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ABSTRACT The conventional algorithms for estimating number of array signals are only suitable for the
background of Gaussian white noise, and need many snapshots, but their performance will reduce seriously
in the circumstance of impulse noise and small samples. Therefore, a new method of detecting array signal
number with multiple sensors based on transfer component analysis is proposed in this paper. First, the array
signals in Gaussian white and impulse noise are respectively modeled. Then the received array data are
transformed into a common hidden space by the mapping function, thus, data in the hidden space have the
same distribution, and most initial characteristics are retained. Finally, a support vector machine or K-means
clustering are used for classifying the mapped data into two categories, on this basis, the array signal number
can be estimated.

INDEX TERMS Array signal number, transfer component analysis, impulse noise, support vector machine,

K-means clustering.

I. INTRODUCTION

Signal number estimation is always one of the hottest top-
ics in array signal processing, it is often the precondi-
tion of further processing [1]—[8], the research dates from
the late 1950s. At that time, a factitious detecting thresh-
old is needed to set to compare with the likelihood test
statistics [9], so it is easy to be influenced by the subjective
factors. The information theory criteria, such as modeling
by shortest description(MDL) [10] and Akaike information
criterion(AIC) [11] are widely concerned with their good
estimation performance, but they are only suitable for the
background of Gaussian white noise (GWN), in order to
solve this problem, gerschgorin disk method [12] was pro-
posed in the colored noise, then some modified techniques
are presented successively. Another kind of method is based
on Bootstrap, its essence is the resample process to the
received signals, in 2000, Brcich et al. [13] first put forward
the method to estimate source number through constructing
hypothesis test statistics by Bootstrap. Combining with clus-
tering, Zhang et al. [14] acquired number of signals under the
circumstances of low signal to noise ratio(SNR) and small
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FIGURE 1. Source number detection.

snapshots with Bootstrap, the performance was improved by
the full use of eigenvalues and eigenvectors.

In numerous colored noise, impulse noise is a kind of actual
noise that occasionally appears impulsive characteristic, such
as atmospherics [15], [16], ocean noise [17]-[20] and auto-
mobile engine [21]-[24], they manifest GWN characteristic
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FIGURE 2. Signal model.

in most cases, but there are some very large amplitudes
once in a while [25], so it is not proper to express it with
GWN characteristic, its distribution of probability density has
longer stretching than Gaussian noise. In many impulse noise
models, « stable distribution is relatively simple, it can briefly
be used for digital signal processing and has some impulse
characteristic, so it is a proper hypothesis [26]-[32]. Gaussian
noise is a special case of stable distribution, the difference
between impulse and GWN is the probability density func-
tion. Some scholars applied Bootstrap to the background of
impulse noise [33], and minimum covariance estimator was
employed to weaken the effect of the noise, it needs a large
sum of data via thousands of resamples and rearranges to
the signals, so it requires a lot of time. The other effective
technique for impulse noise is fractional lower order statis-
tics(FLOS) [34]-[37] which is very commonly used in signal
processing, but it demands many snapshots.

This paper borrows the idea of transfer learning [38], [39]
and proposes a method for signal number estimation in the
circumstance of impulse noise. The array signals in Gaussian
white and impulse noise are separately modeled. Then they
are transformed into a common hidden space by the mapping
function, thus, data in the hidden space have the same distri-
bution, and most initial characteristics are retained. Finally,
a support vector machine(SVM) is obtained through training
with the mapped data, on this basis, the array signal num-
ber can be estimated by classifying the source and impulse
noise. Besides, we can also use K-means clustering for the
classification.

Il. SIGNAL MODEL

As is shown in Figure 2, there are K far-field narrow-band
sources from Oi(k = 1,2,--- K) arriving at the uniform
linear array (ULA) formed by M sensors, these sources are
Gaussian distribution, and there are no array perturbations,
then output of array at time ¢ in GWN can be written

