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ABSTRACT Previously works on analysing imperfect electricity markets have employed conventional
game-theoretic approaches. However, such approaches necessitate that each strategic market player has full
knowledge of the operating parameters and the strategies of its rivals as well as the computational algorithm
of the market clearing process. This unrealistic assumption, along with the modeling and computational
complexities, renders such approaches less applicable for conducting practical multi-period and multi-
spatial equilibrium analysis. This paper proposes a novel multi-agent deep reinforcement learning (MA-
DRL) based methodology, combining multi-agent intelligence, the deep policy gradient (DPG) method, and
an innovative long short term memory (LSTM) based representation network for optimizing the offering
strategies of multiple self-interested generation companies (GENCOs) as well as exploring the market
outcome stemming from their interactions. The proposed approach is tailored to align with the nature of the
examined problem by posing it, for the first time, in multi-dimensional continuous state and action spaces,
enablingGENCOs to receive accurate feedback regarding the impact of their offering strategies on themarket
clearing outcome, and devise more profitable bidding decisions by exploiting the entire action domain, and
thereby facilitates more accurate equilibrium analysis. The proposed LSTM-based representation network
extracts discriminative features which further improves the learning performance and thus promises more
profitable offerings strategies for each GENCO. Case studies demonstrate that the proposed method i)
achieves a significantly higher profit than state-of-the-art RLmethods for a single GENCO’s optimal offering
strategy problem and ii) outperforms the state-of-the-art equilibrium programming models in efficiently
identifying an imperfect market equilibrium with / without network congestion. Quantitative economic
analysis is carried out on the obtained equilibrium.

INDEX TERMS Deep neural networks, deep reinforcement learning, electricity markets, equilibrium
programming, imperfect competition, multi-agent intelligence, strategic offering.

NOMENCLATURE
A. INDICES AND SETS
t ∈ T Index and set of trading days.
h ∈ H Index and set of hours.
n,m ∈ M Indexes and set of nodes.
Mn Set of nodes connected to node n through

a transmission line.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qiuhua Huang.

i ∈ I Index and set of generation companies (GENCO).
i− Index of GENCOs other than i.
j ∈ J Index and set of demands.
In, Jn Set of GENCOs and demands connected to

node n.
b ∈ B Index and set of generation blocks.

B. PARAMETERS
NH Length of market horizon.
Fn,m Cpacity of transmission line (n,m) (MW).
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xn,m Reactance of transmission line (n,m) (p.u.).
λGi,b Marginal cost of block b of GENCO i (£/MWh).
oi Upper limit of strategic offering variable of

GENCO i.
gi,b Maximum power output limit of block b of

GENCO i (MW).
RUi ,R

D
i Ramp up / down limit of GENCO i (MW).

Dj,h Power input of demand j at hour h (MW).

C. VARIABLES
θn,h Voltage angle at node n and period h (rad).
oi,h Strategic offering variable of GENCO i at hour h.
gi,h,b Power output of block b of GENCO i

at hour h (MW).
λn,h Locational marginal price at node n

hour h (£/MWh).

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
The main motivation behind the deregulation of the elec-
tricity industry involves the unbundling of vertically inte-
grated utilities and the introduction of competition in the
generation and supply sectors of the industry in order to
reduce the total system costs [1]. However, electricitymarkets
are still characterized by a small number of large players.
Therefore, these markets are better described as imperfectly
rather than perfectly competitive. In this setting, market
players do not necessarily act as price-takers. In particular,
generation companies (GENCOs) occupying a large share
of the market and / or strategically located in the transmis-
sion network are able to manipulate the electricity prices
and increase their profits beyond the competitive equilibrium
levels, through strategic offering. In other words, they act as
price-makers and do not reveal their actual operating charac-
teristics in their offers to the market but rather misreport them
to increase their economic profits. This results in adverse
consequences including increased prices and loss of market
efficiency [1], [2].
Game-theoretic modeling approaches constitute the most

common ones in the literature to study imperfect electricity
markets. These approaches, depending on the modeling of
one GENCO’s behavior in relation to the behavior of his
competitors, can be broadly classified into two categories:
i) single GENCO’s optimization models, which neglect the
strategic interaction with the other GENCOs (i.e. treating the
latter’s strategies as fixed parameters) and ii) equilibrium pro-
grammingmodels, which take into consideration the strategic
interactions of all GENCOs.

In the first category, the decision-making process of a sin-
gle strategic GENCO is usually modelled through a bi-level
optimization model [3]–[5] which captures the interaction
between the strategic player (modelled in the upper level
(UL)) and the competitive clearing of the market (modelled
in the lower level (LL)). Bi-level optimization problems are
usually solved after transforming them to single-level math-
ematical programs with equilibrium constraints (MPEC),

through the replacement of the LL problem by its equivalent
Karush-Kuhn-Tucker (KKT) optimality conditions. An alter-
native approach to the above problem is to model the market
clearing price at each hour as a function of the demand using
a price-quota curve (or an inverse demand curve) [6]. How-
ever, the parameters of this function are determined based on
exogenous data and therefore cannot accurately capture the
impact of GENCOs’ offering strategies on the formation of
the market clearing prices, as opposite to the case with bi-
level optimization models where the prices are endogenously
determined in the LL problem.

In the second category, equilibrium programming models
are employed when each GENCO takes into account the
strategic behavior of its competitors. Such models aim at
analysing the market outcome stemming from the interac-
tions of multiple price-making GENCOs. The Bertrand (for
modeling price game) [7], Cournot (for modeling quantity
game) [8] and supply function equilibrium (SFE) models [9]
constitute different imperfect equilibrium models reported
in the literature. Furthermore, different computational tech-
niques have been developed for computing the imperfect
equilibrium. Authors in [10]–[13] formulate the problem
by replacing each GENCO’s MPEC problem by its KKT
optimality conditions and and concatenate them together,
resulting in a set of nonlinear constraints known as equilib-
rium problem with equilibrium constraints (EPEC). An iter-
ative diagonalization algorithm (DIAG) is used in [14]–[17]
to identify the imperfect equilibrium, in which each GENCO
solves its own MPEC problem treating the strategies of the
rest of the GENCOs as fixed, until the algorithm converges
to a fixed market outcome. Furthermore, authors in [18]
introduce the concept of extremal market equilibrium and
formulate it into a mixed integer linear program (MILP)
which provides an approximation of original EPEC
problem.

