
Received July 25, 2019, accepted August 23, 2019, date of publication September 6, 2019, date of current version October 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2939780

On the Security of SDN: A Completed Secure
and Scalable Framework Using the
Software-Defined Perimeter
AHMED SALLAM 1,3, AHMED REFAEY 1,2, AND ABDALLAH SHAMI1
1Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada
2Manhattan College, Riverdale, New York, NY 10471, USA
3Department of Computer Science, Suez Canal University, Ismailia 41522, Egypt

Corresponding author: Ahmed Refaey (ahmed.hussein@manhattan.edu)

ABSTRACT The widespread adoption and evolution of Software Defined Networking (SDN) have enabled
the service providers to successfully simplify network management. Along with the traffic explosion, there
is decreasing CAPEX and OPEX as well as an increase in the average revenue per user. However, this wide
adoption of SDNs is posing real challenges and concerns in terms of security aspects. The main challenges
are how to provide proper authentication, access control, data privacy, and data integrity among others for the
API-driven orchestration of network routing. Herein, the Software Defined Perimeter (SDP) is proposed as a
framework to provide an orchestration of connections. The expectation is a framework that restricts network
access and connections between objects on the SDN-enabled network infrastructures. There are several
potential benefits as a result of the integration between SDP systems and SDNs. In particular, it provides a
completely scalable and managed security solution. Consequently, it leads to flexible deployment that can be
tailored to fit the need of any generic network security perimeter. The proposed Integrated frameworks are
examined through virtualized network testbeds. The testing results demonstrate that the proposed framework
is malleable to both port scanning (PS) attack and Denial of Service (DoS) bandwidth attack. In addition,
it clarifies some interesting potential integration points between the SDP systems and SDNs to further
research in this area.

INDEX TERMS SDP, SDN, DoS attack, security, network virtualization.

I. INTRODUCTION
Cisco predicts that by 2022 mobile devices will account for
79% of Internet traffic in comparison to the 65% share as
of 2017 [1]. When coupled with the statistic that global IP
traffic is expected to triple from 2017 to 2022 [1], the need for
infrastructure innovation to keep up with the ever-changing
landscape of users, resources, services, and applications is
a must. In fact, traditional hardware-based networks work
inadequately operate for consistently changing computing
and storage needs in campus environments, data centers,
and carrier/service provider environments. As a consequence,
the Software-defined networking (SDN) gained significant
traction as it fulfilled such situations, where numerous char-
acteristics demand a more flexible and dynamic approach [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Tawfik Al-Hadhrami .

Despite the existing advantages of SDN security [3], [4],
there are still aspects of security that remain to be addressed.
For example, the centralized controller and flow-table limita-
tion in network devices make the SDN-based network more
vulnerable to Denial-of-Service (DoS) types of attacks [5].
In addition, the open programmability of the network intro-
duces trust concerns between the network elements, which
make threats by entering the network, and remain invisible
and uninspected. Furthermore, compromised security of the
controller or lapses in its datapath communication can render
the whole network compromised or at least leave it vulnerable
to illegitimate access and usage of network resources.

A number of industry-centered groups have been launched,
as of late, to discuss the impending security challenges
in SDN and their solutions. Meanwhile, researchers have
already presented solutions to some SDN security challenges.
These solutions range from controller replication schemes
to policy conflict resolution and authentication mechanisms.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 146577

https://orcid.org/0000-0003-2807-2316
https://orcid.org/0000-0002-1540-9349
https://orcid.org/0000-0001-7441-604X

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

However, when the extent of the issues are compared to
the existing and proposed solutions placed on them, it is
clear that without a significant framework, equivalent to the
SDN but focused on security, it is unlikely that SDN will
succeed beyond the private datacenter or single organization
deployments seen today.

An equivalent framework is the Software-defined Perime-
ter (SDP). The SDP is an independent framework, made
popular its use by multiple organizations within the Depart-
ment of Defense (DoD) and Intelligence communities (IC).
In 2014 and emendate in 2018, the Cloud Security Alliance
(CSA) outlined the initial protocol for the Software Defined
Perimeter specifications [6] and in 2016Waverley labs devel-
oped opensource SDP modules. Similar to the software-
defined networking, the SDP has emerged as a new concept to
replace physical security appliances with logical components
that can operate under the control of the application owner.
Although there is a conceptual similarity between these two
independent frameworks, no such integration has been intro-
duced and evaluated. Therefore, contributions of this paper
can be summarized as follows:

• Propose an integrated SDP-SDN architecture to provide
a better security networking platform and ensure seam-
less integration between the two paradigms.

• Build a virtualized network testbed to introduce and
evaluate the aforementioned architecture.

The rest of this paper is organized as follows: In Section 2,
previous works conducted on SDN security challenges and
solutions are reviewed. In Section 3, SDP architecture is pre-
sented with an explanation of its functionality. In Section 4,
an introduction to possible integration architectures with cor-
responding challenges. In Section 5, new integrated architec-
ture is evaluated. Finally, the work and research provided are
concluded in Section 6.

II. RELATED WORK
The large inflation in the world of networks after the advent
of virtualization technology and electronic cloud led to the
need of separating the control plane from the data/forwarding
plane in a new model that can elastically expand or shrink
with the dynamic change on the network without affecting the
network overall performance. Usually, the SDN network can
be divided into three main levels as shown in Fig. 1. The data
plane (Southbound), the control plane, and the application
plane (Northbound) [7], [8].