Xs(t) = A@)S(1) + Ng(1)
= [xs,(t) -+ xs,,(1) -~ xs,, (D] (1

where A(0) = [a(61)--- a(6k)--- a(fk)] is array manifold,
a(0) is steering vector of the kth signal, S(¢) and Ng(t) are
respectively the signal and GWN matrix, xs,, () is the output
of the mth sensor in GWN. As « stable distribution has no
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specific expression of probability density, eigenfunction is
usually used for its description, it is

exp{jcv—6|v|“[1+jesgn<v>tan(%)]}, a1

() = _ ) 2

exp{]gv—8|v|“[l+Jssgn(v);10g|v|]}, a=1
2)

where «o€(0, 2] is characteristic index which decides the
impulsive degree of the distribution, § >0 is dispersion coef-
ficient denoting degree of dispersion, —1<e<1 is symmetric
distribution, ¢ is a real number which determines the location
of the distribution on the coordinate, these parameters deter-
mine the concrete distribution, the noise will be impulsive
when it is a(O<a<2) stable distribution, then the output on
this occasion can be expressed

X1(t) = A0)S(t) + Nsqs(t)
= [xr, (1) -+ x1,,(£) - - - x7,, (D] A3)

where xt,, (¢) is the output of the mth sensor in impulse noise,
in circumstance of 0 < o < 2, the smaller « is, the stronger
the impulse is, if @ = 2, it will be Gaussian distribution.
Here, we put the array output in GWN Xg(1), --- Xs(T1)
(Source domain data) and that in impulse noise
X1(1), -+ X1(T2) (Target domain data) together, then the

mixed matrix is acquired

X =Xs(D)--- Xs(T1), Xt(1)--- X1(T) M x(11+12)- )

IIl. THE ALGORITHM BASED ON TRANSFER
COMPONENT ANALYSIS

A. INFORMATION TRANSFER

Transfer component analysis(TCA) gives us an effective
approach for solving domain matching, we can use this
technique to train array data in white and impulse noise to
transform the two kinds of signals into a common hidden
space through a mapping function, the data in this space
have the same distribution and most characteristics of original
array signals are retained. Then train the classifier with the
mapped data set based on the traditional machine learning.
First, a nonlinear function x (-) is used to transform the data in
GWN and impulse noise into W dimensional common hidden
space, then the distance between the two kinds of probability
distribution functions is

T
> xXs@)

T
) Zl xX1())
/ / 1= =
D, xp) = | = 3
where X is the matrix after mapping the source domain data
[Xs(1)--- Xs(T1)] to the hidden space, X /T is the matrix after
mapping the target domain data [X7(1)--- X1(7>)] to the
hidden space, then the kernel matrix B can be obtained via
solving semidefinite programming [38], we separately define
source domain, target domain and cross domain as Bs s, Bt,T
and Bs T = Brt,s, thus B is expressed

Bss Bsrt
B = ’ ’ 6
|:BT,S BT,T:| ©

&)

’ 2
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then (5) can be written through kernel embedding
T, T
Yo xXs@) X xXr(@) )
D X/ ,X/ — H =1 . t=1 H
( T) T, o
= tr(BC) @)

where tr(-) denotes trace of the matrix, C is a middle variable,
and

1
T X, X;jeXs
1
1
1
———, others
T

here, X; is the element on the ith line of X, define the
transforming matrix that maps X to W dimensional common
hidden space as Z, and the middle variable as [40], [41]

B=BB'?77'B"*)B ©)

letB~1/2Z = 0, then the maximum mean difference distance
between source and target domain after mapping is

DX}, X)) = tr((B(B*1/22)(3*1/2Z)TB)C)

- tr((BQQTB)C> (10)

on one hand, we need to minimize this distance, on the other
hand, the mapping function yx(-) needs to retain the useful
characteristic for training target classifier, we can achieve the
goal by maximizing the variance of the data after mapping
according to principal component analysis, so the sample
covariance matrix after mapping is Q' BPBQ, here, P is the
centering matrix

1
Th+T1T>
where It 47, is the unitary matrix with the dimension

(T1 + T2) x (T + T3), so the domain matching equals to solve
the following problem

min  t(QTBCBQ) + ytr(QTQ)
B-17
s.t. QTBCBQ = Iy (12)

