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ABSTRACT The ‘‘masking effect’’ of unresolved targets always results in missed detection and inaccurate
parameter estimation. A feasible approach to separate the unresolved targets is improving the range
resolution by increasing the signal bandwidth. In this paper, we propose a novel scheme to detect andmeasure
the unresolved targets for the phased array radar with stepped-frequency waveform, which provides a large
synthetic bandwidth. We establish the signal model of the stepped-frequency pulse train and review the
conventional 1-D High Range Resolution Profile (HRRP). Since the 1-D HRRP of each element fails to
integrate the spatial domain, we develop a 2-D HRRP where the target echo can be effectively integrated
both in time and spatial domains. Specifically, the 2-D HRRP is generated by the range-angle beamforming
technique. In order to address the range shift in the 2-D HRRP caused by target motion, we design a short-
long stepped-frequency pulse train as the transmit waveform, which contains a short pulse subtrain with
a small pulse repetition interval (PRI) and a long pulse subtrain with a large PRI. The proposed scheme
includes two parts of beamforming detection and parameter estimation with range shift elimination. Based
on two 2-D HRRPs generated by short and long pulse subtrains, each target can be successfully detected
by beamforming detection and target’s range, angle and velocity can be accurately estimated by parameter
estimation with range shift elimination. Simulation results demonstrate the effectiveness of the proposed
scheme.

INDEX TERMS Stepped-frequency waveform, detection and parameter estimation, unresolved targets, high
range resolution profile (HRRP), short-long stepped-frequency pulse train.

I. INTRODUCTION
Unresolved targets denote the targets located in the same
resolution cell, i.e., the multiple closely-spaced targets which
cannot be resolved in time, frequency or spatial domain [1].
The unresolved targets are common in the radar application,
such as early warning and low-angle tracking. However,
the conventional signal processing, like monopulse process-
ing andMoving Target Detection (MTD), may fail in the case
of unresolved targets because their echoes interfere with each
other, which is also referred to as ‘‘masking effect’’ [2]. The
target number is always underestimated (i.e., missed detec-
tion) and the estimated parameters wander far beyond the true
values due to such effect [3]. How to achieve detection and
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parameter estimation of the unresolved targets is still an open
issue.

There were many attempts to detect and measure the unre-
solved targets withmonopulse processing. A number of angu-
lar resolution methods [4]–[9] were reported over the last two
decades. However, such methods are only valid for the two-
target case. To break through this limitation, the angle domain
is combined with the range domain to obtain more processing
degrees of freedom. In [10], a joint range bin processing was
proposed to detect and localize the unresolved targets, where
at most five targets can be separated in range-angle domain.
In [11], [12], the joint range sampling is incorporated into a
statistical model for the target with pulse-to-pulse fluctuation
to achieve target localization. However, only the rectangu-
lar pulse is taken into account as the transmit waveform.
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That is, the joint range bin processing is unavailable when
transmitting the complex waveform, e.g. Linear Frequency
Modulation (LFM) pulse. Meanwhile, the parameter estima-
tion is achieved by the method of moment. A high Signal-
to-Noise Ratio (SNR) or a long span of observation time
are required, which is often limited in practice especially in
the long-range detection and tracking. Moreover, the perfor-
mancewill get worse without accuratelymodeling the targets.

Most of the existing work try to resolve multiple targets in
the same resolution cell based on statistical model or paramet-
ric model. However, the most effective approach is improving
the radar resolution. It is much difficult to improve the radar
resolutions of angle and velocity because they are determined
by the antenna aperture and the observation time, which
are fundamentally limited by the system cost and the time
resource referred to dwell scheduling. In contrary, the range
resolution can be easily improved by synthesizing the diverse
frequencies of multiple pulses to generate the High Range
Resolution Profile (HRRP). That is, the range resolution abil-
ity can be improved by the transmit waveform design in time
domain. In the HRRP, the unresolved targets can be resolved
in range domain as long as the synthetic bandwidth is large
enough.