The Control plane is managed by an SDN controller. The
basic functions of the controller include flow table manage-
ment, link discovery, topologymanagement, strategymaking,
storage management, and control data management. Conse-
quentially, many applications and features can be added as
needed.

On the other hand, The data plane consists of a set of
forwarding devices which are commonly known as SDN
switches, although they may not contain the basic function of
layer 2 switches. The SDN switch can be found as software

FIGURE 1. SDN architecture.

FIGURE 2. SDN flow table.

such as OpenvSwitch [9] and can be found as hardware
router or switch that supports one of the southbound protocols
such as Cisco Catalyst 2960-S Series which supports Simple
Network Management Protocol (SNMP) and HP ProCurve
switches which supports OpenFlow. Moreover, hardware
switches can be fully programmable such as BroadcomMav-
erick switch which supports OpenSwitch network operating
system (OPX).

An SDN switch consists of one or more flow tables which
perform packet lookups and forwarding (see Fig. 2), and a
southbound channel to communicate with an external con-
troller. Using this channel, the controller can add, update, and
delete flow entries in flow tables, both reactively (in response
to packets) each time the switch receives a packet with no
matching rule in its flow table and proactively where the
rules are loaded to the switch when the network starts. Each
flow table in the switch contains a set of flow entries; each
flow entry consists of match fields, counters, and a set of
instructions to apply to match packets [10].

To understand the control flow between the controller and
the SDN switch, consider a scenario of an OpenFlow switch
which received a packet with no matching rule in its flow
table. In this scenario, a client sends a service request to the
switch, and then the switch starts the matching process at

146578 VOLUME 7, 2019

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

TABLE 1. SDN security challenges and existing solutions.

the first flow table and if no match was found the switch
continues to next flow tables. The outcome depends on the
configuration of the table-miss flow entry; For example, the
packet may be dropped, or forwarded to the controller over
the OpenFlow channel which is the case of this scenario.
Next, the controller will add two flows to connect the new
client to the service. One flow to set the client as a source
and the service as a destination, and another flow to set the
opposite direction.

Although SDN allows virtual networks provision on
demand for both efficient data transport and fine-grained
control services [11], [12], current security practices were not
designed to match the complexity and challenges emergent
from these software-defined infrastructures’ integration [13].
Precisely, separation of control and data planes opens security
challenges categorized into two levels. The first/outer level
is to protect the servers and switches from malware that
can sniff metadata and flooding attacks, which can result in
whole security systems take-down. The second/inner level is
to prevent malicious nodes from penetrating the controller
and taking over the network. The security challenges and their
existing solutions and drawbacks are summarized in Table 1.

Table 1 displays the security challenges in SDN network
categorized as either outer or inner levels. A further discus-
sion of these challenges and existing solutions are provided
in the following subsections. In addition, further details are
available in [14]–[17].

A. SDN OUTER LEVEL SECURITY
In the SDN systems’ outer level, services encounter flood-
ing attacks such as Denial of Service (DoS) and Dis-
tributed DoS (DDoS). The attack’s target is to expose

the dedicated server resources and/or to slow legitimate
users causing a denial of service [18]. Consequently, SDN
switches endure severe performance degradation depending
on SDN-controller decisions made while being attacked.
Notably, other factors affect switch performance, such as,
flow tables, memory and forwarding rate limitations, how-
ever, these factors are beyond this work’s scope.

Traditionally, detecting flooding attacks is achieved by
installing hardware-based middleboxes deployed with ded-
icated security functions such as intrusion detection (IDS),
firewalls, and anti-malware. In fact, these hardware-based
equipment are incapable of detecting significant security
activities inside modern software-based core networks in
general, and in SDN-based networks, in particular [19].
Therefore, Software-Defined Security (SDSec) has been
introduced [19]. The SDSec, a relatively new software-based
approach, separates forwarding and processing planes from
the security control plane following the same logical con-
cept of SDN. This concept has been adopted by indus-
tries for distributed security in appliances by virtualizing
security functions into ready-to-use Virtual Machines (VM).
vArmour, VMware vShield and Catbird are a well-known
example which implements a number of security features
and attributes such as intrusion detection, anti-malware, and
firewalls.

Machine Learning (ML) classification techniques were
explored to implement a security mechanism to detect and
prevent malicious traffic [15]. These techniques usually
include three steps: classify data flows to determine mali-
cious behavior and network attacks; modify flow tables; then
check the computed flow rules. Indeed, adopting these tech-
niques in SDN-based networks will contribute to increased

VOLUME 7, 2019 146579

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

overhead (e.g. collecting and transmitting traffic statistics)
which overloads OpenFlow switches. Also, controllers must
process statistics and compute flow rules before applying to
the switches [15].

In general, neither hardware nor software-based solutions
can withstand massive attacks that scale up to overwhelm
most traditional on-premises equipment and resources avail-
able in any virtualized environment. Fore example, between
May and June 2018, 8.3 billion malicious login attempts were
reported by Akamai, one of the world’s largest distributed
computing platforms that responsible for serving between
15% and 30% of all web traffic. These malicious login
attempts using account takeover tools known as botnet can
cause rapid destruction dute to the large volume of generated
traffic that reach over 600 Gbps [14]. Many copanies would
typically treat this like a DDos attack.

