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ABSTRACT The third wave of information technology (IT) competition has enabled one promising value
co-creation proposition, Smart PSS (smart product-service systems). Manufacturing companies offer smart,
connected products with various e-services as a solution bundle to meet individual customer satisfaction, and
in return, collect and analyze usage data for evergreen design purposes in a circular manner. Despite a few
works discussing such value co-creation business mechanism, scarcely any has been reported from technical
aspect to realizing this data-driven manufacturer/service provider-customer interaction cost-effectively.
To fill this gap, a novel hybrid crowd sensing approach is proposed, and adopted in the Smart PSS context.
It leverages large-scale mobile devices and their massive user-generated/product-sensed data, and converges
with reliable static sensing nodes and other data sources in the smart, connected environment for value
generation. Both the proposed hybrid crowd sensing conceptual framework and its systematic information
modeling process are introduced. An illustrative example of smart water dispenser maintenance service
design is given to validate its feasibility. The result shows that the proposed approach can be a promising
manner to enable value co-creation process cost-effectively.

INDEX TERMS Product-service systems, crowd sensing, value co-creation, decision-theoretic rough set,
data-driven design, servitization.

I. INTRODUCTION
Nowadays, manufacturing companies are paying ever
increasing attention to the sustainability especially envi-
ronmental impact and economic benefit by providing per-
sonalized products with value-added services [1] to meet
individual customer demands. Hence, the manufacturing
paradigm has progressively shifted from a product-centric
manner towards a service-oriented one, and such servi-
tized value proposition is known as product-service system
(PSS) [2], [3]. PSS, as a value creation business strategy,
underlines delivering the usage and performance of ser-
vices other than the product itself as a solution bundle [4].
To achieve this, one of the critical issues is to establish a
cost-effective mechanism to ensure the success of customized
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solution (product-service) design. Despite enormous works
done in the past on marketing strategies (e.g. crowdsourcing)
and systematic design processes (e.g. service blueprint),
a typical problem remains not well solved, that is solution
design with context-awareness (in-context solution design).

The rapid development of IT has brought various low cost,
high performance embedded systems, and hence embraced a
promising market of information densely product, viz. smart,
connected product (SCP) [5]. Owing to its unique abilities
to collect, process, communicate and even ‘‘think by itself’’
with much intelligence [6], it can be utilized as the medium
and tool to obtain massive user-generated/product-sensed
data in the context-of-usage, and further enables the gener-
ation of new services through various analytic tools and busi-
ness intelligence [7]. Hence, a new paradigm named Smart
PSS, was first proposed by Valencia et al. [8] as ‘‘the inte-
gration of smart products and e-services into single solutions
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delivered to the market to satisfy the needs of individual
consumers’’. This IT-driven paradigm can potentially flourish
today’s manufacturing companies by offering a ‘‘smarter’’
way of servitization [9], where users and manufacturers are
actively interconnected into a value co-creation manner [10],
and informatic-based, i.e. data-driven approach serves as
the key to identify explicit and latent needs with context-
awareness [11]. Nevertheless, except for systematic service
design framework [12] and approaches (e.g. lean [13] and
service-oriented approach [14]), and an engineering change
management approach [15], few works have been reported
on a cost-effective approach for Smart PSS solution design.

To address this issue, the state-of-the-art mobile crowd
sensing (MCS) concept can be a promising candidate, which
leverages large-scale mobile devices and empowers a large
number of users to contribute their generated/sensed data
for value creation [16]. It extends the scope of participa-
tory sensing by utilizing both participatory sensory data
from mobile devices (offline) and user-contributed data from
mobile social networking (MSN) services (online). Further-
more, it presents the fusion/collaboration of both human
intelligence (i.e. social sensors [17]) andmachine intelligence
(e.g. pattern recognition, data analytics) in the crowd sensing
processes [18].

Inspired by this concept and also to solve the above-
mentioned typical problem of in-context solution design,
a hybrid crowd sensing approach is proposed by leverag-
ing both the cost-effective MCS with high coverage and
static sensing nodes and other data sources with high reli-
ability in a value co-creation manner. Moreover, a novel
cost-sensitive machine learning approach, i.e. three-way
based decision-theoretic rough set, is adapted to assure the
effectiveness of the data collected, and the systematic infor-
mation modelling process for solution design decision mak-
ing with wisdoms.