One of the common approaches to generating HRRP is the
stepped-frequencywaveform technique. A definite advantage
of using stepped-frequency waveform is the low system cost
because only a narrow instantaneous receiver bandwidth is
required. However, such waveform is much sensitive to target
motion, which is the so-called ‘‘Doppler effect’’ [13], espe-
cially when considering a target with a large radial velocity.
The Doppler effect causes additional linear phase term and
quadratic phase term, which induces the distortion of HRRP.
Specifically, the linear phase term results in the range shift
of peak position, and the quadratic phase term results in the
spread of peak shape [14]. Due to the distortion of HRRP,
the detection and estimation performance of unresolved tar-
gets degrades greatly. Thus, motion compensation is the key
issue for the application of HRRP.

A large number of methods are proposed for the motion
compensation. One approach is the velocity compensation,
where target’s velocity is estimated precisely to compensate
the phase error caused by target motion. A velocity estimator
based on Maximum Likelihood (ML) principle is developed
in [15]. To improve the estimation accuracy, the nonlin-
ear least squares principle is used in [16]. However, such
approach is not available in the case of unresolved targets
because the masking effect will cause a severe estimation
error. In [17], the Minimum Description Length (MDL)
principle is combined with ML principle to resolve multi-
ple targets. However, a large computational cost is required
for a good performance. The other approach is waveform
design, where thewaveform is designed specially to eliminate
the range shift. In [18]–[20], the pulse train is divided into
multiple pulse subtrains with different stepped frequencies.
The HRRP of each substrain has different range shift and
the true value of target position can be solved. To reduce the

FIGURE 1. Illustration of stepped-frequency pulse train transmitted by
phased array radar.

sidelobe of HRRP, the phase coding is also used in waveform
design, including polyphase coding [21], [22] and Costas
coding [23]. However, such methods are invalid in multitar-
get. Moreover, most of the motion compensation methods are
not available on the phased array radar since target’s angle
and range are coupled in the phase term.

It is feasible to separate the unresolved targets in range
domain by using the stepped-frequency waveform. In this
paper, based on the stepped-frequency waveform, we pro-
pose a novel scheme to detect and measure the unresolved
targets for the phased array radar. Specifically, we spacially
design the transmit waveform for motion compenation. In the
sequel, the corresponding method is developed to achieve the
detection and parameter estimation of unresolved targets. Our
contributions are summarized as follows: 1) Beamforming
detection. The range-angle beamforming technique is used
to generate the 2-D HRRP in range-angle domain, where
target acho can be effectively integrated both in time and
spatial domains. Then we develop the beamforming detec-
tion based on the Constant False Alarm Rate (CFAR) tech-
nique. Each target can be detected successfully with the
beamforming detection. 2) Parameter estimation with range
shift elimination. We specially design a short-long stepped-
frequency pulse train as the transmit waveform, which con-
tains two pulse subtrains with different Pulse Repetition
Interval (PRI). By combining the 2-D HRRPs generated by
two pulse subtains, the range shift can be eliminated and
each target’s range, angle and velocity can be estimated
accurately.

The rest of paper is organized as follows.We firstly give the
signal model of stepped-frequency waveform for the phased
array radar in Section II. Next, we present the scheme to
detect and measure the unresolved targets in Section III. Then
several simulation results are shown in Section IV. Finally,
the conclusions are drawn in Section V.

II. PROBLEM FORMULATION
A. SIGNAL MODEL
Consider a uniform linear array with N elements whose
interval is d . To achieve high range resolution, a stepped-
frequency LFM pulse train is used as the transmit waveform.
As shown in Fig. 1, K pulses are transmitted in repetition Tr .
Bandwidth and duration of each pulse are Bp and Tp respec-
tively, and the carrier frequency is stepped from pulse

VOLUME 7, 2019 129019



S. L. Wang et al.: Novel Scheme for Detection and Estimation of Unresolved Targets

to pulse. The transmit signal is then expressed as

s(t) =
K−1∑
k=0

p(t − kTr )ej2π fk t (1)

where p(t) = rect[(t − Tp/2)/Tp]ejπµt
2
is the waveform of

LFM pulse and fk = f0 + k1f (k = 0, 1, · · · ,K − 1)
is the carrier frequency. µ = Bp/Tp denotes the frequency
modulation rate.