B. SDN INNER LEVEL SECURITY
In the inner level of SDN systems, the centralized controller
presents a potential single point of failure that is vulnerable
to network manipulation. Consequently, an intruder could
compromise the SDN controller and/or one of the SDN appli-
cations, produce false network data, and initiate different
attacks on the entire network [16]. To protect the controller,
a classical security aware solution, such as the access control
list (ACL), is utilized to define permissions applying to an
object and its properties. A security strategy involves creating
a whitelist and blacklist, which is an inconvenient burden
during large network configuration changes [20]. To elim-
inate this burden, security policy frameworks were devel-
oped to automate security policy transitions [20]. However,
automation consumes more resources, especially in a virtual-
ized environment with numerous VMs. Furthermore, no stan-
dards exist to facilitate control and application planes, seen
as SDN-Northbound interface. Therefore, third-party SDN
applications induce several active and passive attacks (e.g.
protocol spoofing, infiltrate the network, and sniff-modify-
stop traffic) [21].

Well-Established security mechanisms, like “honeypot”,
are used to mitigate potential threats to SDN applications
by forming high-interactions called “Honeynet” [17]. Some
leading honeypot systms include Google Hack Honeypot
(GHH), ‘‘KFSensor’’ a commercial Windows-based honey-
pot Intrusion Detection System (IDS) and ‘‘Honeyd’’ an
open source software released under GNU license for Unix
Operating Systems [17]. Generally, a honeypot consists of
data that appears to be a legitimate content of the site and
that seems to contain valuable information for intruders but
is monitored to track malicious behavior [22]. For complex
infrastructure that hosts a variety of services such as SDN
networks, one dedicated machine must be maintained for
each honeypot, which can be exorbitantly expensive. This
form of high-interaction honeypots is known as Honeynet.

Additional security-aware solutions are implemented to
add more power to the controller such as the access control
list (ACL) which define the permissions that apply to an

object and its properties. This task is further compounded
when we consider that network operators utilize whitelists
and blacklists as part of their security strategy for no less than
18,000 network configuration changes [23]. To overcome this
burden, many security policy frameworks were developed to
automate the security policy transitions [20]. However, the
side effect of this is that we are adding more burden over
the controller which is already overwhelmed especially in a
virtualized environment with numerous number of VMs.

Variously, data planes seen as SDN-Southbound inter-
face, lack encryption. This gives intruders opportunities
to sniff, capture, and analyze network traffic by allowing
the eavesdropping of critical flow information within the
SDN-based network. Traditionally, sniffing activity is pre-
vented by Transport Layer Security (TLS) and/or Secure
Socket Layer protocol (SSL) [24]. These encryption meth-
ods help protect connections between the SDN controller
and switches. For example, OpenFlow protocol specifica-
tion recommends using TLS connections between switches
and the controller, however, some SDN switches and con-
trollers do not support encryption, specifically the older
versions [3], [25].

III. SOFTWARE-DEFINED PERIMETERS FRAMEWORK
As a matter of fact, perimeters security is an ancient method
used by old empires to create a secure perimeter throughwalls
and barriers to maintain areas of power and property away
from intruders. In networking, this method was imitated by
creating a boundary between the private side of a network
and the public (usually provider-managed side of a network).
Previously, network perimeters had been applied by installing
hardware-based middleboxes deployed with dedicated secu-
rity functions such as firewalls and IDS. Today, with the
new Software-Defined paradigm, where resources are shared,
what does the network really look like? It is clear that a
network perimeter is an outdated concept for several reasons.
First, internal users are not simply connecting from inside the
building. They can connect anywhere using mobile devices.
Another vital reason is, local data and private applications
are no longer on local servers. Therefore, SDP emerged as
a new concept to go along with this new paradigm. It is
worth mentioning that, SDP market now is competitive and
some of the top players in the SDP market such as Cisco
Systems Inc., Symantec Corporation, and Intel Corporation.
Accordingly, the Transparency Market Research estimates
the SDP market’s valuation to increase from US$1,129.5 mn
in 2016 to US$12,247.9 mn by 2025 [26].

A. INTRODUCTION
Although there is a conceptual similarity between SDN and
SDP, both are independent-standalone solutions. Precisely,
SDN is the notation to control network behavior by empha-
sizing the software application instead of the network infras-
tructure. However, SDP is a completely different notation to
secure the application network infrastructure based on a need-
to-know model, in which device identity is verified before

146580 VOLUME 7, 2019

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

FIGURE 3. Commons between SDN and SDP.

granting access [27]. The commons and differences between
the aforementioned frameworks are shown in Fig. 3.

Typically, the SDP paradigm consists of three main
components:

• SDP Initiating Host (IH),
• SDP Accepting host (AH),
• SDP controller (CTRL).

These components are used to create secure perimeters
among legitimate clients and available services in the net-
work. A simple SDP scenario would include three machines;
the first machine represents a legitimate client provided with
the IH module and trying to access a server behind a gateway
in a private network. The second machine represents the
gateway provided with an AH module and a firewall that
has a drop-all policy established for all traffic. The third
machine represents the SDP controller provided with the
CTRL module to manage the SDP authentication process.

