2,
· · · , αµ] Internal feedback coefficient of the

(µ− 1) order state observer
K , K1 Plant gain
T , T1 Time constant
L, T1 Time-delay constant
l Function of L
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e−Ls Infinite dimensional delay factor.
µ Order of time-sharing model
β = [β1, β2,
· · · , βµ+1] Parameters of ITAE optimal transfer

function
Fµ(s) µ+ 1 order state feedback equation
Wdµ(s) System open-loop transfer function
ω0µ Optimal time scale
Fµe(s) Infinite-dimensional state observer
Wdµe(s) Infinite dimensional open loop transfer

function
KF Structural adjustment factor
Wdµ1(s) Open loop transfer function expansion of

the system based on TOC
φ1(s) Closed loop transfer function of TOC
c1 Damping of TOC
Wdµ2(s) Open loop transfer function expansion of

the system based on MTOC
φ2(s) Closed loop transfer function of MTOC
c2 Damping of MTOC
Edm% Maximum instantaneous drop value

I. INTRODUCTION
Time-delay system is very common, and the delay itself is
inevitable. The existence of infinite dimensional delay factor
is one of the major causes of system performance degradation
and instability [1], [2]. First of all, the time delay is one of the
essential characteristic of a dynamic system, and it cannot be
completely eliminated even in the most advanced technology
fields. Second, with the development of production demand,
the plant become more and more complex, and the accurate
mathematical description models of plant become more diffi-
cult to obtain. Finally, due to the uncertainty of the model and
the time-delay, the control of time-delay systems becomes a
hot issue.

In recent decades, the analysis of the stability of time-delay
systems has attracted extensive attention from domestic and
foreign scholars, and some control algorithms have been pro-
posed, such as Smith predictor control [3]–[8], PID [9]–[14],
fuzzy control [15]–[20], network control [21]–[26] and iter-
ative learning control(ILC) [27]–[29] algorithm. Smith pre-
dictive control is a pure lag compensation control method.
It compensates the system’s time delay by estimating the
dynamic characteristics of the system, and reduces the sys-
tem overshoot and improves the system response speed by
adjusting the controller parameters [3]–[6]. However, the
accuracy of Smith’s predictive control depends on the accu-
racy of the system model. When the model is inaccurate or
there is external interference, the control performance of the
Smith predictive control is significantly reduced. Therefore,
in order to improve the control performance of the device,
Smith predictive control is often combined with other con-
trol algorithms, such as PID and fuzzy control algorithms

[7], [8]. PID control has the advantages of simple structure,
good stability, high reliability and easy operation, and it has
been the most widely used control method in the field of
industrial process control [7], [8]. In the time-delay system,
the gain of the PID controller depends on the characteristic
equation of the system, which means that the controller needs
to be designed according to the expected performance of the
system [9]–[14]. Fuzzy control has the characteristics of not
relying on the accurate mathematical description model of
the system, which makes it have a strong advantage for the
time delay system [15]–[20]. Neural network control canmap
input and output relationships, with self-learning capabilities
and massively parallel processing capabilities. Therefore, in
the delay system, the neural network can convert the time-
delay system into a non-delay system, thereby reducing the
control difficulty [21]–[26]. ILC is an iterative search for the
appropriate control input by using the data information from
the previous action. It does not rely on the accurate mathemat-
ical description model of the system, and can realize the con-
trol of nonlinear strongly coupled dynamic systems with high
uncertainty with a very simple algorithm. However, whether
the plant has the nature of repeated motion determines the
control performance of the LIC [27]–[29]. The above algo-
rithms have their own advantages and disadvantages.