Despite the theoretical soundness of the conventional
game-theoretic modeling approaches, they suffer from sev-
eral drawbacks. First of all, the inherent non-convexities and
non-linearities presented in these models (due to the vast
number of complementarity conditions and the mixed-integer
linearization of some bilinear terms in these models [19]) ren-
der them very hard and computationally expensive to solve.
Furthermore, such modeling and computational challenges
are exacerbated in the multi-period and network-constrained
framework investigated in this paper since the number and
dimension of the decision variables (and therefore the com-
plexity of the optimization problems) are increased consid-
erably on the account of modeling these practical aspects of
the market. Secondly, such approaches assume that GENCOs
have full knowledge of the operating parameters and the
strategies of its competitors as well as the computational
algorithm of the market clearing process, which generally
constitute a very limiting and unrealistic assumption. Lastly,
such approaches discard the benefits (or the accumulated
experiences) of learning from GENCOs’ repeated (daily)
interactions with the market clearing process [20].
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Driven by the extensive complexity of the electricity mar-
kets and the high importance for a competitive economy,
significant efforts have been made in developing new mod-
eling approaches to facilitate more efficient and accurate
equilibrium analysis. A very promising one of which is
the agent-based and reinforcement learning (RL) approach,
which recently has attracted increasing research attention,
driven by the rapid advancements in artificial intelligence.
In this modeling framework, strategic GENCOs (agents) are
capable of learning their optimal strategies (actions) by uti-
lizing experiences acquired from repeated interactions with
the market clearing process (environment). In other words,
GENCOs do not rely on any knowledge of the computational
algorithm of the market clearing process and the operating
parameters and offering strategies of their competitors, but
only on their own operating parameters, the observed market
clearing outcomes (e.g. the clearing prices and dispatches)
and the publicly available information on the market condi-
tion (e.g. the load forecasts). Furthermore, such approaches
avoid the significant modeling and computational complexity
posed by traditional equilibrium programming models.

In this area, previous works [21]–[29] have employed con-
ventional Q-learning algorithm and its variants [30]. This type
of algorithms, however, suffers severely from the curse of
dimensionality since it relies on look-up tables to approxi-
mate the action-value function for each possible state-action
pair. This necessitates that the learning problem being set up
in discrete state and action spaces, rendering it intractable as
the number of possible states / actions grows large or their
spaces are continuous. In the examined market problem,
however, states of the environment and agents’ actions are
not only continuous, but also multi-dimensional (due to the
multi-period nature of the problem). In this context, naïve
discretization of the state space significantly reduces the
accuracy of the state representation of the environment, dis-
torting the feedback GENCOs receive regarding the impact of
their offering strategies on the clearing outcome, On the other
hand, naïve discretization of the action space may adversely
change the feasible action domain, leading to sub-optimal
offering strategies. Furthermore, this issue associated with
single GENCO’s optimization problem may also adversely
affect the determination of the market equilibrium as the
latter takes into account the interaction of multiple strategic
GENCOs, rendering the respective equilibrium analysis less
meaningful.

In the context of addressing such dimensionality
challenges, authors in [31] proposed the deep Q net-
work (DQN) method which employs a deep neural net-
work (DNN) to approximate the action-value function, and
has achieved expert human-level performance in playing
Atari 2600 games. However, although previous work has
validated good performance of the DQN method in problems
with continuous state spaces, it exhibits less satisfactory
performance in problems with continuous action spaces
since the employed DNN is trained to produce discrete
action-value estimates rather than continuous actions [32].

This significantly impedes its effectiveness in tackling the
examined market problem, since the GENCOs’ actions are
continuous and multi-dimensional.

B. SCOPE AND CONTRIBUTIONS
This paper aims at addressing the limitations of state-of-
the-art game-theoretic and RL methods by proposing a
novel multi-agent deep reinforcement learning (MA-DRL)
based methodology, namely, the deep policy gradient (DPG)
methodwith an innovative Long-short TermMemory (LSTM)
based representation network, for optimizing the offering
strategies of multiple self-interested GENCOs as well as
exploring the market outcome stemming from their interac-
tions. Case studies demonstrate the value of the proposed
methodology by comparing it against state-of-the-art game-
theoretic and RL methods in facilitating multi-period, multi-
spatial market equilibrium analysis.

More specifically, the novel contributions of this paper are
outlined below:

- A novel MA-DRL based methodology, namely MA-
DPG-LSTMmethod, combining multi-agent intelligence and
a DPG-LSTM method, is developed to address the examined
problem. The proposed approach is tailored to align with the
nature of the examined problem by establishing it in multi-
dimensional continuous state and action spaces, enabling
strategic GENCOs to receive accurate feedback regarding
the impact of their bidding decisions on the market clearing
outcome, and devise more profitable bidding decisions by
exploiting the entire action domain. To the best of the authors’
knowledge, this is the first time that an equilibrium program-
ming problem is addressed with the consideration of both
multi-dimensional continuous state and action spaces using
a MA-DRL based approach.

- An LSTM-based representation network is proposed to
extract discriminative features from raw data on the mar-
ket condition and clearing outcome, which contributes to
enhancing the learning performance of the proposed method.
Furthermore, an experience reply buffer has been proposed to
break the temporal correlations existed in the consecutively
generated training samples and enhance sampling efficiency.

- Case studies on a test market with day-ahead horizon
and hourly resolution, operating over the IEEE Reliability
Test System demonstrate that, for a single GENCO’s optimal
offering strategy model, the proposed method achieves a
significantly higher profit than state-of-the-art RL methods
(Q-learning, DQN, and DPG) and approximates very closely
the profit obtained by the conventional bi-level/MPEC
approach which provides the benchmark solution.

- For the computation of the imperfect market equilib-
rium, case studies demonstrate that the proposed method out-
performs state-of-the-art equilibrium programming models
(EPEC, diagonalization, and MILP approaches) in efficiently
identifying a multi-period and / or multi-spatial imperfect
market equilibrium. Quantitative economic analysis is con-
ducted on the obtained equilibrium in the absence / presence
of network congestion.
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C. PAPER STRUCTURE
The rest of this paper is organized as follows. Section II
presents the formulation of examined market modeling
problem. Section III details the proposed MADRL-based
methodology. Section IV presents case studies validating
the proposed methodology. Section IV presents case studies
validating the proposed methodology. Finally, Section V dis-
cusses conclusions and future work of this work.

II. MARKET MODELING PROBLEM FORMULATION
A. PROPOSED MULTI-AGENT MARKET ARCHITECTURE
The examined market is modeled as a multi-agent system
with GENCOs as agents. Before a trading day t begins,
the market operator (MO) announces the 24-hour load fore-
cast for day t + 1. On day t , GENCOs are required to
submit their supply offers to the MO. Based on the collected
supply offers, the MO performs the market clearing (refers
to the market clearing model presented in Section II-C).
Subsequently, theMO publishes the market clearing outcome
comprising of locational marginal prices (LMP) and genera-
tion dispatches to the GENCOs.

B. GENERATION COMPANY MODEL
For clarity reasons and without loss of generality, we assume
that each GENCO owns a single generation unit. However,
the model can be readily extended to allow GENCOs owing
multiple generation units. The variable production cost of
GENCO i at hour h is represented by a piece-wise linear cost
function as:

Ci,h,b(gi,h,b) = λGi,bgi,h,b (1)

By taking the derivative on both side of (1), the marginal
cost (2) expresses the step-wise offer curve (consisting of a
number of blocks) that GENCO i submits to the market at
each trading day.