During the SDP installation process, the network adminis-
trator should access the CTRL module to identify the legit-
imate clients and define services which they have access to
in the CTRL database {MySQL in this scenario. Moreover,
the administrator has to create credential keys and certificates
and distribute them among the IH and AH components to
authenticate their access to the CTRL.

B. SDP CONNECTION OVERVIEW
For a legitimate client to access a service, first, the IHmodule
already installed in its side (also known as SPAclient) sends a
valid Single Packet Authorization (SPA) packet (encrypted,
non-replayed, with an HMAC SHA-256) [28]. When the
CTRL authenticates the SPA packet, it will message the
AH at the gateway to configure the proper rules automat-
ically in the firewall for the client for a defined period
to access the services. Despite the fact that the gateway’s
firewall is enabled, the AH continues to receive the mes-
sage, authenticate the client and establish a Mutual Transport
Layer Security (mTLS) connection between the client and
gateway. After the configurable timeout, the rule to accept
the incoming connection will be deleted but the connection
remains open by using a tracking mechanism provided by the
firewall [28]. Notably, the AH has to follow this procedure
to initiate the connection to the controller. Fig. 4 summarizes
the Client-Server connection setup timeline with SDP.

FIGURE 4. Client-Server connection setup timeline with SDP.

According to the CSA standards, the legitimate client has
direct access to the SDP controller, this assumption was set
to illustrate how the authentication process is done [6]. How-
ever, this configuration exposes the SDP controller to direct
attacks that can lead to critical risk where an intruder can
take over the whole network. This problem can be tackled by
hiding the controller behind the gateway in a similar manner
to the services.

C. SDP PROTECTION
The SDP workflow through several layers of security gives
maximum protection to the systems while patching most
vulnerabilities found in the legacy security systems. Firstly,
the gateway\textquoteright s firewall contains a static drop-all
policy allowing SDP to effectively repel flooding and PS
attacks. Secondly, the SPAmitigates these attacks by allowing
the server to discard the DoS attempt before entering the TCP
handshake [6]. Thirdly, the connection between all hosts (IH
and AH) must use TLS or Internet Key Exchange (IKE) with
mutual authentication to validate the client as a legitimate
member of the SDP prior to furthering device validation
and/or user authentication.

All of these layers are capable of preventing network
manipulation attacks, MITM attacks, and traffic sniffing
attacks. In fact, the CSA SDP Hackathon challenged hackers
to attack a server defended by a SDP. Of the billions of
packets fired at the server, not one attacker penetrated even
the first layer of security [29].

IV. THE PROPOSED SDP-SDN INTEGRATED
ARCHITECTURE
In this section, the SDN networks ability to provide protec-
tion through SDP is presented. The following subsections
demonstrate the proposed architecture integration between
SDP and SDN main components. An explanation of various
client-server request scenarios is also provided.

VOLUME 7, 2019 146581

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

FIGURE 5. Integrating SDP with SDN.

A. ARCHITECTURE DESCRIPTION
The goal is to protect a set of services connected to an SDN
network by embedding the SDP components into the SDN
environment. To complete this task, each legitimate client
runs an IHmodule. Additionally, a separate gateway machine
connects to each SDN switch. Each gateway runs as an AH
module to manipulate a set of servers/services connected to
the switch as depicted in Fig. 5. Finally, representing the
SDP controller, another machine running the CTRL module
is added to the network. To clarify, the SDP controller was
placed on a separate machine.

Refereeing to the CSA standards, there are several ways to
implement the SDP-based network depending on the targeted
application. These implementation options can be summa-
rized as follows:

• Client-to-Gateway: in this implementation, the ser-
vice/server is hidden behind a gateway provided with a
running AH module.

• Client-to-Server: in this implementation, the AH mod-
ule can be installed directly into the server, such that the
server can act as a gateway and a service at the same
time.

Alternative implementation options, such as Server-to-Server
and Client-to-Server-to-Client are out of the scope of this
work due to their irrelevancy to SDN.

B. THE GATEWAY PLACEMENT
Choosing a suitable SDP implementation to integrate with
SDN is a trade-off between security and performance. On the
one hand, the Client-to-Server implementation is harmonized
with SDN because installing the AH module in each server

reduces the routing path to access this server instead of going
through extra nodes in the network, especially in a dynamic
environment with a huge number of VMs [30]. However, this
implementation is considered a poor security practice. Pre-
cisely, it exposes the server to direct attacks, such that the SDP
gateway only acts as a regular firewall with an advanced pro-
tocol. On the other hand, the Client-to-Gateway implementa-
tion seems to increase delay by placing additional gateway in
the middle to access the servers. However, it provides a more
secure environment by hiding these servers and reducing the
risk of taking them down (see Fig. 5). In fact, Client-to-
Gateway implementation does not completely counteract the
SDN network performance, however, it can reduce the flow
control delay between the SDN’s controller and switches.
To understand this point, assume that there exists two servers
S1 and S2 behind the gateway G1 and both connected to
the same SDN switch SW1. Suppose that a legitimate client
C1 wants to access S1. In this case, the SDN controller will
add two flows to SW1 to provide a bi-directional link between
C1 and G1. Now, suppose C1 wants to access S2, in this case,
SW1 will do nothing because it already has predefined flows
between C1 and G1.