The rest of this paper is organized as follows: Section II
reviews related works. Based on that, Section III proposes a
conceptual framework to support industrial Smart PSS solu-
tion design innovation via hybrid crowd sensing. Section IV
further depicts the systematic information modelling pro-
cess, based on the proposed cost-sensitive machine learning
approach. To validate the feasibility and effectiveness of
the proposed hybrid crowd sensing approach, an illustrative
example of smart water dispenser maintenance service inno-
vation is given in Section V. Finally, the main contributions
and future works are concluded in Section VI.

II. RELATED WORKS
To better understand Smart PSS, a review of related works
in industrial PSS design with smartness, and MCS with its
incentive mechanisms is given below.

A. INDUSTRIAL PSS SDESIGN WITH SMARTNESS
Smart industrial PSS solution design (both engineering and
service design) is an emerging topic with the development
of IoT, cyber-physical system (CPS) and Big Data [19].

This informatics-based design process emphasizes ‘‘creat-
ing valuable information’’ [11] and is enabled by massive
user feedback and devices equipped with sensing, identifi-
cation, processing, communication, and networking capabil-
ities [20]. Opresnik and Taisch [21] concluded that it is a data-
intensive process, and effective approaches should be adopted
to exploit data for new revenues in manufacturing companies.
Based on the data source, it can be further classified into
two categories, i.e. user-generated design and product-sensed
design.
User-generated design stands for the ones triggered

by massive user-generated data acquired from online
reviews/comments, audio or video-based text, etc. For
instances, Tanev et al. [22] examined the value of
product-enabled services by utilizing web search tools and
online data from end-users. Takenaka et al. [23] conducted
an analytical study including 600 users’ smart appliance logs
and their response of the survey on their lifestyles to identify
their daily behaviors for new designs. Zheng et al. [24]
utilizes users’ product configuration data and online feedback
for customized respiratory mask design and mobile APP
services.
Product-sensed design stands for the ones stimulated by

the large amount of sensing data generated from SCPs (e.g.
machines, wearables). For instances, Ding et al. [25] pro-
posed a real-time big data gathering algorithm based on an
indoor wireless sensor network for the risk analysis service of
industrial operations. Wan et al. [26] offered a manufacturing
big data solution for active preventivemaintenance in a cloud-
based manufacturing environment. Tao et al. [27] considered
the digitalization service innovation, and introduced digital-
twin enabled manufacturing services, such as real-time mon-
itoring, fault prediction, energy consumption, etc.

Nevertheless, relying solely on the user-generated data
or sensing data is not reliable enough for accurate decision
making. Other types of data originated from service reports,
maintenance records, can also be utilized as a hybrid way to
achieve better wisdom [15]. Moreover, the existing methods
to acquire reliable data sources, especially user-generated
data are quite costly and time-consuming.

B. MOBILE CROWD SENSING AND ITS INCENTIVE
MECHANISM
Smart mobile devices (e.g. smartphones and wearables) own
ever-increasing computation and communication capabilities
and are equippedwith various built-in sensors that allow them
to generate data and communicate to the Internet [28]. Mean-
while, such ubiquitous computing is moving from individual
sensing to social and urban sensing [16]. Hence, an emerging
concept named MCS was first coined by Ganti et al. [29]
referring to a broad span of community sensing paradigms,
with participatory sensing and opportunistic sensing at the
two ends considering the level of user involvement. By lever-
aging large-scale mobile devices and empowering massive
users to share surrounding information or accomplish specific
sensing tasks, MCS has the advantages of high mobility,
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scalability and cost effectiveness, which is superior to the
static sensing infrastructures and can often replace them [30].
Owing to its great advantages, MCS has been widely adopted
in many areas, such as traffic planning [31], unmanned vehi-
cle control [32], landmark measurement [33], to name a
few. Guo et al. [18] further introduced a concept named
mobile crowd sensing and computing (MCSC) by taking
both machine (e.g. sensing data) and human intelligence (e.g.
crowdsourcing) in the MCS into an overall consideration.
It extends the scope by leveraging both participatory sen-
sory data from mobile devices (offline) and user-contributed
data from MSN services (online). Hence, other than only
collecting data from physical sensors, the MCS participants,
acting as the ‘‘social sensors’’, have the ability to analyse
data and transform into valuable knowledge with context-
awareness [17].