MCi,h,b(gi,h,b) = λGi,b (2)

GENCOs generally exercise market power through either
submitting offers higher than their true marginal costs (i.e.
economic withholding) or offering less that than their true
generation capacity (i.e. physical withholding) to the mar-
ket [2]. In this paper, GENCO can exercise market power
considering a combination of both economic and physical
withholding, in which case the strategic marginal cost func-
tion is expressed by (3), where the value of the decision
variable 1 ≤ oi,h ≤ oi,∀h represents the strategic behavior
of GENCO i at hour h.

MCs
i,h,b(gi,h,b) = oi,hλGi,b (3)

If oi,h = 1, GENCO i behaves non-strategically and reveals
its truemarginal costs λGi,b,∀b to theMO at hour h. Otherwise,
if 1 < oi,h ≤ oi, GENCO i behaves strategically and reveals
higher than its true marginal costs (oi,h ∗ λGi,b,∀h,∀b) to the
market at hour h. GENCO i should determine the value of
oi,h at hour h by optimally trading off higher market prices

and lower electricity production. In other words, a higher
oi,h contributes to increasing market prices at h, but at the
same time it contributes to decreasing the quantity sold by
GENCO i at h, since GENCOs with lower submitted offers
may replace i in the merit order. The DRL method presented
in Section III-E provides an effective tool for individual price-
maker GENCO to learn an optimal offering strategy oi,h from
its repeated interactions with the market clearing process,
based solely on its own operating parameters and the publicly
available information announced by the MO.

In a multi-agent context, multiple self-interested profit-
driven GENCOs tend to behave non-cooperatively with a
target of exercising their individual market power, the nature
of market competition in this context is oligopoly (as each
GENCO usually owns a relatively large market share) and
can be modeled as a non-zero-sum stochastic game [22], for
which the underlying state transition is a Markov Chain and
can be modeled as aMarkov Decision Process (MDP).

C. MARKET OPERATOR MODEL
The modeled market is a pool-based, energy-only market
with a day-ahead horizon and hourly resolution. Following
the model employed in [4]–[6], [9]–[12], [14]–[18], [22],
[24]–[26], [28], [29], the market is cleared through the solu-
tion of an network-constrained economic dispatch problem
(4)-(11) target at minimizing the total generation cost; in
order to account for the effect of the transmission network,
the market clearing process incorporates a DC power flow
model which yields LMP λn,h for each node n and hour h.

min
V LL

∑
i,h,b

oi,hλGi,bgi,h,b (4)

where

V LL
= {gi,h,b, θn,h} (5)

subject to:∑
j∈Jn

Dj,h −
∑
i∈In,b

gi,h,b +
∑
m∈Mn

θn,h − θm,t

xn,m
= 0,∀n,∀h (6)

0 ≤ gi,h,b ≤ gi,b,∀i,∀h,∀b (7)

−RDi ≤
∑
b

gi,h,b −
∑
b

gi,(h−1),b ≤ RUi ,∀h < NH (8)

−Fn,m ≤
θn,h − θm,h

xn,m
≤ Fn,m,∀n,∀m ∈ Mn,∀h (9)

−π ≤ θn,h ≤ π,∀n,∀h (10)

θ1,h = 0,∀h (11)

The MO’s objective (4) is to minimize the perceived total
system production costs as revealed by the GENCOs’ supply
offers. This optimization is subject to nodal demand-supply
balance constraints (6) (the dual variables of which constitute
the LMPs at each node and each time period), generation
capacity limits (7), time-coupling ramp rate constraints (8).
Limits on transmission line capacities and voltage angles of
nodes are enforced through constraints (9)-(10), respectively.
Finally, constraint (11) identifies n = 1 as the reference node.
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III. PROPOSED MULTI-AGENT DEEP REINFORCEMENT
LEARNING METHODOLOGY
A. RL BACKGROUND
As discussed in Section II, the market outcome with com-
petiting strategic GENCO agents is oligopolistic and can be
modeled as a MDP in which the learning behavior of each
agent is governed by an RL algorithm. In this context, each
adaptive agent interacts with a stochastic environment by
sequentially selecting actions over a sequence of time steps,
in order to maximize a cumulative reward.

Before introducing the proposed methodology, the pre-
liminaries of MDP and RL are first presented in this
section. An MDP compromises: 1) a state space S;
2) an action space A; 3) a transition dynamics distribu-
tion with conditional transition probability p(st+1|st , at ),
satisfying the Markov property, i.e., p(st+1|st , at ) =

p(st+1|s1, a1, ..., st , at ) in state-action spaces; and 4) a reward
function r : S ×A→ R.

The decision as to which action at is chosen in a certain
state st is governed by a stochastic policy π : S → P(A),
where P(A) is a set of probability measures on A and
π (at |st ) is the conditional probability at at associated with
the policy. The agent employs its policy to interact with the
MDP and emit a trajectory of states, actions and rewards:
s1, a1, r1, ..., sT , aT , rT over S × A × R. The return Rt =∑T

l=t γ
(l−t)r(sl, al) is the total discounted reward from time-

step t onwards, where γ ∈ [0, 1] is the discount factor
that is used to trade off the importance between immediate
and future rewards. The agents’ goal through RL is to form
an optimal policy that maximises the cumulative discounted
reward from the start state t = 1, denoted by the performance
function J (π ) = E

[
R1|π

]
, then we can write it as an

expectation:

J (π ) =
∫
S
ρπ (s)

∫
A
π (a|s)r(s, a)dads

= Es∼ρπ ,a∼π [r(s, a)] (12)

where ρπ (s) denotes the discounted state distribution gov-
erned by the policy π .

B. RL FORMULATION OF THE MARKET MODELING
PROBLEM
In this section, we detail the RL formulation of the examined
market modeling problem, the key elements associated with
which are outlined as follows:

1) Agent: Each strategic GENCO i constitutes the agent.
2) Environment: The environment is represented by the

day-ahead market clearing algorithm carried out the MO,
as formulated in the optimization problem (4)-(11).

3) State: The state vector si,t serves as a feedback signal for
GENCO i regarding the influence of its offering strategy on
the status of the environment and is comprised of the market
clearing outcome for trading day t−1 and the load forecast of
day t+1 (both information is publicly available to GENCO i
on day t). Specifically, si,t = [gi,1:NH , λi,1:NH , di,1:NH ] ∈
Si is a 3 × NH -dimensional continuous vector where
gi,1:NH ∈ [0,

∑
b gi,b] and λ(n:i∈In),1:NH ∈ [0, λmax] represent,

respectively, the generation dispatches of GENCO i and the
LMPs for day t−1; and d1:NH =

∑
jDj,1:NH denotes the total

system demand forecast announced by MO for day t + 1.
4) Action: The action ai,t = [oi,1:NH ] ∈ Ai (encoded

in output layer of the proposed DPG network (Fig. 1)) of
GENCO i is a NH -dimensional continuous vector where
oi,h ∈ [1, oi] represents the NH strategic offering decisions
of GENCO i submitted to MO on day t .
5) Reward: The reward ri,t of the GENCO i resultant

from its offering strategy ai,t is set to be its economic
profit proi (13), given by the difference between its revenue
in the market and its operating cost.