When using Client-to-Gateway the open research question
to consider is, how many gateways would provide maximum
security while reducing network overhead in SDN platform?
To answer this question, assume that only one gateway hides
all the servers. Although this scenario will reduce the flow
control delay to its minimum, it will degrade the overall
network throughput by adding more burden on this gateway
and put it at risk of network bottlenecks. Now, assume a com-
pletely different scenario by assigning a gateway to hide each
server. This scenario provides a better security solution and
keeps the network performance untouched; however, it will
consume more resources and increase overall cost.

The service provider decides the appropriate number of
gateways based on a cost-to-benefit analysis and the desired
performance metric (throughput, delay). Herein, one gateway
was assigned to hide all services connected to the same SDN
switch. This strategy can provide excepted protection and
avoids losing more resources at extra cost.

C. FLOW CONTROL
Two scenarios considered here were based on the placement
of the SDP Controller with respect to the IH.
Scenario 1: In this scenario, the IH has direct access to the

SDP Controller, and the AH is already initialized. Thus, for a
new legitimate Client (A) to access an authorized service (F),
A should complete two communication sequences:

1) Authentication: The IH module on A will initialize
an authentication request to the SDP Controller (D).
Because (A↔D) are two new flows to the SDN Switch,
the Switch will send a packet-in to the SDN Con-
troller (C) to reply with the correct flows from A
to D and back from D to A as shown in Fig. 6. Next,
the SDP CTRL module on D will check the required

146582 VOLUME 7, 2019

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

FIGURE 6. Message sequence in the new platform - Senario 1.

credential and authenticates A to access F through the
gateway (E). If A passed the authentication process,
new forwarding rules added to the firewall (Iptables in
this scenario) at the gateway (E) to allow communica-
tion between A and F.

2) Service request: After A has been authenticated to
access F through E. Now,A can send the desired service
request to a running service on F through E as shown
with black arrows in Fig. 6. Again, because (A↔E)
are new flows to the Switch, the Switch will send a
packet-in to C one more time to get the correct flows
from A to E and back from E to A. When E receives
the service request, it will forward it to F and forward
back the response to A using the rules created in step 1
as shown with green arrows in Fig. 6.

Scenario 2: As mentioned before, it’s a bad security practice
to give a client direct access to the SDP controller. To tackle
this problem, in this scenario, the SDP controller is placed
behind the gateway as shown in Fig. 7. In other words, any
communication between the Client and the SDP Controller
will go through the gateway. This has two advantages. Firstly,
to protect the SDP Controller. Secondly, to reduce the flow
control delay time as there will be no need to define new flow
rules between each client and the SDP controller.

It’s worth mentioning that, the flow control requests
(packet-in) shown with dashed lines in Fig. 6 are one-time

requests to create the proper flows between the clients, gate-
way, and services. In other words, if there exists client C that
already gained access to services F1 through the gateway,
there will be no flow control delay if C wants to access
another service F2 through the same gateway.

V. TESTBED AND PERFORMANCE EVALUATION
To evaluate the performance of the proposed platform,
three evaluation metrics are considered, the flow control
delay time, the SDP connection setup time and the network
throughput. These metrics were compared with and without
SDP installed. Additionally, two types of attacks were ini-
tiated to test the performance of SDP protection, namely, a
DoS, and a PS attacks. The DoS attack was chosen as it
represents a threat to the services availability while the PS
attack represents a threat to data privacy. Therefore, these two
attacks were considered as they represent two threats the SDN
networks expected to experience.

A. TESTBED ENVIRONMENT
The testbed consists of five VMs running Linux Ubuntu
16.04 hosted by a physical machine running Ubuntu 18.04,
and VirtualBox 5.2. The implementation can be divided into
two parts, the SDN part, and the SDP part. The imple-
mentation of the SDN part has been done using OpenDay-
light (ODL) controller and Open vSwitch (OVS) 2.5.6. OVS

VOLUME 7, 2019 146583

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

FIGURE 7. Message sequence in the new platform - Senario 2.

TABLE 2. Testbed setup.

was installed within the host, while ODL was installed in
a dedicated VM. The SDPcontroller module was installed
on a VM to represent the SDP controller and the fwknop
module was installed on another VM to represent the SDP
IH on a legitimate client with the help of MySQL 5.7 and
OpenSSL 1.1. Finally, the fwknop module was installed
again with different settings on a separate VM to represent
the SDP AH and act as the gateway with the help of ipt-
ables 1.8 for routing. One more VM was created to act as

a service. A detailed specification of the testbed setup is
showen in Table 2.

B. ATTACKS SETUP
Two types of attacks where launched using hping3. hping3 is
a command-line oriented TCP/IP packet assembler/analyzer.

• DoS attack: This attack was applied via spoofed broad-
cast of TCP requests with SYN flag.

146584 VOLUME 7, 2019

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

• Port Scanning attack: This attack was applied with
SYN flag.