Firstly, we focus on the case of one single target in uniform
motion whose range, angle and radial velocity are R, θ and v.
Taking the first element as reference, the target echo received
by the nth (n = 0, 1, · · · ,N − 1) element is

rn(t) = αe−j
2π
c fkndu · s(t −

2R
c
+

2vt
c
) (2)

where α is the complex reflection coefficient and u = sin θ
is the angle cosine. We take s0 = p(t)ej2π fk t as the reference
signal of matching filter. In the sequel, the filtered signal is
expressed as

Zn(t) = αe−j
2π
c fkndu

∫
∞

−∞

s(τ −
2R
c
+

2vt
c
)s∗0(τ − t)dτ (3)

where [·]∗ denotes the conjugate operator. After rea-
sonable approximation and demodulation processing (See
Appendix A), we give the baseband signal of the nth element
as

Z ′n(t) = α
′

K−1∑
k=0

∣∣∣∣χ (t − 2R
c
− kTr ,

2v
c
fk )

∣∣∣∣
· e−jn2ue−jk(8R−9v+nξ2u)e−jk

2ξ9v (4)

where α′ = αe−j
4π
c f0R+φ(t), 2 = 2π f0d/c, 8 = 4π1f /c,

9 = 4πTr f0/c, ξ = f0/1f . φ(t) is the phase of
χ (t−2R/c− kTr , fk2v/c) and χ (t, fd ) denotes the ambiguity
function of LFM pulse expressed as

χ (t, fd ) =
∫
∞

−∞

p(τ )p∗(τ − t)ej2π fd τdτ (5)

Note that, K peaks appear in the baseband signal at time
t = 2R/c + kTr . Assume that there is no target migration
through resolution cell and the maximum values are located
at ts(k + 1) = l1t + kTr where 1t is the sampling time
interval. We pick up the peaks of sampled baseband signal to
generate a K × N data matrix expressed as

X=


Z ′0 [ts(1)] Z ′0 [ts(2)] Z ′0 [ts(K )]
Z ′1 [ts(1)] Z ′1 [ts(2)] Z ′1 [ts(K )]

...
... · · ·

...

Z ′N−1 [ts(1)] Z ′N−1 [ts(2)] Z ′N−1 [ts(K )]


=
[
xT0 xT1 · · · x

T
N−1

]T
=AS(R, u, v)+ N (6)

where [·]T denotes the transport operation, S(R, u, v) and N
denote the steering matrix and the noise matrix respectively.

A is a diagnose matrix expressed as

A =


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...

0 0 · · · AK−1

 (7)

where Ak = α′|χ (l1t − 2R/c, 2vfk/c)| denotes the complex
amplitude of the kth filtered pulse. Element of the nth row
and the kth column in S is

Sn,k (R, u, v) = e−jn2ue−jk(8R−9v+nξ2u)ejk
2ξ9v (8)

It should be noted that the Doppler frequency turns to
higher with the increasing carrier frequency, which results
in the degressive output amplitude of matching filter. That
is, |A0| > |A1| > · · · > |AK−1|. It is aimed to separate
the unresolved targets by improving the range resolution.
The high range resolution is exactly close to target size.
In this sense, the difference between amplitudes is negligible
because 1f we needed is not large. Therefore, we have
A0 ≈ A1 ≈ · · · ≈ AK−1 = A and A = AI , where I is a
unit matrix. In the sequel, (6) is rewritten as

X = AS(R, u, v)+ N (9)

Then, we consider the case of unresolved targets. Assume
that there are M targets in the same resolution cell
(R0, u0, v0). In this case, the signal model is rewritten as