proi =
∑
h,b

(λ(n:i∈In),hgi,h,b − λ
G
i,bgi,h,b) (13)

C. BENCHMARK RL ALGORITHMS
1) Q-LEARNING
A popular method for RL is to make use of the action value
function (or the Q-value function) Qπ (s, a) = E

[
R1|s1 =

s, a1 = a;π
]
which forms an estimation of the expected total

discounted reward given an action at , at state st , and following

FIGURE 1. Workflow of proposed DPG-LSTM method.
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the policy π from the succeeding states onwards. An optimal
policy can be derived from the optimal Q-valuesQ∗(st , at ) =
maxπ Qπ (st , at ) by selecting the action corresponding to the
highest Q-value in each state. The Q-value function can be
described as a recursive format according to the Bellman
equation [30]:

Q(st , at ) = E[rt + γQ(st+1, π(at+1|st+1))] (14)

The Bellman equation indicates that the action value func-
tion under the current policy can be decomposed in terms
of itself. Namely, Q-value can be updated by bootstrapping,
i.e. we can improve the estimate of Q by using the current
estimate of Q through dynamic programming. This serves
as the foundation of Q-learning [33], a form of temporal
difference (TD) learning [30]. The update of Q-value after
taking action at in state st and observing the reward rt and
resulting state st+1 is:

Q(st , at ) = Q(st , at )+ αδt (15)

δt = rt + γ maxat+1 Q(st+1, at+1)− Q(st , at ) (16)

where α ∈ [0, 1] is the step size, δt represents the correction
for the estimation of the Q-value function (known as the TD
error), and rt + γ maxat+1 Q(st+1, at+1) represents the target
Q-value at time step t .

2) DEEP Q-NETWORK
To address the curse of dimensionality of Q-learning in multi-
dimensional continuous state space (Section I-A), the DQN
method [31] employs a DNN, parameterized by θ , which
takes as input a continuous state st and outputs an estimate
for the Q-value function (i.e. Q(st , at ) ≈ Q(st , at |θ )) for
each discrete action and, when acting, selects the maximally
valued output at a given state. The training of the DNN is
based on minimizing the following loss function representing
the mean-squared TD error:

L(θ ) = E[
(
rt + γ maxat+1 Q(st+1, at+1|θ )− Q(st , at |θ )

)2]
(17)

D. PROPOSED DEEP POLICY GRADIENT NETWORK
Although DQN method has good performance in problems
with continuous state spaces, its performance in problems
with continuous action spaces is not satisfactory because the
employed DNN is trained to produce discrete action-value
estimates rather than continuous actions, which significantly
hinders its effectiveness in addressing the examined market
modeling problem, since market agents’ actions are continu-
ous and multi-dimensional.

In view of such challenges, policy gradient methods
are preferred driven by their ability to handle continuous
actions [32]. The main idea behind policy gradient method is
to adjust the parameter θ in the direction of the performance
gradient ∇θJ (πθ ), which is defined in the policy gradient

theorem [30], [32]:

∇θJ (πθ ) =
∫
S
ρπ (s)

∫
A
∇θπθ (a|s)Qπ (s, a)dads

=

∫
S
ρπ (s)

∫
A
πθ (a|s)

∇θπθ (a|s)
πθ (a|s)

Qπ (s, a)dads

=

∫
S
ρπ (s)

∫
A
πθ (a|s)∇θ logπθ (a|s)Qπ (s, a)dads

= Es∼ρπ ,a∼πθ [∇θ logπθ (a|s)Q
π (s, a)] (18)

According to (18), to derive the policy gradient, one first
needs to take samples of a ∼ πθ (a|s) and compute the
estimated gradient as ∇θ logπθ (a|s)Qπ (s, a). Moving a in
the direction indicated by this gradient increases the log-
probability of choosing that a proportionate to the associated
action value function Qπ (s, a). In this paper, we use the
simple return Rt to estimate the value of Qπ (st , at ).

To this end, the deep policy gradient (DPG) network πθ is
a DNN, parameterized by θ , which takes as input a state st
and performs the policy improvement task which updates the
policy with respect to the estimated performance function J
and outputs πθ (at |st ),∀at ∈ A which denotes the probability
of take action at at state st . To update the DPG network,
the policy gradients are placed at the network’s output layer
and then back-propagated through the network.

Concerning the way of the policy improvement,
the approach employed in the Q-learning and DQN meth-
ods (Section III-C) involves a greedy maximization of the
Q-value function, i.e., π (st+1) = argmaxat+1 Q(st+1, at+1).
However, it is constructive to emphasize that in multi-
dimensional continuous action spaces, greedy policy
improvement becomes intractable as it necessitates maximiz-
ing the Q-value function globally. To address this challenge,
the DPG network poses a more computationally friendly
alternative which is to update agents’ policy in the direction
of the gradient of the performance function J , rather than
globally maximising the Q-value function.

During the learning process, state samples are generated
as the agent sequentially interacts with the environment,
suggesting that these samples are temporally correlated
and does not meet the independently and identically dis-
tributed requirement of modern deep learning algorithms.
To resolve this issue, an experience reply buffer R [31] is
employed. This buffer is a cache of size KR with a first-
in-first-out queue rule which stores previous experiences
(an experience is a transition tuple (st , at , rt )). We then
sample uniformly aminibatch ofK trajectories of experiences
(s(k)1 , a

(k)
1 , r

(k)
1 , ..., s(k)T , a

(k)
T , r

(k)
T ),∀k = 1, ...,K (a trajectory

is an episode with T sequential time steps) to update DPG
network parameters. Mixing recent with past experiences
contributes to reducing the temporal correlations existing
in the replayed experiences. Furthermore, the experience
replay allows samples to be reused, and thereby enhances the
sampling efficiency.

To this end, considering a sampled minibatch of K tra-
jectories of experiences, the policy gradient can be
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FIGURE 2. Structure of standard RNN cell and a LSTM cell.

expressed as:

∇θJ (πθ ) =
1
K

K∑
k=1

[( T∑
t=1

∇θ logπθ (a
(k)
t |s

(k)
t )
)
R(k)1

]
(19)

where R(k)1 =
∑T

l=1 γ
(l−1)r (k)l is the total discount reward

accumulated from the starting state of each trajectory. The
following update is subsequently applied to update the
weights of the DGP network, where α indictates the learning
rates of the gradient decent algorithm:

θ ← θ + α · ∇θJ (πθ ) (20)

E. PROPOSED DPG-LSTM METHOD
Extracting discriminative features from raw state data is an
imperative step toward improved learning performance of the
proposed DPG network. In the examined market modeling
problem, the perceived state of each GENCO i is a 3 × NH -
dimensional vector comprising the NH generation dispatch
of GENCO i, LMPs, and load forecasts. This raw data can
be converted to multi-variate time-series data with NH hours,
each is characterized by three features, i.e. gi,h, λ(n:i∈In),h,
and dh. To effectively extract and interpret useful features
of this time-series data, we propose a representation network
as depicted in Fig. 1. The latter incorporates a Long Short-
Term Memory (LSTM) network [34] which has gained sig-
nificant research interest recently owning to its remarkable
capability of capturing the long-range temporal dependen-
cies of time-series data [34] compared to conventional feed-
forward neural networks (i.e. DNN) and Recurrent Neu-
ral Networks (RNN). As such, LSTM networks have most
recently received success in assorted power system/smart grid
applications, such as electricity load [35] and electricity price
forecasting [36].