In addition to the above algorithms, twice optimal control
(TOC) and active disturbance rejection control (ADRC) are
also widely used in the field of the time-delay control. TOC is
an algorithm that fully compensates for the time-delay factor
of the system [30]–[33]. However, the overshoot of the TOC
control system is unsatisfied. In actual industrial production,
this will affect the operation of the machine and even damage
the machine. In order to reduce the overshoot of the system, a
structural adjustment factor is introduced in the TOC system,
which is called modified twice optimal control (MTOC) [34].
However, the robustness of MTOC is not high. ADRC is
not dependent on the mathematical model of the system.
ADRC uses the Extended State Observer (ESO) to estimate
and compensate for the external disturbances and the internal
uncertainty of the system. It has strong anti-interference and
robustness, and does not rely on the mathematical model of
the system [35]–[42]. However, ADRC has not the character-
istics of compensating for the time-delay factor. Therefore,
ADRC often combines with other algorithms, such as pre-
dictors [42], to improve the control performance of the time-
delay system.MTOC andADRC have a lot of research results
in the field of the time-delay system control, but they are
not combined. The authors also proposes an algorithm that
combines TOC and ADRC in [35]. Although the algorithm
improves the performance of the system, the system still exist
unsatisfied overshoots and oscillations.

In summary, considering the ability of ADRC to compen-
sate for total interference and the advantages of not rely-
ing on the accurate mathematical model of the plant, and
the MTOC compensation time-delay factor capability, this
manuscript proposes an active disturbance rejection modified
twice optimal control algorithm (ADRMTOC). Firstly, the
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FIGURE 1. Second-order ADRC system.

MTOC controller is used to transform the infinite dimen-
sional delay model of the plant into a finite dimensional
non-delay model to achieve compensation control of the
time-delay factor of system. Secondly, the plant and the
MTOC controller are treated as a generalized plant. Finally,
ADRC is used to estimate and compensate the total interfer-
ence of the generalized system to achieve control of the time
delay system.

The rest of the manuscript is organized as follows. First,
some preliminaries are introduced in Section 2. The details
of the proposed control algorithm are introduced in Section 3,
and then some case studies are presented in Section 4. Finally,
Section 5 gives conclusions.

II. PRELIMINARIES
This section mainly introduces two types of control algo-
rithms, ADRC and TOC.

A. ADRC
In the case of unknown system mathematical models, ADRC
can not only estimate and compensate the external interfer-
ence signal of the system, but also make a good predictive
compensation control for unknown internal disturbances. The
core structure of ADRC is the ESO, and the number of
parameters of ESO increases as the order of ADRC increases.
Therefore, in order to reduce the number of parameters of the
ESO, a low-order ADRC is generally used to control the high-
order system. The second-order ADRC control structure of
the time-delay system is as follows:

where r(t) is the set value, u(t) is the control input, y(t) is
the system output, and d(t) is the external disturbance.

In order to better explain the core idea of ADRC, a second-
order non-time-delay system is taken as an example, that is,
the infinite dimensional delay factor e−Ls is not considered.
The mathematical model of the second-order non-time-delay
system is:

ÿ+ a′1 + a
′

0y = b(u+ w) (1)

where r(t) is the set value, u(t) is the control input, y(t) is the
system output, and d(t) is the external disturbance.
In the design of ADRC, (1) can be rewritten as:

ÿ = bu+ f (2)

where f = bw− a′1 − a
′

0y is the total disturbance of system.

The state equation of the second - order non-time-delay
systems is as follows:

ẋ1 = x2
ẋ2 = f (x1, x2,w)+ bu
y = x1

(3)

To linearize the equation (3), let x3 = f (x1, x2,w), ẋ3 = ω(t),
and ω(t) is the time function. Then, a second order linearized
state equation is obtained:

ẋ1 = x2
ẋ2 = x3 + bu
ẋ3 = ω(t)
y = x1

(4)

ESO is set up for this expanded system as follows:
ż1 = z2 + β10(y− z1)
ż2 = z3 + β20(y− z1)+ bu
ż3 = β30(y− z1)

(5)

where z1, z2 and z3 are the ESO outputs, β10, β20 and β30 are
the ESO parameters: 

β10 = 3ω0

β20 = 3ω2
0

β30 = ω
2
0

ω0 = k0ωc

(6)

where ω0 is the observer bandwidth, ωc is the controller
bandwidth, and k0 is the appropriate constant.
The control law can be designed as:u =

u0 − z3
b

uo = kp(r − z1)− kd z2
(7)

where kp = ω2
c and kd = 2ωc are the controller gains.