X =
M∑
m=1

AmS(Rm, um, vm)+ N (10)

where Am and (Rm, um, vm) are the mth target’s complex
amplitude and parameters needed to be estimated. Since
all targets are not resolved in each domain, we then have
|Rm−R0| < 1R/2, |um−u0| < 1u/2 and |vm−v0| < 1v/2,
where 1R, 1u and 1v are the radar resolutions in range,
angle and velocity. They are expressed as

1R = c/2Bp
1u = c/f0Nd

1v = c/2f0KTr (11)

In particular, 1R we defined here is a coarse range
resolution for a single LFM pulse with small bandwidth,
but not for the synthetic bandwidth of stepped-frequency
pulse train. We define the element-based SNR of each tar-
get as SNRm = |Am|2/σ 2 where σ 2 denotes the noise
power.

B. 1-D HRRP OF UNRESOLVED TARGETS
We aim to detect each target and estimate each target’s param-
eters. That is to determine M and (Rm, um, vm). However,
M is usually underestimated in the case of unresolved targets.
Moreover, the conventional methods of parameter measure-
ment, such as monopulse technique and MTD, are invalid.
In theory, we can improve the range resolution by transmitting
the stepped-frequency pulse train and use the 1-D HRRP
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to resolve multiple targets in range domain. Usually, the
1-D HRRP is generated by Inverse Discrete Fourier Trans-
form (IDFT). The IDFT processing of stepped-frequency
pulse train is equivalent to the beamforming in range domain
indeed. 1-D HRRP of the nth element is

On(R) = wH (R)xTn

=

M∑
m=1

Ame−jn2um

·

K−1∑
k=0

ejk
2ξ9vme−jk[8(Rm−R)−9vm+nξ2um] (12)

where wH (R) =
[
1 e−j8R · · · e−j(K−1)8R

]T is the wight
of range beamforming and [·]H is the conjugate transpose
operator.

In (12), there are a 1st order phase component
k[8(Rm − R)−9vm + nξ2um] and a 2nd order phase com-
ponent k2ξ9vm. The 1st order phase component determines
the peak position of 1-D HRRP, and the 2nd order phase
component results in the power spread but not affect the peak
position [14]. The peaks of HRRP appear at [18]

R = Rm −9vm/8+ nξ2um/8 (13)

From (12), we can see that the beamformer output is
the sum of multiple targets’ 1-D HRRPs, which results in
inaccurate ranging and missed detection. From (13), it is
observed that the peak have a shift from the true value.
Such range shift is not only caused by target’s velocity, but
also by target’s angle, which causes that the peak position
of 1-D HRRP has a migration during elements. That is,
1-D HRRP of each element cannot be integrated effectively
in spatial domain, which fundamentally limits the perfor-
mance of target detection. The conventional processing of
stepped-frequency waveform, only focusing on target motion
compensation, is not available here. Such range shift can
be eliminated if target’s angle and velocity are estimated.
However, as mentioned above, the conventional methods can-
not provide an accurate parameter estimation in the case of
unresolved targets. Therefore, 1-D HRRP is not suitable for
the phased array radar to detect and measure the unresolved
targets.

III. SCHEME FOR DETECTION AND PARAMETER
ESTIMATION OF UNRESOLVED TARGETS
In this section, a novel scheme for detection and parameter
estimation of the unresolved targets is proposed. We design
a short-long stepped-frequency pulse train and develop the
corresponding methods to detect and measure the unresolved
targets. The scheme includes two parts of beamforming
detection and parameter estimation with range shift elimina-
tion. By the proposed scheme, each target can be detected
successfully and target’s parameters (i.e., range angle and
velocity) can be estimated accurately.

A. RANGE-ANGLE BEAMFORMING AND 2-D HRRP
The stepped-frequency waveform has been developed to
improve the HRRP for a single-antenna radar. However,
regarding the antenna array radar, the 1-D HRRP fails in the
integration of spatial domain because target’s range, angle
and velocity are all coupled in the phase term. Even though
the stepped-frequency waveform provides a large synthetic
bandwidth, the range resolution ability is still poor without
effective energy integration. To break through the limination
of 1-D HRRP, we use the range-angle beamforming tech-
nique [24] here. The beamformer can generate a 2-DHRRP in
range-angle domain, which provides a promising resolution
ability in range-angle domain to separate the unresolved
targets.