Meanwhile, the success of MCS highly depends on the
quantity of participants to guarantee the coverage and reli-
ability, thus the system must always maintain a minimum
number of active participants with budget constraint [34].
Individuals may feel reluctant to participate and share their
sensing knowledge due to the risk (e.g. data privacy) or cost
(e.g. data transmission, energy consumption) raised there-
after [22]. Therefore, it is quite challenging that certain
incentive mechanisms should be provided to motivate user
participation while maintaining the cost-efficiency and data
quality. Based on a holistic literature review, the incentive
mechanisms can be classified based on: form of rewards,
i.e. monetary (e.g. reverse auction [35]), services (e.g. social
welfare [36]), or entertainment approach (e.g. game [33]);
target object, i.e. customer-centric (e.g. user fairness [37])
or platform-centric (e.g. service provider benefits [38]); and
level of participation, i.e. opportunistic (e.g. urban sens-
ing [39]) or participatory (e.g. route planning [31]). One can
refer to Tanev et al. [22] and Zhang et al. [28] for more
details. Meanwhile, recent works are not only looking at
stimulating user participation, but also sensing quality issues
and dynamic changes of budget settings [40], and the overall
consideration of all MCS participants, including data collec-
tors, service providers, and service consumers, to join the
networks [41].

As pointed out by Shu et al. [42], scarcely any works con-
sider the potentials of MCS application in industrial spaces
by leveraging both static sensing nodes with high reliability
(e.g. service records derived) and MCS with high mobility
into a hybrid concern. Meanwhile, few works report on a
cost-effective and reliable data collection and information
fusion manner for the Smart PSS design.

III. HYBRID CROWD SENSING DRIVEN SMART
PSS DESIGN
Aiming to fill the research gaps, the evolvement of IT-driven
PSS paradigms towards Smart PSS is first depicted below.
Owing to the unique characteristics of Smart PSS, a hybrid
crowd sensing approach is hence proposed to support its value
co-creation process.

A. FROM PSS TO SMART PSS
Figure 1 outlines the IT-driven PSS evolvement process ever
since its first coined in 1999 byGoedkoop [43]. Three phases,
i.e. conventional PSS (1999 - ), IoT-enabled PSS (2010 - ) and
Smart PSS (2015 - ) [12], are reasonably categized respec-
tively by its first adopting the newwaves of IT innovation, and
further assessed based on their smart- and connected-ness.

FIGURE 1. IT-driven PSS evolvement with data-driven mechanisms.

The conventional PSS benefits from the wide spread of
Internet implementation as the first wave of IT innovation
in 2000, many e-commerce platforms and online forums
enabled an open environment by leveraging the massive
human intelligence. In this phase, the major concern of
IT-driven value creation lies in the efficient delivery of
data/information (e.g. 3G/4G) with little intelligence.Crowd-
sourcing [44], as the practice of obtaining needed services or
content by soliciting contributions from a crowd of people,
especially from an online community, is a typical way for
user-generated design innovation. A well-known example is
LEGO Ideas [45], which empowers user’s active participation
for LEGO bricks design.

The IoT-enabled PSS is triggered by the ubiquitous con-
nectivity of billions of mobile devices, vehicles, etc. with the
emerging concept of IoT [46]. Sensing data are collected and
interchanged among the networked devices, which interact
with real ‘‘things’’ such as sensors, actuators and RFID,
to realize value generation in the Internet with more intelli-
gence. In this phase, the major concern is the machine intelli-
gence for value co-creation. MCS [29], as a typical approach,
leverages large-scale smart mobile devices to fulfill various
sensing tasks for design innovation. A typical example is the
traffic route selection of Google Maps based on GPS in the
mobile phones.
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FIGURE 2. Hybrid crowd sensing driven smart PSS design framework.

The emerging Smart PSS is enabled by the prevailing
adoption of SCPs [5], digital-servitization [47] and the state-
of-the-art artificial intelligence (AI) techniques [48]. SCP
changes the way value created by embedding IT into the
product itself. Hence, it occupies the offline smartness, which
can self adaptive to the context by leveraging the embedded
systems. Meanwhile, as the tool and medium, SCP commu-
nicates with others, and massive user-generated data can be
obtianed through MSNs, adapted at a component and system
level autonomously based on intelligent algorithms and big
data [19], which represents the online smartness [49]. In such
context, levels of smartness and connectedness follows the
5C principles defined in [16], and both human and machine
intelligence (e.g. MCSC) should be considered integrally to
be well-adapted for Smart PSS design.

B. HYBRID CROWD SENSING-BASED SMART PSS
DESIGN FRAMEWORK
The proposed hybrid crowd sensing is defined as ‘‘a com-
munity sensing paradigm leveraging both the high reliabil-
ity and performance of static devices and the large-scale,
cost-effective mobile devices in a smart, connected environ-
ment’’. Following this definition, its conceptual framework
for manufacturer/service provider-user value co-creation is
proposed, as shown in Figure 2. It mainly consists of four
layers, i.e. physical resource layer, hierarchical data collec-
tion layer, service composition layer, and service application
layer, conducted in a platform-based data-driven manner.