C. EXPERIMENTS FORMULATION
The SDP connection setup was tested by calculating the
required time to initiate each SDP component in a regular net-
work with L2Switch and in an SDN network with OpenFlow
enabled switch. The result shows that there was no significant
difference between the startup time of the SDP components in
both environments. That is, the accepting host authentication
time in the regular network takes 4.182067 s while it takes
4.194367 s in SDN network, and the the Initiating Host
authentication time takes 2.068458 s while it takes 2.067069 s
in the SDN network.

Secondly, the network throughput was reported by trans-
ferring 250 MB of raw data between the legitimate client and
the service using netcat utility version 1.10. The traffic was
captured on the gateway from the client side and the server
side for two scenarios, when the SDP platform is disabled
and when the SDP platform is enabled (see Fig. 8 and Fig. 9).

Finally, the flow control delay time between the Packet-in
message sent by the OVS switch and the Flow_MOD replied
back by the ODL controller was calculate as 45 ms.

FIGURE 8. Network traffic at the gateway - client side.

FIGURE 9. Network traffic at the server.

The port scanning attack was launched by sending a SYN
flag request to ten consequent destination ports starting from

FIGURE 10. Port scanning attack with SYN flag.

port 50. Normally, if they are open then they will reply on the
source port. The result was captured in Fig. 10.

D. RESULT ANALYSIS
From Subsection V-C, we can notice that there is insignifi-
cance delay by running the SDP components in SDN network
compared to the regular network due to a one-time flow
control delay time required to find the correct flow between
the gateway/client and the SDP controller. The reason behind
this is that when amachine is trying to talk to another machine
through an SDN switch (OVS in this environment) the switch
would search first in its flow tables to find a route to the
destination, if the switch cannot find the correct flow it will
start a flow control sequence by sending a Packet-in message
to the controller.

On the other hand, Fig. 8 and Fig. 9 show how did the SDP
platform mitigate the DoS attack and retain the legitimate
client connected. In this figure, the number of packets was
captured at the gateway’s the public network interface and
the Server’s network interface, and then a log function was
applied to relax the different scale of both traffic.

Considering the traffic at the Gateway’s public network
interface shown in Fig. 8, from the second 0 to 19 the traffic
represents the authorized packets of the legitimate client.
At the second 20, a SYN flood attack was launched, this
explains the sudden peaks in the traffic which reflects the
effect of the attack. Without SDP platform, the traffic rep-
resents the attack’s SYN packets to request a flood of new
connections in addition to the ACK packets sent back to
reply to the attacker. However,With SDP platform, this traffic
represents the attack’s SYN packets only, which clarify the
difference between the number of packets in each line. In the
latter case, the SYN packets are simply dropped and never
replied back because the AH module initiates the firewall’s
drop policy at the gateway. This setting tells the firewall to
allow only TCP packets combined with an authorized SPA
packet. At second 40, the flood attack was stopped however
its effect continues for a few seconds later based on the
Ethernet interface buffer size and contents. This happens due
to the massive number of packets received and buffered at the
interface to be processed.

Considering the traffic at the server’s network interface
shown in Fig. 9, which represents the client’s data pack-
ets. Starting from second 20 to second 40, without SDP,
the client traffic was taken down completely by the attack
and recovered back again after stopping the attack at second
40. Contrarily, the SDP retained 75% of the legitimate traffic

VOLUME 7, 2019 146585

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

and the transmission of the data was successfully completed
at second 50.

Fig. 10 shows that the SDP-SDN platform was able to
completely block the port scanning SYN request due to the
firewall drop policy.

VI. DISCUSSION
Although the proposed architecture can protect the SDNouter
level, more challenges still exist to secure the inner level,
mainly the SDN Controller. Generally, the SDN Controller
is hidden by default and invincible against flooding attacks
because of the SDN architecture. In other words, it’s not
possible to directly attack the SDN Controller unless meta-
data was sniffed which is not possible especially in the new
proposed architecture due to the TLS connection. Moreover,
there are several simple solutions that can be traded such as
managing a firewall at the controller to block all inbound
traffic except the SDN switches.

From a different perspective, there is still a chance for
indirect attacks to take over the controller. For example, aDoS
attack can be established by requesting anonymous servers
randomly through one the SDN switches connected to the
controller. Although these requests will end up in a null route
or blocked by a firewall, it still can overwhelm the SDN
Controller with Packet-In requests, where the controller com-
pelled to provide the switch with a proper reply. Fortunately,
this special DoS attacks can’t be established from a public
network/internet and requires direct physical access to the
SDN switch which is managed by the targeted Controller.

VII. CONCLUSION AND FUTURE RESEARCH
OPPORTUNITIES
This paper illustrated the potential of SDN networking secu-
rity architecture by integrating the SDP framework with SDN
as a solution to security challenges threatening different levels
of the network. First, we briefly summarized and discussed
challenges facing the SDN network. Then, we adopted a
client-gateway SDP architecture to propose an improved and
secured SDN network. Furthermore, performance was evalu-
ated by analyzing network throughput and connection setup
time under two types of network attacks, namely DoS and PS
attack.

The experiments’ result proved that by integrating the
SDP and SDN frameworks, it is possible to block PS and
flooding attacks. Meanwhile, mitigating its effect on the
target resources to retain 75\% of the network throughput
without interruptions or losing the connection. These results
reveal the promising potential of the proposed architecture
to provide a solution that is homogeneous with the SDN
system and accommodates the networks’ scale in a virtual-
ized environment. Furthermore, it would reduce the Oper-
ating Expense (OPEX) and Capital Expense (CAPEX) of
enterprises.