The range-angle beamforming is a development of digi-
tal beamforming technique where a digital receive beam is
steered to search a specific area in range-angle domain by
using two-dimensional weighting. In the case of unresolved
targets, we only need to consider the beamformer output in
the resolution cell (R0, u0, v0) where multiple targets found.
The two-dimensional weight is defined as W (R, u) whose
element of the nth row and the kth column is

wn,k (R, u) = e−jn2(1+ξ )(u+u0)e−jk8(R+R0)ejk(1+kξ )9v0 (14)

where R ∈ [−1R/2,1R/2] and u ∈ [−1u/2,1u/2].
Then the range-angle beamformer output is the 2-D HRRP

of unresolved targets, expressed as

O(R, u) = vec (W )H vec (X)

=

M∑
m=1

N∑
n=1

K∑
k=1

Ame−jn2(1+kξ )(ūm−u)

· e−jk8(R̄m−R)ejk(1+kξ )9 v̄m (15)

where R̄m = Rm−R0, ūm = um−u0, v̄m = vm−v0 and vec(·)
denotes the vectorization operator.

High range resolution is determined by the synthetic band-
widthB = K1f . To avoid the range ambiguity,1f should not
be larger than Bp [14]. We aim to separate the unresolved tar-
gets in range domain with 2-D HRRP. In this sense, the high
range resolution is just close to target size and the synthetic
bandwidth is still in the scope of narrowband. That is, B� f0.
In the sequel, (15) is approximated as (see Appendix B)

O(R, u)≈
M∑
m=1

N−1∑
n=0

K−1∑
k=0

Ame−j[n2(ūm−u)+k8(R̄m−R)−k9 v̄m]

=

M∑
m=1

A′m
sin[N2(u− ūm)/2]
sin[2(u− ūm)/2]

·
sin[K8(R− R̄m +9/8v̄m)/2]

sin[8(R− R̄m +9/8v̄m)/2]
(16)

where A′m = Ame−j{
N−1
2 2(ūm−u)+K−1

2 [8(R̄m−R)−9 v̄m]}. From
(16), the range and angle resolutions of 2-D HRRP are

1R′ = c/2BpK

1u′ = c/f0Nd (17)
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FIGURE 2. Illustration of short-long stepped-frequency pulse train for
range shift elimination.

It is observed that the angle resolution of 2-D HRRP
is unchanged but the range resolution turns to be 1R/K .
In particular, the range resolution of 2-D HRRP 1R′ is cor-
responding to the stepped-frequency pulse train, which is
different from the coarse range resolution of a single pulse
1R. The diverse frequency in each pulse is synthesized to a
large bandwidth which improves the range resolution ability.
Then the coarse range resolution cell can be divided into
K high range resolution cells. Thus, the unresolved targets
can be separated only if the improved range resolution is
less than targets’ range difference. Different from the 1-D
HRRP corresponding to each element, there is no coupling
between range and angle in the 2-DHRRP. Target echo can be
effectively integrated both in time and spatial domains. Thus,
the 2-D HRRP we developed here is more suitable to the
phased array radar. By generating the 2-D HRRP, the targets’
angles can be determined directly.

However, the range-angle beamforming is not enough.
From (16), the peaks of 2-D HRRP are located at

(P(R)m ,P(u)m ) ≈ (R̄m −
9

8
v̄m, ūm)

= (R̄m −
Tr v̄m
ξ
, ūm) (18)

It should be noted that the peaks of 2-D HRRP still suffers
from range shift caused by target motion. Such range shift
will not only result in the inaccurate estimation of range and
velocity, but also the missed detection when the shifted peaks
are exactly overlapped.