Physical resource layer, consists of various SCPs, includ-
ing both mobile devices (e.g. smart phones, wearables, etc.)
and static sensing devices (e.g. machine tool equipped with
RFID tags). Each device is assigned with a universal unique
identifier (UUID) for easy identification and retrieval. Both
serve as the main data collectors, and different stakeholders
(e.g. manufacturer, service provider and customer) partici-
pated in the sensing task with massive user-generated (e.g.
service record) and product-sensed (e.g. failure mode) data
in a connected environment. For cases, industrial devices
(e.g. assembly line) can communicate with mobile devices
(e.g. smart phones) through specific communication proto-
cols (e.g. OPC Unified Architecture) so that information can
be otherwise collected by the mobile devices alone as the
wireless terminals.
Heterogenous data collection layer includes both

user-generated online data (e.g. ratings, text feedback) from
MSN and/or online communities as social sensors and user-
/product-sensed offline data (e.g. location, acceleration, pres-
sure) from built-in sensors and/or sensing data from other
connected devices as hardware sensors. Meanwhile, other
reliable existing data sources (e.g. product-service informa-
tion, service records, etc.) should be considered as well.
In return, the service providers should give certain incentives
to the effective contributors. The wireless data sensed can
be submitted to data collectors via access to macro base
stations (MBSs) or submitted through little access points
(LAPs), such as micro base stations and relay stations from
nearby data collectors deployed by manufacturer/service
providers [41]. The LAPs work as the middleware to not only
receive data, but also pre-process it (e.g. filtering, cleaning)
before submission to the data collectors. Nevertheless, due
to the limited sensing coverage of LAPs, large-scale mobile
devices can also act as temporary relay stations for relaying
data collected to the LAPs.
Service composition layer, is responsible for generating

novel service concepts, and managing encapsulated services
based on request. It is mainly composed by the intelli-
gent system platform established based on the state-of-the-
art cloud computing, knowledge-based systems (KBS) and
AI techniques. Cloud computing enables ubiquitous access
to a shared pool of configurable system resources and
higher-level services of end users in a ‘‘pay-per-use’’ busi-
ness model [50]. It has the advantages of agility, scala-
bility, high-performance computing, social media support,
ubiquitous access multi-tenant etc. [51], where service
providers/manufacturers in the Smart PSS can achieve abun-
dant design information without capital investment in the
IT infrastructure. Meanwhile, by leveraging KBS and AI
techniques, valuable knowledge can be extracted, and further
analysed from the big data.
Service application layer includes both e-services and

digitalization service for uses’ applications (i.e. service con-
sumers). E-services stands for the ones that has little depen-
dent with the product itself, e.g. the mobile APP for weather
forecasting or industrial news subscriptions. Meanwhile,
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digitalization services represent the ones that are largely
dependent, e.g. smart maintenance services of the product.
In the Smart PSS context, these smart services as add-on
values, are delivered to the customers by embedding them
in the SCPs in an interconnected manner. Hence, the design
of Smart PSS can be conducted in a circular manner with
sustainability concerns.

IV. PROPOSED SYSTEMATIC PROCESS VIA HYBRID
CROWD SENSING FOR SMART PSS DESIGN
Based on the above conceptual framework, to ensure the
successful implementation of hybrid crowd sensing for Smart
PSS design, as an explorative study, this section introduces a
novel systematic process, including user participation incen-
tive mechanism, data collection and transformation, reliable
information fusion and its cost-sensitive decision making. It is
also claimed that this research follows the data privacy regu-
lations, e.g. GDPR (general data privacy regulation), where
no personal data is collected, is proposed to ensure users’
awareness and consent to the data collected. Nevertheless,
the cyber security issues or user data permission process is
beyond the scope of this research, and hence not discussed
here.

A. USER PARTICIPATION INCENTIVES
To motivate massive users’ participation to elicit useful
requirement information and to fulfil the sensing task, mon-
etary or service-based incentive mechanism should be pro-
vided. In this work, a monetary approach is provided based
on the teaching cost [52] and rewarding cost depicted in the
Table 1.

TABLE 1. Cost matrix for user participation.