In summary, the ADRC design process does not consider
the infinite dimensional delay factor e−Ls, which means that
it can only achieve effective control of the hourly time-delay
system. However, the control effect will become unstable or
even worse when the system has a large time-delay factor.

B. TOC
TOC is a special algorithm for time-delay system which can
effectively compensate the system’s time-delay factor. It is
mainly divided into two steps: (1) the infinite dimensional
delay factor is approximated by the finite dimensional delay
factor, and the integral observer and the absolute error (ITAE)
optimal control law are used to determine the parameters
of the state observer. In this process, ITAE optimization is
implemented in a finite dimensional space, which is also the
first optimization of TOC. (2) the finite dimensional delay
factor is returned to the infinite dimensional delay factor, that
is, the delay parameter is returned, and update the parame-
ters of the state observer. In this process, the optimal time
scale can be estimated by computer simulation to satisfy
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FIGURE 2. System of TOC.

FIGURE 3. Structure of the
(
µ − 1

)
-order state observer.

the optimal control rate of ITAE which is also the second
optimization of TOC. Its structure is as follows:

In FIGURE 2, kc is the gain of the closed-loop system;
G1(s) is the prediction transfer function; k1 is feedback coeffi-
cients of system; k = [k2, k3, · · · , kµ] and kµ+1 are feedback
coefficients of time division models; the (µ− 1)-order state
observer structure shown in Figure 3.

In FIGURE 3, α = [α1, α2, · · · , αµ] is the internal feed-
back coefficient of the (µ− 1) order state observer:

α1 =
µ!

Lµ
, α2 =

µ!

Lµ−1
, · · ·

αi =
µ!

(i− 1)!
1

Lµ−(i−1)
· · ·αµ =

µ

L
(8)

Most time-delay systems can be approximated as a first order
plus time-delay (FOPTD) model:

G(s) = G0(s)e−Ls =
K

Ts+ 1
e−Ls (9)

In equation (9), the infinite dimensional delay factor e−Ls is:

e−Ls = 1/(
∞∑
i=0

lisi), li =
1
i!
L i i ∈ N (10)

Any physical system is a dissipative system. As time goes
on, the dissipation will eliminate all small-scale and faster
convergence dimensions in the system. This means that the
dimension that determines the long-term behavior of the sys-
tem will be reduced to a valid number of dimensions. There-
fore, the finite dimensional delay factor is used to instead of
the infinite dimensional delay factor (10) in TOC:

e−Ls =
1

µ∑
i=0

lisi
, li =

1
i!
L i µ ∈ N (11)

where (11) is named as the µ-order time-sharing model, and
its corresponding general formula of the µ + 1-order state
feedback equation is:

Fµ(s) =
µ∑
i=1

kisi−1 + kµ+1

µ∑
i=0

lisi (12)

The system open-loop transfer function is:

Wdµ(s) =
kcGµ(s)

s[1+ Gµ(s)Fµ(s)]
(13)

where Gµ(s) = K
Ts+1 ·

1
µ∑
i=0

lisi
.