B. PARAMETER ESTIMATION WITH RANGE
SHIFT ELIMINATION
From (18), the angle can be determined directly but the range
is still coupled with the velocity. Note that, the range shift
caused by target motion is nearly linear to Tr . To solve two
unknowns, we need two pulse trains with different PRI at least
to determine the targets’ velocities and eliminate the range
shift.

Inspired by the methods of waveform design mentioned
in Section I, a short-long stepped-frequency pulse train is

specially designed as transmit waveform here. As shown
in Fig. 2, the designed pulse train is combined with a short
pulse subtrain with small PRI Tr and a long pulse subtrain
with larger PRI βTr . Two 2-D HRRPs with different range
shift can be derived from the pulse subtrains by range-angle
beamforming. Assume that the target peaks are fully detected
(The detail of target detection is given in next subsection).
The range shift can be eliminated by combining the target
peaks of two 2-D HRRPs.

The peak postions of the first 2-D HRRP are given in (18).
The peak postions of the second 2-D HRRP are

(P′(R)m ,P′(u)m ) ≈ (R̄m − β
Tr v̄m
ξ
, ūm) (19)

By combining (18) and (19), two linear equations of tar-
gets’ ranges and velocities are given as

P(R)m = R̄m −
Tr v̄m
ξ

P′(R)m = R̄m −
βTr v̄m
ξ

(20)

By solving (20), we can derive the estimations of range and
angle as

R̂m = R0 +
βP(R)m − P

′(R)
m

β − 1
(21a)

v̂m = v0 +
ξ
(
P(R)m − P

′(R)
m

)
(β − 1)Tr

(21b)

As mentioned above, the beamformer outputs of short pulse
subtrain and long pulse subtrain both can determine tar-
get angle directly. To improve the estimation performance,
the average value is used as the angle estimation. Then we
have

ûm =
P(u)m + P

′(u)
m

2
(22)

C. BEAMFORMING DETECTION
An key assumption of accurate parameters estimation is that
all target peaks of 2-D HRRP are detected successfully.
In general, missed detection and false alarm are inevitable in
the process of target detection. However, the false alarm is
more acceptable than the missed detection because the false
target will not affect the parameters estimation of real targets.
Moreover, the false alarm probability can be kept around a
constant by the CFAR technique.

The Cell Averaging (CA) CFAR and the Ordered Statis-
tic (OS) CFAR are commonly used in the two-dimensional
target detection. However, it is known that the CA CFAR
procedure has a main drawback and leads to some masking
effects in multitarget situations. The OS CFAR is proposed to
avoid the described masking effects [25]. Therefore, we use
the OS CFAR here to detect the unresolved targets. Note that,
a range-Doppler matrix derived by matching filtering and
MTD processing is usually used in the conventional target
detection. Here, it is replaced by the 2-D HRRP which is a
range-angle matrix.
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TABLE 1. Parameters of radar.

Assume that the 2-D HRRP contains P × Q data cells.
To determine the detection threshold, we use PR × QR
reference window to estimate the interference statistic.
A PG × QG guard window is usually introduced surround-
ing the test cell because the cells in guard window may
contain target returns, which will bias the interference esti-
mate. Thus, the number of available cells in reference win-
dow is NR = PR × QR − PG × QG. In the OS CFAR
procedure, the data cells {O1,O2, · · · ,ONR} contained in
reference window is sorted according to their magnitude as
{O(1),O(2), · · · ,O(NR)} where

O(1) < O(2) < · · · < O(i) < · · · < O(NR) (23)

The ith value is selected to indicate the average interference
floor and the decision threshold is

T = γOSO(i) (24)

where γOS is the threshold factor. The probability of false
alarm Pfa is expressed [26]

Pfa =
NR!(γOS + NR − i)!
(NR − i)!(γOS + NR)!

(25)

Tomaintain the false alarmPfa, the threshold factor γOS needs
to be determined according to (25). A reasonable value of
i = 0.75NR is usually used to achieve a CFAR loss near
the minimum [27]. Note that, the actual probability of false
alarm may be a little higher than the theoretical value in (25)
especially at low SNR, since the overlapped sidelobe peak of
multiple targets may be detected.