The structure of a LSTM cell and a standard RNN cell
is compared in Fig. 2. Given a temporal input sequence
[x<1:NH>] of length NH , an RNN generates a sequence of
output activation (or hidden) values [z<1:NH>] by iterating the
following recursive equation:

z<h> = gt (Wz[z<h>, x<h>]+ bz) (21)

where gt (·) denotes the hyperbolic tangent activation func-
tion,Wz is the matrix of weights and bz is the vector of biases
of appropriate sizes for the RNN cell.

LSTM network extends RNN with memory cells in order
to store and output information, and thereby facilitating the
learning of temporal dependencies for long duration of time.
The idea of a LSTM network is based on a mechanism that
defines the behavior of each individual memory cell, referring
to as gating. The cell state of the LSTM network is denoted
as c<h>. The LSTMnetwork then stores/removes information
to/from the cell, governed by the operation of different gates.
The equations expressing the operation of a LSTM cell are
outlined below:

c̃<h> = gt (Wc[z<h−1>, xh]+ bc) (22)

0u = gσ (Wu[z<h−1>, xh]+ bu) (23)

0f = gσ (Wf [z<h−1>, xh]+ bf ) (24)

0o = gσ (Wo[z<h−1>, xh]+ bo) (25)

c<h> = 0u � c̃<h> + 0f � c̃<h−1> (26)

y<h> = z<h> = 0o � gt (c<h>) (27)

where Wc, Wu, Wf , Wo are the matrices of weights and bc,
bu, bf , bo are vectors of bias of appropriate sizes for the
LSTM cell. Equation (22) represents the input information.
Equations (23)-(25) represent the operation of the update
(or input), forget, and output gates where gσ (·) denotes the
sigmoid activation function. Equation (26) dictates the update
of the memory cell state. The update 0i and forget 0f gates
control, respectively, how much information to be written to
the current cell state c<h> and how much information to be
retained from the previous cell state c<h−1>. Equation (27)
indicates the output y<h> of the LSTM cell which in this case
is the same as the output activation z<h> and is governed by
the output gate 0o.
The overall workflow of the proposed DPG-LSTMmethod

is illustrated in Fig. 1. The output layer of the LSTM network
is a densely-connected layer with each neuron expresses
the extracted features from raw data on generation dispatch,
LMP, and load forecast. This layer is then connected to indi-
vidual GENCO’s DPG network (Section III-D). In stochastic
continuous control RL problems, it is standard to represent
the probability distribution of agent’s action with a Normal
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distribution N (µ, σ 2), and predict the mean µ and the vari-
ance σ 2 of it with a DNN as the function approximator,
referred to as a Gaussian Policy. In this context, the DPG
network, parameterized by θ , takes the extracted feature vec-
tor as an input and outputs the Gaussian policy for each
action dimension. As illustrated in Fig. 1, each GENCO i then
selects its offering strategy by sampling from the obtainedNH
Normal distributions according to:

πθi (ai,h|si) ∼ N
(
µh, σ

2
h
)
, ∀h = 1, . . . ,NH . (28)

F. DETERMINING OLIGOPOLISTIC MARKET EQUILIBRIUM
WITH PROPOSED MA-DPG METHODOLOGY
The DPG-LSTM method enables each individual GENCO
to learn its optimal offering strategy (Fig. 1). In order to
determine the Nash Equilibrium (NE) under the participa-
tion of multiple strategic GENCOs, we propose a multi-
agent DRL methodology, namely MA-DPG-LSTM (Fig. 1),
which facilitates simultaneous learning of mutiple GENCOs’
offering strategies and the analysis of the market outcome
stemming from their interaction. In this case, each GENCO
holds an experience reply bufferRi which separately records
the experiences of GENCO i gathered from its repeated inter-
action with the market clearing process (4)-(11). The policy
gradient of GENCO i and the udapte of its DPG network can
be expressed as (29) and (30), respectively.

∇θiJ (πθi ) =
1
K

K∑
k=1

[( T∑
t=1

∇θi logπθi (a
(k)
i,t |s

(k)
i,t )
)
R(k)i,1

]
(29)

θi ← θi + α · ∇θiJ (πθi ) (30)

The MA-DPG-LSTM method is outlined in Algorithm 1.
The relationship between multi-agent RL solution and NE

is briefly discussed as follows. RL adopts differential learning
mechanism to achieve Bellman optimality, which means RL
is capable of learning the sub-game optimization substructure
including NE [37]. However, in practice, it proves signifi-
cantly challenging to gauge how close a collection of agents’
strategies to a NE in large-scale games such as the market
equilibrium problem investigated in this paper, due to the
cost in training. As a result, researchers generally resort to
convergence to control termination of the training process.

In the case where the proposed MA-DPG-LSTM method
achieves convergence for all GENCOs (i.e. the offering strate-
gies of all GENCOs remain constant (given some tolerance)
with respect to the previous iteration), the diagonalization
technique can be subsequently employed to verify whether
the convergence state is a NE [13]. This method works by
sequentially checking, for each GENCO i, whether its offer-
ing strategy (and profit) at convergence coincide with the
respective solutions of itsMPECproblem (Section I-A), hold-
ing the offering strategies of the rest of the GENCOs fixed
and equal to their values at convergence. If the above holds
for all GENCOs, then such convergence state corresponds by
definition to a pure strategy NE of the oligopolistic market,

Algorithm 1 Proposed MA-DPG-LSTM Methodology
1: Initialize policy parameters θi for each GENCO i with

random weights.
2: Initialize experience reply buffer Ri for each GENCO i,

minibatch size K ,
3: for episode e = 1 : E do
4: for GENCO i = 1 : I do {in parallel}
5: Selects random offer in its action space.
6: end for
7: The MO solves the market clearing problem (4)-(11)

and announces the clearing outcome. The latter, along
with the load forecast for day 1 is used as the initial
state si,0 of GENCO i for the current episode.

8: for trading day t = 1 : T do
9: for GENCO i = 1 : I do {in parallel}

10: Selects its offer ai,t using (28) according to its
current policy πθi .

11: end for
12: Based on the collected supply offers (ai,t , ..., aI ,t ),

the MO solves problem (4)-(11) and broadcasts the
market clearing outcome. This, along with the load
forecast for day t + 1 serve as the new state si,t+1
for each GENCO i.

13: for GENCO i = 1 : I do {in parallel}
14: Evaluate its profit / reward ri,t using (13).
15: Stores, in its experience buffer Ri, experience

(si,t , ai,t , ri,t ).
16: Sample uniformly, from Ri, a minibatch of

K trajectories of accumulated experiences
(s(k)i,1 , a

(k)
i,1 , r

(k)
i,1 , ..., s

(k)
i,T , a

(k)
i,T , r

(k)
i,T ).