Expand Wdµ(s) and compare it with the standard ITAE
open-loop transfer function to get the first optimization con-
troller parameter set {kc,k1, k, kµ+1} and the parameters of
ITAE optimal transfer function β = [β1, β2, · · · , βµ+1],
which is as follows:

kc =
1
K
TLµω

µ+2
0µ

kµ+1 =
1
K
(Tβµ+1ω0µ −

lµ−1
lµ

T − 1)

ki =
1
K
[lµβiTω

µ+2−i
0µ − li−1(Kkµ+1 + 1)− li−2T ]

(14)

where ω0µ is the optimal time scale.
In order to achieve the second optimal control, we need

to rethink the infinite dimensional delay factor e−Ls, which
means that we should return the finite dimensional delay
factor (11) to the infinite dimensional delay factor (10).
Therefore, the infinite-dimensional state observer is:

Fµe(s) = kµ+1eLs +

µ∑
i=0

kisi−2

µ∑
i=1

lisi−1
(eLs − 1)+ k1 (15)

There is a leading term in equation (15), which makes it a
leading infinite dimensional feedback equation. Therefore, it
can predict the trend of the output signal, and has the same
function as the Smith predictor to compensate for time delay.
The corresponding infinite dimensional open loop transfer
function is:

Wdµe(s) =
kcG(s)

s[1+ G(s)Fµe(s)]
(16)

Equation (16) is a transfer function with both the lead and
lag term, which means that it is difficult to find the optimal
ω0µ by analytical method, but it can be estimated by com-
puter simulation to satisfy the optimal control rate of ITAE.
Then, substituting ω0µ into equation (14), we can find all the
parameters of the twice optimal controller.

In order to better explain the idea of TOC, a 4th order time
division model is taken as an example. When µ = 4, the
time-sharing model is shown below:

e−Ls =
1

1+ Ls+ 1
2L

2s2 + 1
6L

3s3 + 1
24L

4s4
(17)
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FIGURE 4. System diagram of the 4th order time division model.

The 5-order state feedback equation is:

F4(s) = k1 + k2s+ k3s2 + k4s3 + k5
4∑
i=0

lisi (18)

The system open-loop transfer function is:

Wd4(s) =
kcG4(s)

s[1+ G4(s)F4(s)]
(19)

The first optimization controller parameter set is:

kc =
TL4ω6

0

24K

k1 =
β1TL4ω4

0

24K
−
β5Tω0

K
+

4T
KL

k2 =
β2TL4ω4

0

24K
−
β5TLω0

K
+

3T
K

k3 =
β3TL4ω3

0

24K
−
β5TL2ω0

2K
+
TL
K

k4 =
β4TL4ω2

0

24K
−
β5TL3ω0

6K
+
TL2

6K

k5 =
β5TL4ω0

K
−

1
K
−

4T
KL

(20)

The infinite dimensional state observer equation is:

F4e(s) = k5eLs +
(k2 + k3s+ k4s2) 24L4 (e

Ls
− 1)

s[s(s+ 4
L )+

12
L2
+

24
L3
]
+ k1 (21)

The corresponding infinite dimensional open loop transfer
function is:

Wd4e(s) =
kcG(s)

s[1+ G(s)F4e(s)]
(22)

In summary, the system diagram of the 4th order time division
model as follow:

III. ALGORITHM OF ADRMTOC
In this section, based on the TOC algorithm, the MTOC algo-
rithm is constructed. Then combined with ADRC algorithm
to construct ADRMTOC algorithm.

FIGURE 5. System of MTOC.

A. MTOC
In order to reduce system shock and improve system stabil-
ity, the damping of the low frequency band of the system
should be increased. Thus, a structural adjustment factor KF
(KF > 1) is introduced in TOC to turn the system into the
MTOC. Its structure is as follows:

Form FIGURE 5, the µ+ 1-order state feedback equation
is changed from equation (12) to the following equation:

Fµ(s) = KFkµ+1

µ∑
i=0

lisi + KF

µ∑
i=2

kisi−1 + k1 (23)

Damping analysis of TOC:
1) Put (12) into (13) and the open loop transfer function

expansion of the system is:

Wdµ1(s) =
kcK
A

(24)

where:

A = s[Tlµsµ+1 + (Tlµ−1 + lµ + Kkµ+1lµ)sµ + · · ·

+ (T + l1 + Kk2 + Kku+1l1)s+ (1+ Kk1 + Kkµ+1)]

(25)

2) The closed loop transfer function is:

φ1(s) =
Wdµ1(s)

1+Wdµ1(s)
=

kcK
TlµB

(26)

where:

B = sµ+2 +
Tlµ−1 + lµ + Kkµ+1lµ

Tlµ
sµ+1 + · · ·

+
T + l1 + Kk2 + Kku+1l1

Tlµ
s2

+
1+ Kk1 + Kkµ+1

Tlµ
s+

kcK
Tlµ

(27)

3) Let:

c1 =
Tlµ−1 + lµ + Kkµ+1lµ

Tlµ
(28)

The damping of TOC is closely related to the size of
c1. The larger the c1 is, the greater the damping is, and
vice versa.

Damping analysis of MTOC:
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1) Put (23) into (13) and the open loop transfer function
expansion of the system is:

Wdµ2(s) =
kcK
C

(29)

where:

C = s[Tlµsµ+1 + (Tlµ−1 + lµ + Kkµ+1lµ)sµ + · · ·

+ (T + l1 + Kk2 + Kku+1l1)s+ (1+ Kk1 + Kkµ+1)]

(30)

2) The closed loop transfer function is:

φ2(s) =
Wdµ2(s)

1+Wdµ2(s)
=

kcK
TlµD

(31)

where:

D = sµ+2 +
Tlµ−1 + lµ + KKFkµ+1lµ

Tlµ
sµ+1 + L

+
T + l1 + Kk2 + Kku+1l1

Tlµ
s2

+
1+ Kk1 + KKFkµ+1

Tlµ
s+

kcK
Tlµ

(32)

3) Let:

c2 =
Tlµ−1 + lµ + KKFkµ+1lµ

Tlµ
(33)

The damping of MTOC is closely related to the size of
c2. The larger the c2 is, the greater the damping is, and
vice versa.

It can be seen from equations (28) and (33) that c1 < c2;
therefore, the damping of the TOC system is smaller than
that of the MTOC system. The introduction of the structural
adjustment factor KF increases the damping of the system,
which improves the robustness of the system. At the same
time, the response speed of the system will also decrease. In
this regard, the system’s response speed is often increased by
adjusting the gain of the system.

B. ADRMTOC
In summary, considering the ability of ADRC to compen-
sate for total interference and the advantages of not rely-
ing on the accurate mathematical model of the plant, and
the MTOC compensation time-delay factor capability, this
manuscript proposes an active disturbance rejection modi-
fied twice optimal control algorithm (ADRMTOC). Firstly,
the MTOC controller is used to transform the infinite
dimensional delaymodel of the plant into a finite dimensional
non-delaymodel to achieve compensation control of the time-
delay factor of system. Secondly, the plant and the MTOC
controller are treated as a generalized plant. Finally, ADRC
is used to estimate and compensate the total interference of
the generalized system to achieve control of the time delay
system. The specific block diagram is shown in FIGURE 6,
and the process of the ADRMTOC algorithm are shown in
TABLE 1.

FIGURE 6. System diagram of ADRMTOC.

TABLE 1. The process of the ADRMTOC algorithm.

IV. CASE STUDIES
In order to demonstrate the effectiveness of ADRMTOC, this
manuscript selects the first-order plus dead-time plant dead-
time plant (FOPDT) as the plant, and uses Smith predictive
proportional integral control (SPPI) and predictive active dis-
turbance rejection control (PADRC) algorithm as the compar-
ison algorithm. At the same time, the maximum deviation,
the adjustment time, the value of ITAE and the maximum
instantaneous drop value Edm% are selected as evaluation
indicators, and the control performance of the algorithm is
analyzed from the rapidity and robustness.