ACKNOWLEGMENT
The authors would like to thank Ms. Juanita Koilpillai from
Waverley Labs for her valuable support.

REFERENCES

[1] Cisco. (2018). White Paper: Cisco Visual Networking Index: Forecast
and Trends, 2017–2022. [Online]. Available: https://www.cisco.com/
c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/white-paper-c11-741490.pdf

[2] K. Alhazmi, A. Shami, and A. Refaey, ‘‘Optimized provisioning of SDN-
enabled virtual networks in geo-distributed cloud computing datacenters,’’
J. Commun. Netw., vol. 19, no. 4, pp. 402–415, Aug. 2017.

[3] S. Scott-Hayward, G. O’Callaghan, ‘‘SDN security:
A survey,’’ in Proc. SDN4FNS Workshop Softw. Defined Netw. Future
Netw. Services, Nov. 2013, pp. 1–7.

[4] J. Zheng, Q. Li, G. Gu, J. Cao, D. K. Y. Yau, and J. Wu, ‘‘Realtime
DDoS defense using COTS SDN switches via adaptive correlation anal-
ysis,’’ IEEE Trans. Inf. Forensics Security, vol. 13, no. 7, pp. 1838–1853,
Jul. 2018.

[5] V. Yazici, M. O. Sunay, and A. O. Ercan, ‘‘Controlling a software-defined
network via distributed controllers,’’ CoRR, vol. 90, no. 11580, pp. 6–11,
Jan. 2014. [Online]. Available: https://arxiv.org/abs/1401.7651

[6] A. Moubayed, A. Refaey, and A. Shami, ‘‘Software-defined perimeter
(SDP): State of the art secure solution for modern networks,’’ IEEE Net-
work, vol. 33, no. 5, pp. 226–233, Sep./Oct. 2019.

[7] M. C. Dacier, H. König, R. Cwalinski, F. Kargl, and S. Dietrich,
‘‘Security challenges and opportunities of software-defined network-
ing,’’ IEEE Security Privacy, vol. 15, no. 2, pp. 96–100, Apr. 2017.
doi: 10.1109/MSP.2017.46.

[8] V. Varadharajan, K. Karmakar, U. Tupakula, and M. Hitchens, ‘‘A policy-
based security architecture for software-defined networks,’’ IEEE Trans.
Inf. Forensics Security, vol. 14, no. 4, pp. 897–912, Apr. 2019.

[9] M. Casado. (2018). List of OpenFlow Software Projects (That I Know Of).
[Online]. Available: http://yuba.stanford.edu/~casado/of-sw.html

[10] P. Goransson and C. Black, ‘‘‘‘How SDN works,’’ in Software Defined
Networks, P. Goransson and C. Black, Eds. Boston, MA, USA:
Morgan Kaufmann, 2014, ch. 4, pp. 59–79. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/B9780124166752000048

[11] K. Kalkan and S. Zeadally, ‘‘Securing Internet of Things with software
defined networking,’’ IEEE Commun. Mag., vol. 56, no. 9, pp. 186–192,
Sep. 2018.

[12] C. Yoon, T. Park, S. Lee, H. Kang, S. Shin, and Z. Zhang, ‘‘Enabling
security functions with SDN: A feasibility study,’’ Comput. Netw., vol. 85,
pp. 19–35, Jul. 2015. doi: 10.1016/j.comnet.2015.05.005.

[13] R. Khondoker and N. Function, SDN NFV Security, vol. 30.
New York, NY, USA: Springer, 2018. [Online]. Available:
http://link.springer.com/10.1007/978-3-319-71761-6

[14] E. Shuster, R. Shen, M. McKeay, and A. Fakhreddine, ‘‘State of the
Internet,’’ Environment, vol. 4, no. 4, p. 18, 2018. [Online]. Avail-
able: https://www.akamai.com/us/en/multimedia/documents/state-of-the-
internet/soti-2018-credential-stuffing-attacks-executive-summary.pdf

[15] B. J. Van Asten, ‘‘Increasing robustness of software-defined networks,’’
M.S. thesis, Dept. Fac. Elect. Eng., Math. Comput. Sci., Delft Univ.
Technol., Delft, The Netherlands, 2014.

[16] M. McBride, M. Cohn, S. Deshpande, M. Kaushik, M. Mathews, and
S. Nathan, ‘‘SDN security considerations in the data center,’’ ONF Solution
Brief, Menlo Park, CA, USA, 2013.

[17] OmniSecu. (2018). Leading Honeypot Products. [Online]. Available:
http://www.omnisecu.com/security/infrastructure-and-email-security/
leading-honeypot-products.php

[18] A. F. T. Ali, R. Gziva, S. Jouet, and D. Pezaros, ‘‘SDNFV-based DDoS
detection and remediation in multi-tenant, virtualised infrastructures,’’ in
Guide to Security SDN NFV. Cambridge, MA, USA: Springer, 2017, ch. 7.

[19] Y. Jararweh, M. Al-Ayyoub, E. Benkhelifa, M. Vouk, and A. Rindos,
‘‘Software defined cloud: Survey, system and evaluation,’’ Future Gener.
Comput. Syst., vol. 58, pp. 56–74, May 2016.