Where a, p, r stands for the design action determined by the
service provider, viz. accept, pending and reject, respectively.
Meanwhile, I or ∼I stands for the user’s action to conduct
the design or not. λ ∈{λaa, λrr , λar , λra, λpp} stands for
the cost/reward given to the users as incentives. Generally,
only when user’s action matches with service provider’s, will
a reward be given, viz. λaa or λrr . However, in the three-way
based incentive model, the pending situations will result in a
teaching cost, viz. λpp to acknowledge the users giving pend-
ing feedback, however, the reward will be much less than λaa
or λrr since service providers need more accurate responses.
Also, the misclassification will result in no rewards, i.e. λra
or λar .

B. DATA COLLECTION AND TRANSFORMATION
The heterogeneous data collected, including user-generated
data, product sensed data and other existing data sources

contain various formats, including numerical data (e.g. dis-
tance, temperature) or non-numerical data (e.g. text, audio,
video). For the former one, to deal with the high variety of
discrete numbers, specific ranges should be pre-defined by
service providers to categorize them into different classes.
For example, in Table 2, the distance by GPS varied from
1.65 km to 58.09 km can be further classified into very short
(VS) (<10 km), short (S) (10 km – 20 km), medium (M)
(20 km – 50 km) and long (L) (50 – 100 km). Meanwhile,
for the latter one, specific semantics should be extracted
and again categorized based on the information fusion tech-
niques. One may refer to [53] for more details. For exam-
ple, the image can be extracted by the RGB value, x-axis
dimension and y-axis dimension, and categorized into the set
of {coloured, black and white}. Hence, the heterogeneous
data will be fused into a consistent manner with pre-defined
classes for further three-way based decision-making process.

TABLE 2. Water dispenser maintenance service records.

C. INFORMATION FUSION BY 4-TUPLE
INFORMATION TABLE
The design in the hybrid crowd sensing environment can be
structured as a 4-tuple information table:

T = (U ,A,V , f ), (1)

where U = {x1, x2, . . . , x|U |} is a nonempty finite set of
design records, as the universe. A = {a1, a 2, . . . , a |A|} is a
nonempty finite set of attributes and ∀a ∈ {MH ,MS , S,DI },
where MH is the set of MCS hardware sensing attributes
(e.g. GPS location), MS is the set of MCS social sensor data
(e.g. user rating), S is the set of static sensing data (e.g.
failure mode), as shown in Table 2. They together form the
conditional attributes. While DI is the set of design decisions
made by service providers, as the decision attributes. A =
MH ∪ MS ∪ S∪DI, and MH ∩ MS ∩ S ∩ DI = ∅. Va is
a nonempty set of values for an attribute a ∈ A. f : U ×
A→ V is an information function, where f (xi, al) = vil(i =
1, 2, . . . , |U |, l = 1, 2, . . . , |A|) denotes the attribute value
of object xi under al .
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D. RELIABLE INFORMATION FUSION
Three-way decision theory [54] is an extension of
decision-theoretic rough set approach based on the rough
set theory [55], to deal with situations where three possible
decisions exist. It has been widely adopted in various appli-
cations, such asmovie recommendation, filtering spam email,
to name a few. It has the unique advantages of scalability, i.e.
computing the thresholds of boundary region with flexibility.
Therefore, it can be adapted in the hybrid crowd sensing
environment for Smart PSS design, to enable information
fusion in a structured manner.

In this study, after the data have been transformed into a
consistent manner, the indiscernibility relation of the subset
of attributes AS ∈ A can be defined as [54]:

IND(AS ,V ) = {(x, y) ∈ A2S |∀a ∈ V , f (x) = f (y)}, (2)

where two objects x and y are indiscernible with respect to
AS if and only if they have the same value on every attribute
in AS , and for simplicity, the equivalence class of x ∈ AS is
denoted by [x] in this work where

[x] = {y ∈ AS |(x, y) ∈ IND(AS ,V )} (3)

The partitioning of As induced by V is represented as:

As/V = {s1, s2, . . . , sN }, (4)

where ∀s ∈ As/V is an equivalence class, and ∀(si, sj) ∈ As/V,
si ∩ sj = ∅, and hence, P(s) represents the probability that
a design action is needed (i.e. f (y) = Y) according to the
condition attributes:

P(s) = |{y ∈ AS |f (y) = Y }|/|AS | (5)

For example, the first two rows in Table 2 have the same
set of condition attributes and values, while they result in
different classes in the decision (1 Y, 1 N), hence, the prob-
ability of its service action is 50%. Then, the expected cost
associated with taking different actions can be written as
following equations:

Caa = λaaP(x|I )+ λarP(x| ∼ I ) (6)

Cpp = λppP(x|I )+ λppP(x| ∼ I ) (7)