A. STABILITY AND ROBUSTNESS TEST
Determining the plant, which is derived from [39]:

G(s)=G0(s)e−Ls=
K

Ts+ 1
e−Ls=

0.85
1200s+ 1

e−1800s (34)

ADRMTOC uses a 4-order time-division model, and some
parameters are from [33]:

β1 = 4.227, β2 = 8.202, β3 = 9.463, β4 = 7.127,

β5 = 3.316, ω0µ =
1.999
L

,KF = 40 (35)

Under ideal conditions, the prediction transfer function is
exactly the same as the actual function:

G
′

(s) = G1(s)e−L1s =
K1

T1s+ 1
e−L1s =

0.85
1200s+ 1

e−1800s

(36)

At the same time, in order to verify the stability and
robustness of the time-delay system under the control of
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TABLE 2. The parameters under ideal conditions.

ADRMTOC, SPPI and ADRC are used as comparison algo-
rithms. The parameter settings are shown in TABLE 2.

The robustness of the system is tested by applying the
disturbance signal at 22500 seconds, and the disturbance
signal value is twice than the given input value. Under ideal
conditions, the experimental results of ADRMTOC, SPPI and
PADRC are shown in FIGURE 7. Among them, FIGURE 7(a)
is the output response and control input of the system,
FIGURE 7(b) is the error response of the system and ITAE;
at the same time, the red line is the system set value curve,

the blue line is the result curve of ADRMTOC, the black line
is the result curve of SPPI, and the powder line is the result
curve of PADRC. The performance index values are shown
in TABLE 3.

It can be seen from FIGURE 7 and TABLE 3 that under
ideal conditions, the response speed and stability of the sys-
tem under the control of PADRC and SPPI are faster than that
under the control of ADRMTOC. However, when the system
receives external disturbances, the robustness of the system
under ADRMTOC is much better than that under PADRC
and SPPI. Moreover, the ITAE value of ADRMTOC is much
smaller than that of PADRC and SPPI.

However, in the actual industrial system, since the system
is a dynamic environment, and the system is affected by vari-
ous factors such as wear of the machine itself, it is impossible
to accurately obtain the parameters of the actual model.When
the prediction transfer function is as follows:

G
′

(s) = G1(s)e−L1s =
K1

T1s+ 1
e−L1s =

1
1500s+ 1

e−2000s

(37)

FIGURE 7. Experimental results of ADRMTOC, SPPI and PADRC under ideal conditions.

TABLE 3. Performance indexes under ideal conditions.
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TABLE 4. Parameters under non-ideal conditions.

The parameter settings are shown in TABLE 4.
Under non-ideal conditions, the experimental results of

ADRMTOC, SPPI and PADRC are shown in FIGURE 8.
Among them, FIGURE8(a) is the output response and control
input of the system, FIGURE 8(b) is the error response of
the system and ITAE; at the same time, the red line is the
system set value curve, the blue line is the result curve of
ADRMTOC, the black line is the result curve of SPPI, and the

powder line is the result curve of PADRC. The performance
index values are shown in TABLE 5.

It can be seen from FIGURE 8 and TABLE 5 that under
non-ideal conditions, the stability of time-delay system under
the control of ADRMTOC is better than that of SPPI and
ADRC. At the same time, the robustness of the system under
the control of ADRMTOC is much better than that under
the control of PADRC and SPPI, since the ADRMTOC algo-
rithm compensates the delay factor of the system completely,
synchronizes the input and output signals of the system, and
enables the system to timely suppress the external disturbance
information. In addition, the system has the smallest ITAE
under the control of ADRMTOC.

In order to better verify the effectiveness of ADRM-
TOC on time-delay systems, the parameters of the system
are randomly selected in 1K = ±40%, 1T = ±30%,
1L = ±15% and six groups of parameters are randomly
generated by computer simulation for experiments. The
experimental results are shown in FIGURE 9. Among them,

FIGURE 8. Experimental results of A DRMTOC, SPPI and PADRC under non-ideal conditions.