17: Update its DPG-LSTM network so as to update
its policy πθi using (29) and (30).

18: end for
19: end for
20: end for

since none of the GENCOs can increase their profits by
unilaterally modifying their offering strategies.

Lastly, as discussed in the literature, existence and
uniqueness of Nash equilibria are not generally guaranteed
[11]–[17], [24], [25], [27]. However, an equilibrium has
proven to be reached within a relatively small number of
iterations in every examined case study (Section V). This
finding, along with the fundamental contribution of this work
on developing a MA-DRL based methodology to facilitate
practical multi-period and multi-spatial equilibrium analysis
in imperfect electricity markets, sets a detailed analysis of
the determined equilibrium solutions out of the scope of this
paper.

IV. CASE STUDIES
A. TEST SYSTEM DATA AND IMPLEMENTATION
In this section, we validate the proposed MA-DPG-LSTM
method in a test market with day-ahead horizon and hourly
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resolution, operating over the IEEE Reliability Test System
(RTS) [38] whose network topology is shown in Fig. 3.

FIGURE 3. Network Topology of the IEEE RTS.

The market includes 10 GENCOs, with their location,
marginal cost, maximum power output limit (assuming that
one generation block is used), and ramp up / down limits
provided in Table 1. The upper limits of the strategic offering
variable of all GENCOs is assumed oi = 2,∀i. The mar-
ket also includes 17 demands, with their location and relative
size (expressed as% of the total system demand and assuming
that it remains identical for every time period) presented
in Table 2. Fig. 4 presents the total demand profile of the
system.

TABLE 1. Characteristics of GENCOs.

To facilitate the analysis on the impact of network con-
gestion, the RTS network is divided into two areas where
nodes 1-13 and 24 correspond to the northern area while
nodes 14-23 correspond to southern area. The northern area is
characterized by cheaper generation and the largest demand
centres are located in the southern area. This setting resem-
bles a realistic situation for the Great Britain (GB) system
[16], [17] where the northern / southern areas correspond to
Scotland / England, respectively.

TABLE 2. Characteristics of demands.

FIGURE 4. Total demand profile of the system.

It is worth mentioning that compared to the test systems
examined in previous works [7]–[18], [21]–[29] (which rep-
resent state-of-the-art equilibrium programming papers in the
literature), the examined test system in our paper involves the
highest i) number of strategic GENCOs (10); ii) number of
demand participants (17); and iii) number of time period (24).
Taking into account all these points, the examined case study
included present more complex cases with respect to this real-
world electricity markets.

In order to validate the performance of the proposed DRL
method, we compare it with Q-learning, DQN, and the orig-
inal DPG methods which constitute the state-of-the-art RL
methods in the power systems / smart grid literature. Their
implementations are briefly discussed as follows.

1) Q-LEARNING
The RL problem must be calibrated in discrete state and
action spaces (Section I-A) in order to apply Q-learning.
In the examined market modeling problem, the states and
actions correspond to the hourly LMPs and the hourly offer-
ing decisions respectively.We discretize the continuous states
and actions in 100 integer values. Therefore, each GENCO i
employs 24 look-up tables, each of size 100 × 100, to store
and update the Q-values for state-action pairs at each hour h.
Note that it is impractical to use a single look-up table of size
10024 × 10024 to store the Q-values associated with differ-
ent daily state-action pairs under the assumed discretization.
Note also that although more state features (e.g. the gener-
ation dispatch) can be considered, it leads to exponentially
increasing number of rows in the look-up table, rendering the
problem intractable.

2) DQN
The DQN method makes use of a DNN as a function approx-
imator that provides the Q-value estimate for each discrete
action and, when acting, selects the action corresponding to
the highest Q-value at a given state. In the examined market
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modeling problem, the state is represented as a time-window
of two adjacent hours, i.e., hour identifier h, dispatch of the
GENCO i, LMP, and demand forecast at hours h − 1 and h,
resulting in 7 neurons in the input layer of the DNN. The
continuous action space is discretized in the same fashion as
in Q-learning, resulting in 100 neurons in the output layer of
the DNN.

For the proposed DPG-LSTM method, the representation
network features two LSTM layers with 8 and 16 neurons
respectively. As shown in Fig. 1, a 384-dimension feature
vector is extracted from the raw data comprising of generation
dispatch, LMP, and demand forecast. This refined feature
vector is subsequently fed into the input layer of the DPG net-
work. The latter has two hidden layers with 128 and 64 neu-
rons respectively and employ the rectified non-linearity
(ReLU) [39] as activation function. The two output layers
of the DPG network both have 24 neurons and encode the
mean and standard deviation of the action, employing the
sigmoid and softplus [39] as activation functions. Theweights
of the LSTM-based representation network and the DPG
network are initialized with xavier initialization [39]. The
Adam optimizer [39] is used for training the neural network
weights with a learning rate α = 10−3. The discount factor γ
is set to be 0.95. We train with a minibatch size of 32 and an
experience replay buffer of size 128.

The examined RL methods have been implemented in
Python with Tensorflow 1.12.0 [40]. The market clear-
ing algorithm (4)-(11) and all the examined game-theoretic
approaches (MPEC, EPEC, DIAG, and MILP) have been
implemented using Xpress Optimizer Python interface [41].
The case studies have been carried out on a computer with a
6-core 3.50 GHz Intel(R) Xeon(R) E5-1650 v3 processor and
32 GB of RAM.

B. COMPARISON OF PERFORMANCE OF RL AND MPEC
METHODS: SINGLE GENCO’S STRATEGIC OFFERING
PROBLEM
The aim of this section lies in comparing the performance
of different RL methods in terms of the quality (i.e. the
profitability) of the learned offering strategy. In this context,
we focus on a single GENCO’s optimal strategic offering
problem. In the examined case studies, this corresponds to
GENCO 7 of Table 1 while the rest of the GENCOs are
assumed to be price-takers (i.e. oi,t = 1,∀i ∈ I\{7},∀t).
For the sake of comparison clarity, this section considers a
case where the network capacity limits are neglected.We ran-
domly generate 10 different seeds, and for each seed each
RL method is trained for 100 episodes, where an episode is
composed of 20 time steps (Algorithm 1).