Crr = λraP(x|I )+ λrrP(x| ∼ I ), (8)

where P (x|I ) is the conditional probability of the object x in
the condition I . According to Bayesian decision procedure,
one can find the minimum-cost decision rules can be written
as:

If Caa<Cpp and Caa<Crr , decide x ∈ Accept (9)

If Cpp<Caa and Cpp<Crr , decide x ∈ Pending (10)

If Crr <Caa and Crr<Cpp, decide x ∈ Reject (11)

To simplify the rules and follow the incentive mechanism,
some constrains are added below:

P(x|I )+ P(x| ∼ I ) = 1 (12)

λaa, λrr ≥ λpp > 0, and λra=λar=0 (13)

0 < CL ≤ CU < 1 (14)

The CL and CU are the lower and upper threshold of the
pending region, where probabilities belowCL are in the reject
region, ones above CL are in the accept region, and ones in-
between in the pending region, respectively. The threshold
values of CL and CU can be further calculated as:

CU =
λrr − λpp

(λrr − λpp)+ (λpp − λra)
=
λrr − λpp

λrr
(15)

CL =
λpp − λar

(λpp − λar )+ (λaa − λpp)
=
λpp

λaa
(16)

Hence, the equations can be denoted as:

λrr =
1

1− CU
= λpp (17)

λaa =
1
CL
= λpp (18)

Finally, classification decision rules are obtained as:

If P(x|I ) > CU , decide x ∈ Accept (19)

If CL ≤ P(x|I ) ≤ CU , decide x ∈ Pending (20)

If P(x|I ) ≤ CL , decide x ∈ Reject (21)

E. COST-SENSITIVE DECISION MAKING
From the above equations, one can obtain the total and aver-
age cost for user participation as follows:

Tc = λaaRaa + λppRpp + λrrRrr , (22)

where Raa, Rrr are the total numbers of users who provide the
accurate feedback to design action in the accept region and
reject region, respectively, andRpp stand for the total numbers
of users providing pending reviews.

To maintain the minimum active participation while not
exceeding budget, random forest approach is adopted in this
research, to predictDI and compute Tc and number of people
rewarded based on the three-way incentive model. To test
its performance, the total dataset is randomly divided into a
training set and testing set to conduct the learning process.
Step 1 (Construction of Random Decision Tree): In the

training set, decision-tree learners build a tree by recursively
partitioning the data, as depicted in Algorithm I. These trees
are merged together to form a random forest.
Step 2 (Design Action Result Prediction): Each random

decision-tree produces a prediction result, i.e. P(s), based on
the conditional/decision attributes and values. By leveraging
theses probabilities, one can obtain the P in the three-way
model, as shown in Algorithm II.
Step 3 (Computation of Total Cost and Number of Peo-

ple Rewarded): The pre-defined threshold CL and CU are
leveraged to compare with the value P to classify different
categories based on Eqs. (19-21). Then, both the total number
of people rewarded and the cost can be calculated by the cost
matrix and Eq. (22), as shown in Algorithm III.
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Algorithm 1 Construct Random Decision Trees
Input: Training dataset (DT ), Condition attributes

(AC ), Probability (P), Design action (DI)
Output: A Random Decision Tree (CNode)
Output: New Random Tree

1: P = P(DT ); // probability of the training set DT based
on Eq. (5)

2: DI = DI(P);
3: CNode = NewRandomTree (DT , AC , DI);
4: found = false; // Randomly select AC and split (Line 6

- 13)
5: For (a ∈ AC )
6: AC = AC – {a};
7: If (InformationGain (a) > 0) then
8: found =true;
9: break;

10: End If
11: End For
12: If If (not found) then
13: CNode.children = Null;
14: return CNode;
15: End If

16: CNode.splittingAttribute = a; // Construct random
tree (Line18 - 26)

17: Na = number of attribute values of a;
18: CNode.children = newbulidRandomTree [Na]
19: For (i = 1 to Na)
20: DT (i) = {a ∈ DT |a(x) = i}
21: DI = DI (DT (i));
22: CNode.children [i] = bulidRandomTree (DT (i),