P = IT1+T2 - ( )IT1+T2 (11)

where, y is a compromise parameter, in order to solve the
constraint of the non-convex norm above, we transform (12)
into the following optimization problem

max tr((QT(BCB + yIW)Q)’lQTBPBQ) (13)
B 127

in the process of disposing the problem above, we can decom-

pose the kernel matrix (BCB + yI)~'BPB according to

Fisher discriminant analysis [42], then the eigenvector of
corresponding W eigenvalues can be solved as Q, then

X' = x(X)=2X =B'?Qx (14)

thus, the new sample set X’ in the hidden space is evaluated,
and background noise of the data in X’ will approximately
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FIGURE 3. Map the source and target domain data into common hidden
space.

obey the GWN distribution if source domain data occupies
the majority in X, then X’ can be disposed as the data in
GWN. On one hand, the problem of low precision caused by
small samples in impulse noise will be settled, on the other
hand, the training time is greatly shortened on account of
referencing the experience in GWN, then number of array
signals can be determined by SVM or clustering in the hidden
space.

B. CONSTRUCT CLASSIFICATION CHARACTERISTIC
The covariance of the data in hidden space is

R = E[X’(X’)H] (15)
then the eigenvalues A1 > --- > Ag > Ag41 = -+ = Ay
and corresponding eigenvectors [u1, - -+ Uk, UK 41, - Up]
can be acquired too, thus a(6) can be written

aOk) = Bruk, k=1,2,---M (16)
where B is the weighting coefficient, as a(@) is orthogonal
to [uy,--- ug,ug+1,--- upl, So we have

a'Ou, =0, k=K~+1,---M (17)
define weighting expression of eigenvectors as
pm = 1O, m=1,2,--- M (18)

according to (16) and (17), equation (18) can be expressed

(™
_ |:3m|, m=1,2,"'K

(19)
0, m=K+1,--- M
weight u,, with ¢, then
En=cmPlm, m=1,2,--M (20)

where &, can be deemed as classification characteristic,
¢m can be selected as [43]

— ()\m - 02)2

, o m=1,2,---M~—1 1)
Am

Sm
here, o2 can be replaced by the minimum eigenvalue.

C. CONSTRUCTION OF CLASSIFIER

After obtaining the classification characteristic £, &,
-+ &y—1, we can employ two classification means to deter-
mine signal number, SVM or K-means classifier, and they are
described respectively below:
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1) SVM CLASSIFIER

SVM can be described as a binary classification problem [44],
namely to determine a hyperplane (w, b) which can classify
two training samples in plane ¢ correctly: if f(c) = @ ¢(c) +
b > 1,theny = +1; if f(c) = w'¢(c) + b< — 1, then
y = —1, where f(c) is a linear function,  is the coefficient, b
is the intercept, ¢(c) is the mapping function of ¢, y is the cate-
gorical variable, then corresponding maximum classification
distance is resolved by

! 2
min = |||
wb 2 (22)
(oo +b) =1, i=1,2,

M—1

where c; is the ith element in plane ¢, y; is the ith categorical
variable, then the Lagrangian function of the problem can be
written as

L(w.b,n) = %nwu2 + MZI m(l -~ yi(w%(ci) + b))
- (23)

here, n = (n1,--- ny—1) is Lagrangian multiplier vector,
n; > 0 is the ith multiplier, let the partial derivatives of
L(w, b, n) with respect to @ and b equal zero, we separately
have

M—-1
©= ) nyip(c) (24)
i=1
M—1
Y =0 (25)
i=1
take (24) into f(c), then
M—1
f©)="Y_ nyip (cplc) +b (26)

i=1

the dual problem of (22) is acquired through Lagrangian
multiplier method

M—1 1 M—-1M-1
T

maxy 21: m= 5 21: 21: nin;yiyip - (ci)g(c)

= = =
M—1 (27)
Z niyi =0
i=1
}71207 l=1,2, 'M_l

next, we can select a proper kernel function «(c;,¢) =
#T(ci)¢(c) to transform the nonlinear problem into a linear
one locating in a higher dimension space, and realize it in
original space, thus, the computational complexity depends
on number of samples, not the space dimensionality, so (27)
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is equivalent to

M—1
max, Z n; —
i=1

M-1
Z niyi =0
i=1

i=1,2,---M—1

1 M—-1M-1
3 Z Z nin;yiyjK (€, )
i=1 i=1
(28)

ni =0,

then » = (n1,--- nu—1) can be obtained by solving
(28), consequently, the final decision function is determined
according to k(c;, ¢) and (26)