Fig. 5 illustrates the episodic average reward (i.e. the profit
calculated using (13)) with 10 different random seeds for each
of four examined RL methods and for the benchmark method
where GENCO 7 directly optimizes its offering strategy
through the state-of-the-art MPEC method (Section I-A).
The lines and the shaded area depict the mean and standard
deviation of the average reward over the 10 different random

FIGURE 5. Episodic average reward over 10 different random seeds for
the examined RL and MPEC methods.

seeds. As shown in Fig. 5, the average profit is comparatively
low during the initial phase of learning, suggesting that
GENCO 7 is accumulating more experiences by randomly
exploring different actions. As the learning continues and
more experiences being accumulated, the average reward
turns positive and keeps incr easing and eventually reaches
convergence for all four RL models. This is reflected in the
stabilized average reward as well as the decreased standard
deviation as the learning approaches to the end (Fig. 5).
The training of DPG-LSTM and DPG initially exhibit rel-
atively larger variability compared to Q-learning and DQN.
This is because exploring in multi-dimensional continuous
action space (i.e. DPG and DPG-LSTM) is more challenging
than in discrete action space (i.e. Q-learning and DQN).
Nevertheless, as the learning process continues, DPG-LSTM
significantly outperforms the other two methods, obtaining
the highest average profit and exhibiting the smallest standard
deviation at convergence. In relative terms, DPG-LSTM
achieves 43.35% / 15.48% higher average profit and 63.87% /
49.31% lower standard deviation over Q-learning / DQN
respectively. Furthermore, the DPG-LSTM method approxi-
mates very closely the profit obtained by the MPEC method,
which in this case provides the benchmark solution (the
difference between the profits obtained by the two methods
is 0.90%). Finally, the DPG-LSTM method outperforms the
original DPG method without the LSTM-based representa-
tion network (Section III-D), achieving 4.43% higher profit.

The superior performance of DPG-LSTM can be explained
by i) its ability to model multi-dimensional continuous state
space and to extract discriminative features from time-series
state vector using the proposed LSTM-based representation
network, in contrast to discrete scalar states employed in
Q-learning, enabling GENCO to receive accurate feedback
regarding the impact of its offering strategies on the multi-
period market clearing outcome and ii) its ability to model
multi-dimensional continuous action space enabled by the
proposed DPG network, in contrast to the naïve discretiza-
tion approach employed in Q-learning and DQN, enabling
GENCO 7 to preserve more accurate information regarding
the entire action space.
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FIGURE 6. Episodic average profit for each of the 10 GENCOs in the oligopolistic market case without network congestion.

C. MULTI-PERIOD EQUILIBRIUM ANALYSIS:
UNCONGESTED NETWORK
This section concerns the analysis of the multi-period market
equilibrium where the network capacity limits are neglected
and therefore the network is not congested. An imperfect,
oligopolistic market is considered, where the offering strate-
gies of the GENCOs are determined based on the proposed
MA-DPG-LSTMmethodology. Fig. 6 illustrates the episodic
average profit for each of the 10 GENCOs in the oligopolistic
market case. It can be observed that the average profits for all
10 GENCOs reach stabilization in around 150 episodes. The
procedure of verification of NE presented in Section III-F) is
conducted and it is confirmed that the obtained convergence
state is indeed an NE since no GENCO sees any reason to
deviates its decision given the rest of the GENCOs do not
deviate from their decisions.

Fig. 7 illustrates the evolution of episodic average market
prices in the oligopolistic market case. The intense com-
petition among GENCOs contributes to the decreasing of
market prices during the off-peak periods, where the available
generation capacity is considerably larger than the demand.
However, during the peak period, driven by the increasing
slope of the GENCOs’ offering curves at higher demand

FIGURE 7. Evolution of the episodic average market prices in the
oligopolistic market case.

levels and the higher need to utilize available generation
capacity in the system, the market prices are increased due
to the GENCOs learn to exercise market power. Therefore,
peak periods are deemed the most critical ones concerning
the exercise of market power by strategic GENCOs [16], [17].
Table 3 presents the comparison of offering strategies and
generation dispatch of GENCOs 8 and 10 at hours 17-19 in
the oligopolistic market case. In the equilibrium, the most
costly unit GENCO 10 selects lower offering strategies than
GENCO 8 to sell more energy to the market (it is fully
dispatched at hours 17-19) whilst GENCO 8 exercises market
power to its largest extent and becomes the marginal unit
and sets the market prices at 16.4 £/MWh at hours 17-19.
These findings demonstrate the effectiveness of the proposed
MA-DPG-LSTM method in learning the optimal offering
strategies at different hours for GENCOs of different merit
orders in the oligopolistic equilibrium of the market.

TABLE 3. Offering strategies and generation dispatches of GENCOs 8 and
10 at hours 17-19 in the oligopolistic market case without network
congestion.

D. MULTI-PERIOD AND MULTI-SPATIAL EQUILIBRIUM
ANALYSIS: CONGESTED NETWORK
This section presents the analysis of the multi-period and
multi-spatial market equilibriumwhere the impact of network
congestion is accounted for. Fig. 8 illustrates the episodic
average profit for each of the 10 GENCOs in the oligopolistic
market case. Similar to the trend observed in Fig. 6, the aver-
age profit for all 10 GENCOs reaches stabilization in around
175 episodes. The verification of NE is analogously carried
out which confirms the convergence state is indeed an NE.
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FIGURE 8. Episodic average profit for each of the 10 GENCOs in the oligopolistic market case with network congestion.

TABLE 4. Offering strategies and generation dispatches of GENCOs 5, 7, 8, and 9 at hours 17-19 for cases U and C in the oligopolistic market case.

In order to analyze the impact of network congestion,
the following two cases are examined:

U: a case of oligopolistic market, where the network is not
congested, which is identical in Section IV-D;

C: a case of oligopolistic market, where the network
capacity limits are taken into account, in this case the lines
(11-14) and (13-23) connecting northern and southern areas
get congested during some peak periods, reflecting a real-
istic condition where network corridors connecting northern
and southern areas are congested due to the transmission of
northern cheaper generation to southern large demand centres
(Fig. 3, Tables 1 and 2).

Table 4 presents the offering strategies and generation dis-
patches of GENCOs 5, 7, 8, and 10 at the critical congestion
periods (hours 16-20) for cases U and C in the oligopolistic
market case. Fig. 9 illustrates the 24-hour LMPs at nodes 11,
13, 14 and 23 for cases U and C in the oligopolistic market
case.When the network is congested, the power flow from the
northern to southern area is limited, which reduces / increases
the dispatch of certain GENCOs located in the northern /
southern area. In the oligopolistic equilibrium of case C,
in the northern area, GENCOs 5 and 7 choose higher offering
strategies (than in case U) at the congested hours, as the
network capacity limit is restricting them from selling more
energy to the southern area.1 In this case, GENCOs 5 and 7

1Recall that the key in selecting the optimal offering strategy is to achieve
an advantageous trade-off between increasing the market prices and increas-
ing quantity sold to the market (Section II-B).