TABLE 5. Performance indexes under non-ideal conditions.
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FIGURE 9. Experimental results of ADRMTOC, SPPI and PADRC results of six random parameters under non-ideal conditions.

FIGURE 10. Open-loop gain Bode diagram of ADRMTOC.

FIGURE 9(a) is the output response and control input of the
system, FIGURE 9(b) is the error response of the system and
ITAE; at the same time, the red line is the system set value
curve, the blue line is the result curve of ADRMTOC, the
black line is the result curve of SPPI, and the powder line is
the result curve of PADRC.

It can be seen from FIGURE 9 that ADRMETOC has a
stronger ability to suppress interference than SPPI andADRC
when the parameters are perturbed within a certain range.
Also, the control curve is smoother and more concentrated
than SPPI and ADRC. The error perturbation and ITAE value
of ADRMTOC are smaller than those of SPPI and PADRC
when the external interference signal exists. And the system
under the control of PADRC will vibrate and cause harm to
the system when the parameters stays in a certain range of

FIGURE 11. Open-loop gain Bode diagram of SPPI.

random perturbation. All these show that the performance
index of ADRMTOC system is better than that of SPPI and
PADRC.

B. FREQUENCY DOMAIN ANALYSIS OF ADRMTOC
In order to further analyze the robustness of ADRMTOC,
the classical frequency domain analysis method is used to
evaluate the system performance, and SPPI and PADRC are
used as the comparison control algorithm. The open-loop gain
Bode diagrams of ADRMTOC, SPPI and PADRC are shown
in FIGURE 10 - 12, and the stable margins are calculated as
shown in TABLE 6.

From FIGURE 10 - 12 and TABLE 6, the ADRMTOC
has a much higher cross frequency than SPPI and PADRC,
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FIGURE 12. Open-loop gain Bode diagram of PADRC.

TABLE 6. Stable margin of three control algorithms.

which proves that the ADRMTOC can greatly improve the
system’s tracking speed than the other two control systems.
Moreover, the phase margin of the ADRMTOC system is also
larger than that of the SPPI and PADRC. The sensitivity of
the system under the control of ADRMTOC is smaller and
the delay perturbation is wider.

V. CONCLUSION
In this manuscript, ADRMTOC is designed to control the
time-delay process by combining ADRC and MTOC, and its
algorithm is compared with that of PADRC and SPPI. The
simulation results show that, under ideal conditions, ADRM-
TOC is slower than PADRC and SPPI when the response
starts. However, in practical industries (under non-ideal mod-
els), the parameters of the prediction transfer function are
difficult to be consistent with the actual function. When the
model has a certain prediction quantity, the control effect
of ADRMTOC is better than that of PADRC and SPPI.
This is because the ADRMTOC algorithm compensates the
time-delay factor more thoroughly. The control algorithm
transforms the infinite-dimensional time-delay system into
a finite-dimensional Non-time-delay system, overcomes the
problem of asynchronization of input and output signals,
and achieves real-time feedback control. When the system
is disturbed by external information, the system can actively
compensate and control, thus improving the robustness of the
system. More significantly, the system curve of ADRMTOC
is much smoother than that of PADRC and SPPI in the
initial stage of response when the model parameters stays
a certain range of perturbation. At this time, the system
needs less control, saves industrial raw materials and brings
considerable economic benefits. In any case, the interference

suppression capability of ADRMTOC is far greater than that
of PADRC and SPPI, and the disturbance recovery time is
shorter than that of PADRC and SPPI. The theoretical analy-
sis, parameter setting principle and simulation results of this
manuscript are helpful to the application of ADRMTOC in
time delay system. It provides not only a feasible method
for the control of large time delay system, but also a better
control scheme for the suppression of the strong interfer-
ence signal of the system. Furthermore, in future research,
attempts should be made to improve the ADRMTOC algo-
rithm to improve its performance in the initial phase of
response.
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