M—1

f@© =) miyik(eie)+b (29)

i=1
equation (29) can be used for the binary classification
between signal and noise. Generally speaking, Gaussian ker-
nel function is flexible, and we had better choose it for the
solution if the distribution of the data can not be determined
in advance, that is

lle —eill?

o) G0
where o is the bandwidth of Gaussian kernel, then
&, -+, &, -+, Ey—1 are separately taken into (29) as input
data ¢ and implement the classification, namely if f(§,,) > 1,
it will be signal, else it will be noise, so signal number will
be m who satisfies f(§,) > 1 and f(§,,4+1)< — 1, then we
summarize the algorithm as follows:

Step 1: Change signal number from 0 to M — 1, generate
array received data in GWN [Xg(1), --- , Xs(77)] with (1)
and in impulse noise [X1(1),--- , XT(T2)] with (3) as the
training data;

Step 2: Map the two kinds of data into common hidden
space with (14), if source domain data [Xg(1), - - - , Xs(T1)]
occupies the majority in X, then X’ can be disposed as the
data in GWN;

Step 3: Calculate the classification characteristic &y, - - - ,
Em, -+, Ey—1 according to (20);

Step 4: Construct SVM by (29);

Step 5: Take &1, --- , &p, - -+, Ey—1 into SVM for training,
then determine y,n;, yi, ¢i, o and b;

Step 6: Map the test data into hidden space, then take them
into trained SVM to estimate array signal number in impulse
noise.

The proposed algorithm uses TCA and SVM for the esti-
mation, so it can be called TCA-SVM for short. In fact,
TCA is the critical first step for estimating signal num-
ber which transferring the knowledge of Gaussian white
noise into impulse noise, after that, we can employ any
criteria to determine signal number, where SVM/Cluster are
very appropriate for the circumstances of small samples and
low SNR.

k(ci, ) = exp(—

2) K-MEANS CLASSIFIER
K-means clustering [45] is determined by distance similarity,
that is to say the nearer the two samples is, the more similar
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they are, and they can be classified into a same group, then
some compact and independent clusters are acquired. First,
k initial clustering centers are selected randomly from input
data set, then based on close criterion, the distance between
every data object and k clustering centers are calculated,
the data are classified into the region where the nearest cluster
center is located, thus, a category composed by the cluster
center and all the allocated data is formed. After allocating
all the data, compute the average of all data object in every
cluster repeatedly, then a new clustering center is obtained,
we do not iterate in turn until the termination conditions
are met. All the data categories have been classified at this
moment, k cluster is acquired.

The &, denoting clustering center is expressed by the
following equation

1
= > & 31)
MEQ_/'
where &, is the vector of attribute u, &1, &, --- , & are the

vector sets corresponding k clustering centers, and they have
been estimated by the process above, Q; is the clustering
region of the center, N; is the number of the data in &,. The
vector distance is calculated by data and information of cen-
ter, the popular algorithms include Euclidean and cosine dis-
tance, choosing different formulas will influence the distance
calculation results to some extent, then affect the clustering.
In this paper, Euclidean distance is adopted according to the
extensive application of various formulas, that is

dij =& — §jl,

Then we define two initial values of signal and noise:
51(1) = &, %-2(1) = &y—1, in the ith iteration, if di, > dpo,
épeQz(i), &, belongs to the noise; Else, it is corresponding to
signal. This algorithm uses TCA and cluster for the estima-
tion, so it can be called TCA-Cluster for short.

(G,j=1,2,---,M—1) (32)

IV. RESULTS

In this section, several experiments are performed with mat-
lab, Pentium 4 processors with dual cores, 4GHz memory.
In the first experiment, signal model is shown as Figure 2,
four normal sinusoidal sources are from 10°, 20°, 30° and
40°, number of sensors M = 10, impulse noise with
o = 1.3 isillustrated in Figure 4, we employ the conventional
MDL and MUSIC algorithms for signal number and spatial
spectrum estimations separately, Figure 5 and Figure 6 show
their simulation results. We can see that the estimation result
of MDL is not stable all the time, it still has a large error
even if SNR is high, and corresponding MUSIC spectrum no
longer relates to the DOA of actual signals.