AC , DI);
23: End For
24: return CNode

V. CASE STUDY
To demonstrate the feasibility and advantage of the proposed
approach, smart maintenance service design, as a typical kind
of Smart PSS solution design is adopted, and a case study on
a smart water dispenser product (SWD) made by company X
is chosen. Unlike most existing companies undertaking main-
tenance services in a ‘‘on call’’-based manner with service
records documented manually, company X aims to obtain
cost-effective reliable data sources from end users through
APP and potentially automate the service recommendation
process by leveraging existing datasets (i.e. service records).
The end-product SWD, as the static sensing node, is equipped
with several embedded sensors to detect water pressure
(207-827kPa), water temperature (0.6◦-48.0◦C), flow rate
(1.39-1.89Lpm), flow volume threshold (800 L), total dis-
solved solids (TDS) (<40 etc. as the S). It can communicate
with smart mobile phones with specific APP installed via
Bluetooth module to monitor its real-time conditions for
failure mode detection. Meanwhile, users can contribute their

Algorithm 2 Design Action Prediction Based on
Random Decision Tree

Output: Current node (CNode), Test dataset (Dt )
Output: DI Prediction Result (Pt)
Output: PredictionbyRandomDecisionTree

(PRDT)

1: a = CNode.splittingAttribute;
2: j = a(Dt ) ;
3: If (CNode.children = NULL) then
4: return CNode.DI;
5: Else if (CNode.children [j] = NULL) then
6: return CNode.DI;
7: Else
8: return PRDT (CNode.children [j], Dt );
9: End if

social sensing data (i.e. MS ), e.g. comments and ratings, and
real-time MCS data, e.g. GPS and images (i.e. MH ), to the
online community authorized by the manufacturer/service
provider. Following such manner, the SWDmaintenance ser-
vice can be performed in a user-centric and cost-effective
manner with wide coverage, and the descriptive architecture
of its hybrid crowd sensing network is shown in Figure 3. For
simplicity, as partially shown in Table 2, a total of 7045 ser-
vice design action (i.e.DI) records (.csv file in the supplemen-
tary materials) of product A is analyzed in this research. The
initial cost of λpp is set as 10 SGD, while the records are trans-
formed into pre-defined categories as follows: failure mode
(flow volume exceeded (FV); general electrical problem (E);
TDS > 40; heater malfunction (HM); general mechanical
problem (M); cooling malfunction (CM)); user rating(rating
scale 1-5) ({1, 2} (not acceptable); 3 (pending); {4, 5}
(acceptable)), distance by GPS (service zones) (very short
(<10 km); short (10 – 25 km); medium (25 – 50 km); long
(> 50 km)). Maintenance cost (very low (<20 SGD); low
(20-40 SGD); medium (40 – 60 SGD); high (60 – 100 SGD);
very high (>100 SGD)). In this study, failure mode is cal-
culated by the microprocessor in the existing SWD based on
the abnormal signals detected from the sensors, user-rating
is pre-defined in a 5-point rating scale, and distance by GPS
is measured based on the distance between the location of
the mobile device and the actual service provider. The data
analytics and visualization process are run in the Jupyter
notebook web application written by Python 3 programming
language. The authors exploit several existing libraries, such
as pandas and numpy to do the data mining, data cleaning and
extract useful information. The data visualization is achieved
by seaborn and matplotlib, and the random forest model is
retrieved from sciki-learn.
This original dataset is repeated 20 times with random

partitioning (i.e. 20 × cross-validation) to separate them into
the training set (50%) as chosen, and testing set (50%) as the
remaining based on Algorithm I. Then, based on Eqs. (2-3),
558 equivalence classes are derived out of the 7405 records,
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Algorithm 3Computation of Total Cost and Num-
ber of People Rewarded

Input: Dataset of condition attributes and values
(Da), Thresholds (CU , CL), Cost for
Pending (Cp), DI Prediction Result (Pt),
Number of people rewarded (Num = 0)

Output: Total Cost (Tc), Num
1: N = merge Da and Pt together;
2: ClassofDesignInnovation(N) using Eq. (19-21);
3: Define an empty list L1;
4: For (i ∈ CU )
5: Calculate rewards using Eq. (17);
6: Define an empty list L2
7: For (j ∈ CL ):
8: Calculate awards using Eqs. (18);
9: If ClassofUserAction(Nij)

==ClassofDesignInnovation(Nij)
10: then Num ++;
11: Calculate Tc using Eqs. (22);
12: add Tc to a list L2;
13: End For
14: add list L2 to list L1;
15: End For
16: Convert list L1 to dataframe;
17: return Tc, Num and corresponding CU , CL

FIGURE 3. General architecture of water dispenser maintenance data
collection in a hybrid crowd sensing network.

however, many of them only have 1 or 2 service record, which
is not convincing for determining the probability (P). There-
fore, the authors set a threshold value of 10 to filter the ones

FIGURE 4. Total cost and number of people rewarded in the training
dataset and testing dataset: (a) CL = 0.5; (b) Cu = 0.5.