FIGURE 9. LMP at nodes 11, 13, 14, and 23 for cases U and C in the
oligopolistic market case.

constitute the marginal units and determine the LMPs at node
14 and 23 in the northern area, respectively. In the southern
area, driven by a combined effect of i) GENCO 10 (which is
the most expensive unit (Table 1)) chooses a higher offering
strategy and ii) the locational decoupling effect of congestion,
the LMPs at the congested hours in the southern area are
raised significantly but the energy sold by GENCO 10 is
reduced. Given the latter and the reduced import from the
northern area, GENCO 8 with lower marginal cost and higher
capacity undercuts GENCO 10 and produces more energy in
order to meet the southern demand. GENCO 8’s profitability
is consequently enhanced by benefiting from the high LMPs
set by GENCO 10 during the congested hours as well as
selling more energy to the market.
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As shown in Fig. 9, when the network is not congested,
the LMPs are identical at every node of the transmis-
sion network, while congestion in lines (11,14) and (13,23)
yields locational price differential between the two areas.
More specifically, during periods of congestion (hour 16-20),
southern area (nodes 11 and 13) -featuring more costly gener-
ation and higher demand- exhibits a higher price than the one
observed in the case U, while northern area (nodes 14 and 23)
-featuring less costly generation and lower demand- exhibits
a lower price than the one observed in case U. Table 5 presents
the profits of GENCOs for cases U and C in the oligopolistic
market case. As can be observed, network congestion creates
a more favourable economic setting (i.e. higher profit) for
GENCOs in southern area and a less favourable setting (i.e.
lower profit) for GENCOs in northern area, as indicated by
the profit increments of GENCOs in Table 5.

TABLE 5. Profits of GENCOs for cases U and C in the oligopolistic market
case.

These findings demonstrate the effectiveness of the pro-
posedMA-DPG-LSTMmethod in learning the optimal offer-
ing strategies at different hours for GENCOs of different
merit orders in the oligopolistic equilibrium of the market.

E. COMPUTATIONAL PERFORMANCE COMPARISON
AGAINST CONVENTIONAL EQUILIBRIUM
PROGRAMMING METHODS
The aim of this section lies in comparing the computa-
tional performance of the proposedMA-DPG-LSTMmethod
against three conventional equilibrium programming mod-
els including the EPEC, DIAG, and MILP approaches
(Section I-A). Table 6 summerised the computational per-
formance of these approaches by presenting the total com-
putational time required by the examined four methods to
find a NE for cases U and C. As shown in Algorithm 1
(Section III-F), in each episode, each GENCO trains its own
DPG-LSTM model by interacting with the market clearing
process. The training process of each DPG-LSTM is imple-
mented in a paralleled fashion. If a convergence state is
observed and passes the NE verification test, the total com-
putational time required for reaching the convergence state
(indicated by the average profit for all 10 GENCOs reach
stabilization) is then recorded.

TABLE 6. Computational time (minutes) for finding a NE in each of the
examined cases. (*: No solution found after 24 hours of simulation).

It can be observed that the proposed MA-DPG-LSTM
method finds the NE for both cases U and C in approxi-
mately 13 and 15 minutes, respectively. This is while the
MILP approach fail to identify any NE after 24 hour of
simulation. Moreover, although EPEC and DIAG approaches
can eventually locate a NE, their computational intensity
is much higher than the proposed MA-DPG-LSTM method
(Table 6). The reason behind the unsatisfactory performance
of the MILP approach lies in the vast number of the binary
variables included in the model [18]. Also, the convergence
of branch and bound solvers highly depends on tuning the
disjunctive (or big-M) parameters introduced for pursing lin-
earity The inherent non-convexities and non-linearities pre-
sented in the EPEC formulation -driven by a large number
of complementarity constraints and the mixed-integer lin-
earization of the bilinear terms in the model- renders them
very hard and expensive to solve. For the DIAG approach,
at each iteration, multiple MPEC problems (which are non-
smooth and non-convex in nature) need to be solved, making
it very computational demanding as well. Furthermore, all the
aforementioned computational complexities are aggravated
in the examined multi-period, network-constrained market
modeling problem, rending these approaches less useful for
finding a NE. Lastly, although none of the examined methods
can theoretically guarantee their solution existence or con-
vergence to a NE [10], [11], [27], [42], case studies demon-
strate that MA-DPG-LSTM exhibits superior computational
performance in successfully and efficiently identifying a
NE in a multi-period and network-constrained electricity
market.

V. CONCLUSION AND FUTURE WORK
Existing literature largely resort to conventional game-

theoretic approaches for modeling and analyzing imperfect
electricity markets. However, such approaches exhibit severe
modeling and computational complexities and are thus very
hard and computationally expensive to solve. In addition,
they rely on complete knowledge of the techno-economical
characteristics and the strategies of the market players as
well as the computational algorithm of the market clear-
ing process, which piratically constitutes a very constrain-
ing assumption. Furthermore, such approaches overlook the
accumulated experiences of learning from GENCOs’ daily
repeated interactions with the market clearing.

In view of these limitations, this paper has proposed
a novel MA-DRL based methodology, combining multi-
agent intelligence and a DPG-LSTM method, to expedite
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practical multi-period and multi-spatial equilibrium analysis.
In contrast with state-of-the-art RL methods (Q-learning
and DQN), this approach conforms to the nature of the
examined problem in multi-dimensional continuous state and
action spaces, enabling GENCOs to receive accurate feed-
back regarding the impact of their offering strategies on
the market clearing outcome, and devise more profitable
bidding decisions by exploring the entire action domain.
Furthermore, the proposed LSTM-based representation net-
work further improves GENCOs’ profitability driven by
its ability to extract high-dimensional discriminative fea-
tures from raw data on the market condition and clearing
outcome.

Case studies on a test market with day-ahead horizon and
hourly resolution and operated over the IEEE RTS system
have validated the effectiveness of the proposed methodol-
ogy. Regarding the single GENCO’s optimal offering strat-
egy problem, the proposed DPG-LSTM method promises a
substantially higher profit than state-of-the-art RL methods
(Q-learning, DQN, and DPG) and approximates very closely
the profit obtained by the state-of-the-art MPEC method.
Concerning the equilibrium programming problem, the pro-
posed MA-DPG-LSTM method outperforms state-of-the-art
equilibrium programming models (EPEC, DIAG, and MILP)
in efficiently discovering an imperfect market equilibrium.
Quantitative economic analysis has been carried out on the
obtained equilibrium. In the casewithout network congestion,
results have demonstrated MA-DPG-LSTM is able to learn
the optimal offering strategies at different hours for GENCOs
of different merit orders. In cases with network congestion,
GENCOs located in the higher-priced area learn to evolve
their strategies by exploiting the price differential effect cre-
ated by the congestion, attaining higher profits albeit at the
expense of the profitability of the GENCOs located in the
lower-priced area.

Conventional equilibrium programming models in the
existing literature [10]–[17] neglect the complex unit com-
mitment constraints of the generation units, due to their
intrinsic inability to deal with binary decision variables in the
LL problem of the strategic GENCOs’ bi-level optimization
problems. However, these complex operating properties may
affect the market clearing outcome and consequently the
strategic decisions of the market players. In contrast, under
the proposedMA-DPG-LSTMmethod, the bi-level optimiza-
tion problem is not converted to a single-level, closed-form
MPEC. Instead, it is solved in a recursive fashion where
strategic GENCOs gradually learn their optimal offering
strategies from repeated interactions with the market clearing
process. It therefore avoids the derivation of the equivalent
KKT optimality conditions of the LL problem and is capable
of addressing the aforementioned challenge of incorporating
non-convex operating characteristics into the market clearing
process. Future work aims at extending the proposed MA-
DPG-LSTM method to investigate the strategic behaviour of
GENCOs as well as the market outcomes stemming from
their interactions.
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