Next, only white and impulse noise form the mixed
matrix X, the total number of two kinds of noises is 200, when
GWN accounts for different proportions, the new sample X’
is given in Figure 7 to Figure 10.

From Figure 7 to Figure 10 we know impulsive character-
istic of X’ is becoming less and less obvious with the increase
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FIGURE 4. Impulse noise when « = 1.3.
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FIGURE 5. Estimation precision of MDL.

Spatial spectrum/dB

FIGURE 6. MUSIC spatial spectrum.

of proportion of GWN, when it is 80%, we can approximately
regard X’ as GWN, then some traditional algorithms can be
used here.

In the third experiment, number of training samples in
GWN 77 = 800, that in impulse noise 7> = 200; number
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FIGURE 7. Converted data when GWN accounts for 20%.
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FIGURE 8. Converted data when GWN accounts for 40%.
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FIGURE 9. Converted data when GWN accounts for 60%.

of test samples in GWN 77 = 80, and that in impulse noise
T, = 20,0 = 1.3, 6 = 1, and generalized signal-to-noise
ratio(GSNR) is defined as

1 T\+T,
_ 2
passk = 100 (5o s by so) 63
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FIGURE 10. Converted data when GWN accounts for 80%.
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FIGURE 11. Probability of success versus GSNR.
TABLE 1. Average running time.
Algorithms Training Times Test Time
MDL-FLOS 0Os 0.16s
TCA-SVM 0.319s 0.032s
TCA-Cluster 0Os 0.025s

other conditions are the same with the first experiment,
the proposed TCA-SVM and MDL based on FLOS(MDL-
FLOS) are respectively employed for the estimation,
500 trials, the precision and computational time are given
in Figure 11 and Table 1.

From Figure 11 we know that the precisions of TCA-SVM
and TCA-Cluster are higher than that of MDL-FLOS at
the same GSNR, the probabilities of success are 100%
when their GSNR respectively reach —4dB, —1dB and 6dB.
Table 1 shows that although the training time of TCA-SVM
is long, its test time is short, and it has a higher probability of
success, so we can effectively detect array signal number as
long as the classifier is trained well.

In the fourth experiment, number of samples of training
data is the same with experiment 1, in the test data, number
of samples in GWN accounted for 80% of the total data, other
conditions are the same with experiment 1, GSNR=10dB,
the precision is illustrated in Figure 12. We know that the
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FIGURE 12. Probability of success versus sampling number.
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FIGURE 13. Effect of different proportions of data in GWN.

precisions of proposed TCA-SVM and TCA-Cluster are
higher than that of MDL-FLOS in the same number of test
samples, we can also completely estimate signal number
accurately when sample number of MDL-FLOS is 95, then
the two algorithms no longer have any differences.

In the fifth experiment, we will observe the effect of
different proportions of data in GWN, number of samples
of training data is the same with experiment 1, in the test
data, number of samples in GWN accounted for 40% to
100% of the total data, other conditions are the same with
experiment 1, GSNR = 0dB, the precision is illustrated
in Figure 13.

We observe that the precision is getting higher with the
ratio of GWN increasing, so the proposed TCA method are
appropriate for the circumstances that array sensors ccumu-
late a sufficient proportion of data in GWN.

V. CONCLUSION

In order to dispose the problem of signal number estimation
in impulse noise with small samples, the paper provided a
new method based on transfer component analysis, the array
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data in GWN and impulse noise are transformed into a com-
mon hidden space by the mapping function acquired through
training the two kinds of data, then the machine learning is
employed to obtain a SVM with the mapped data, or we can
use K-means clustering, on this basis, the array signal number
can be estimated by classifying the source and impulse noise,
simulation examples have shown that the proposed method
performs better than that of MDL based on FLOS in the con-
dition of low GSNR or a little sample data, meanwhile, it has a
faster test speed. Thus, the problem of inaccurately estimation
of signal number due to the small samples in impulse noise
will be solved to a large extent. In fact, after transforming the
data into common hidden space, more problems will also be
disposed, so we are going to work on DOA and other sensor
parameters estimation with TCA in future.
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