below it, and 273 equivalence classes out of 5655 records are
selected based on Algorithm II. Then, by utilizing Eq. (5),
P(s) of each class can be calculated to be compared with the
CL and CU . The ones bigger than CU are put into the accept
region, in-between CL and CU in the pending region, and
smaller than CL in the reject region, respectively, based on
Eqs. (19-21). Hence, according to Eq. (22) and Algorithm III,
the average total cost (in red) and number of people rewarded
(in blue) with different combination of CL and CU (interval
of 0.05) is depicted in the line chart of Figure 4 (a) CL = 0.5,
and (b)CU = 0.5, by calculating both the training (solid line)
and testing dataset (dashed line), repeating 20 times. One
should notice that the situations where CU = 0, or CL = 1
are not considered since they did not even exist according to
Eqs. (17-18).

From Figure 4, one can find that the minimum total cost
lies in where (CL , CU ) = (0.5, 0.6), while the maximum
users get awarded lies in (CL , CU ) = (0.5, 0.5). Meanwhile,
the line chart of training and testing set in Figure 4 matches
well, which proves the accuracy of design decisionsmade and
award given. Hence, companies can determine the incentive
strategy to half the incentive with pending reviews provided
to users to achieve reliable data sources with minimum cost.

128470 VOLUME 7, 2019



P. Zheng et al.: Smart PSS Solution Design via Hybrid Crowd Sensing Approach

Moreover, according to the systematic hybrid crowd sens-
ing process, another point is to discover whether the future
design action prediction can be made based on the reliable
conditions given. In this experiment, 50%, 60%, 70%, 80%
and 90% of the original dataset were randomly chosen as
the training set, with the remaining as the testing set. The
testing result can be found in Table 3, where the accuracy
is determined based on the value of precision (i.e. accuracy)
and recall (i.e. sensitivity). One can find that 80% or more
of training dataset can result in prediction result with high
accuracy, which indicates that the dataset is somewhat robust.
Moreover, the approach itself is proven reliable for informa-
tion fusion, and intelligent to predict design actions without
further human intervention.

TABLE 3. Prediction accuracy result.

VI. CONCLUSION
The state-of-the-art ICT and AI techniques have enabled a
prevailing servitization paradigm, i.e. Smart PSS. SCP, as the
media and tool for data collection and smart service genera-
tion, serves as the key to flourish the companies by offering a
novel data-driven co-creation manner. In such context, mas-
sive user-generated and product-sensed data can be obtained
by the manufacturers/service providers upon users’ consent,
and further leveraged to create novel applications to the users.
This work introduces a hybrid crowd sensing approach with
a systematic solution design process for industrial Smart PSS
solution design. The main contributions can be summarized
into two aspects:

1) A hybrid crowd sensing paradigm by combining the
prevailing MCS techniques with reliable static sensing nodes
in the smart, connected environment for industrial value co-
creation in a cost-effective manner. With the ever-increasing
computation and communication capabilities of the end
mobile devices, bandwidth and latency may be less prob-
lematic, but rather the interfaces and tools people utilizing
to communicate/collaborate with machines. Hence, the pro-
posed paradigm has several advantages compared to the exist-
ing crowd sensing or static sensing approach alone, including:
(1) high coverage with reliability concerns, and (2) easy
access with better user experience.

2) The proposed architecture and systematic process for
Smart PSS solution design enables the scalability of active
participants selection, and the reliability of data sources
and its information fusion for smart decision making.
A 4-tuple information table was introduced to organize both
user-generated and product-sensed information as per service

record in an event-based manner. Meanwhile, a cost-sensitive
learning approach was further proposed to facilitate the com-
pany to: (1) decide how much incentives to provide to users
with reliable data sources and minimum cost, and (2) utilize
existing reliable data sources to potentially automate their
future maintenance services.

To validate the feasibility and effectiveness of the pro-
posed approach, a case study of a smart water dispenser
maintenance service design was illustrated. The result shows
that the proposed hybrid crowd sensing approach can be a
promising manner to enable design innovation in the Smart
PSS context cost-effectively. Nevertheless, this work, as an
explorative study, still restricts its scope by only looking at a
systematic process to realize the proposed hybrid crowd sens-
ing approach, rather than a detailed comparison with other
existing machine learning approaches. Other aspects, such
as (1) AI techniques to support heterogeneous knowledge
representation and reasoning with computational efficiency;
(2) cloud-edge computing architecture for improved hybrid
crowd sensing implementation; and (3) in-context user expe-
rience and data privacy can be further studied in-depth.
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