[20] J. H. Cox, R. J. Clark, and H. L. Owen, ‘‘Security policy transition frame-
work for software defined networks,’’ in Proc. IEEE Conf. Netw. Function
Virtualization Softw. Defined Netw. (NFV-SDN), Nov. 2017, pp. 56–61.

146586 VOLUME 7, 2019

http://dx.doi.org/10.1109/MSP.2017.46
http://dx.doi.org/10.1016/j.comnet.2015.05.005

A. Sallam et al.: On the Security of SDN: Completed Secure and Scalable Framework Using the SDP

[21] I. Ahmad, S. Namal, M. Ylianttila, and A. Gurtov, ‘‘Security in software
defined networks: A survey,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2317–2346, 4th Quart., 2015.

[22] E. Cole and S. Northcutt. (2018). Security Laboratory Honeypots:
A Security Manager’s Guide to Honeypots Honeypot Liabilities.
[Online]. Available: https://www.sans.edu/cyber-research/security-
laboratory/article/honeypots-guide

[23] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, R. Clark,
and I. Nsdi, ‘‘Kinetic: Verifiable dynamic network control,’’ in Proc.
12th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2015,
pp. 59–72.

[24] K. Bhargavan, B. Blanchet, and N. Kobeissi, ‘‘Verified models and refer-
ence implementations for the TLS 1.3 standard candidate,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2017, pp. 483–502.

[25] V. Bernat, TLS Computational DoS Mitigation. Vincent Bernat, 2018.
[Online]. Available: https://vincent.bernat.ch/en/blog/2011-ssl-dos-
mitigation

[26] Transparency Market Research. (2017). Software Defined
Perimeter (SDP) Market. [Online]. Available: https://www.
transparencymarketresearch.com/report-toc/download/thanks/16916

[27] J. Koilpillai. (2016). Software Defined Network (SDN) or Software
Defined Perimeter (SDP). What’s the Difference? [Online]. Available:
http://www.waverleylabs.com/software-defined-network-sdn-or-
software-defined-perimeter-sdp-whats-the-difference/

[28] M. Rash. (2016). Single Packet Authorization: A Comprehensive Guide
to Strong Service Concealment With FWKNOP. [Online]. Available:
http://www.cipherdyne.org/fwknop/docs/fwknop-tutorial.html#install-
fwknop

[29] K. Griffith. (2018). Software-Defined Perimeter Remains Undefeated
in Hackathon. [Online]. Available: https://www.sdxcentral.com/articles/
news/software-defined-perimeter-remains-undefeated-in-hackathon/
2015/08/

[30] A. Iqbal, U. Javed, S. Saleh, J. Kim, J. S. Alowibdi, and M. U. Ilyas,
‘‘Analytical modeling of end-to-end delay in OpenFlow based networks,’’
IEEE Access, vol. 5, pp. 6859–6871, 2017.

AHMED SALLAM received the B.Sc. degree in
computer science from Suez Canal University,
Egypt, theM.Sc. and Ph.D. degrees of Engineering
in computer science and technology from Hunan
University, China, in 2010 and 2013, respec-
tively. He currently holds postdoctoral position at
Western University, Canada.

AHMED REFAEY received the B.Sc. and M.Sc.
degrees from Alexandria University, Egypt,
in 2003 and 2005, respectively, and the Ph.D.
degree from Laval University, Canada, in 2011.
He is currently an Assistant Professor with Man-
hattan College and an Adjunct Research Profes-
sor with Western University. Previously, he held
various positions including, a Senior Systems
Architect, Mircom, from 2013 to 2016, and a
Postdoctoral at ECE Department, Western Univer-

sity, from 2012 to 2013, and a Researcher at the LRTS Laboratory, from
2007 to 2011. His research interests include adaptive communication systems
and networks security.

ABDALLAH SHAMI received the B.E. degree
in electrical and computer engineering from
Lebanese University, in 1997, and the Ph.D.
degree in electrical engineering from the City
University of New York, in September 2002.
In 2002, he joined the Department of Electri-
cal Engineering, Lakehead University, Thunder
Bay, ON, Canada, as an Assistant Professor. Since
July 2004, he has been with Western University,
where he is currently a Professor and an Acting

Chair with the ECE Department. His research interests include network
optimization and cloud computing.

VOLUME 7, 2019 146587

	INTRODUCTION
	RELATED WORK
	SDN OUTER LEVEL SECURITY
	SDN INNER LEVEL SECURITY

	SOFTWARE-DEFINED PERIMETERS FRAMEWORK
	INTRODUCTION
	SDP CONNECTION OVERVIEW
	SDP PROTECTION

	THE PROPOSED SDP-SDN INTEGRATED ARCHITECTURE
	ARCHITECTURE DESCRIPTION
	THE GATEWAY PLACEMENT
	FLOW CONTROL

	TESTBED AND PERFORMANCE EVALUATION
	TESTBED ENVIRONMENT
	ATTACKS SETUP
	EXPERIMENTS FORMULATION
	RESULT ANALYSIS

	DISCUSSION
	CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES
	REFERENCES
	Biographies
	AHMED SALLAM
	AHMED REFAEY
	ABDALLAH SHAMI