IV. SIMULATION RESULTS
In this section, we consider the scenario where a linear
array radar transmits stepped-frequency LFM pulse train to
detect and measure the unresolved targets. The radar param-
eters are given in Table 1. In this radar system, the coarse
range resolution, angle resolution and velocity resolution are
1R = 150m, 1u = 0.125 and 1v = 15m/s respectively.
The range resolution can be improved to 15m by synthesizing
the diverse bandwidth of each pulse. Meanwhile, the whole
coarse resolution cell can be divided into 10 high range reso-
lution cells. Fig. 3 shows three cases of unresolved targets and
each target’s parameters. All targets are located in the same
coarse resolution cell (60km, 0.1, 100m/s) and we assume
targets’ SNRs are all equal to 10dB. There are three targets
in Case 1 and Case 3, but two targets in Case 2 where the
middle target is deleted. In addition, Target 2 and Target 3 of
Case 3 are much closely-spaced in range and velocity. Their
range difference is less than a high range resolution cell.

FIGURE 3. Three cases of unresolved targets.

First, we consider the conventional stepped-frequency
LFM pulse train. The 2-D HRRPs in three cases derived by
range-angle beamforming are shown in Fig. 4. As to three
cases of unresolved targets, it is easy to distinguish the peak
corresponding to each target. Note that, the resolution per-
formance can be improved by combining multiple domains.
Thus, Target 2 and Target 3 in Case 3 are still resolved in
range-angle domain even though their range difference is less
than a high range resolution cell. However, the peak position
deviates from the true target’s position both in range and
angle domains. The shift in range domain is caused by the
target motion and the shift in angle domain is caused by the
approximation of model. It is observed that the sidelobe keeps
around −11dB in Case 1 and Case 2, but rises to −8.5dB in
Case 3. That is, the sidelobe will increase when two targets
get closed, which results in the deterioration of detection
performance. We may suppress the sidelobe by adding the
windowing. But such processing will reduce the resolution
both in range and angle domains.

Next, we focus on another stepped-frequency LFM pulse
train whose PRI is βTr . Fig. 5 shows each target’s range shift
versus PRI of three cases. It is observed that the range shift
of each target is nearly linear to the PRI of transmitted pulse
train, which is coincident with the analysis given in (18). That
is, the designed short-long stepped-frequency pulse train is
feasible to eliminate the range shift. However, the range shifts
corresponding to Target 2 and Target 3 in Case 3 deviates
from the true values, which may result in a severe estimation
errors of target’s range and velocity. Thus, the approximation
presented in (18) will be biased if two targets are mcuh
closely-spaced. In addition, the approximate value of range
shift fluctuates around the true value. The approximate error
is related to target parameters. It is much difficult to correct
such error because the target parameters are unknown before
transmitting. Therefore, the optimal value of β involved in the
proposed short-long stepped-frequency pulse train cannot be
explored in theory.

Then, we use the designed short-long stepped-frequency
pulses train to estimate the parameters of unresolved targets
where β is set as 1.5, 1.75 and 2. Themethod proposed in [17]
is chosen as the baseline method for comparison, where the
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FIGURE 4. 2-D HRRPs of unresolved targets of (a) Case 1, (b) Case 2 and
(c) Case 3.

target number is estimated by MDL principle and the target’s
parameters are estimated by ML principle. To assess the esti-
mation performance, 100 trials are run to calculate the Root
Mean Square Error (RMSE). Here, the RMSE is the average
estimation error of all targets. Fig. 6 shows the RMSEs of
range, angle and velocity in three cases. It is observed that the
range shift is eliminated by the designed waveform and the
estimated result is unbiased. Note that, the proposed method
outperforms ML estimation at low SNR. A high SNR is
required for theML estimation to achieve a good performance

FIGURE 5. Range shift of each target versus PRI in (a) Case 1, (b) Case 2,
and (c) Case 3.

because not only target’s parameters need to be estimated, but
also its echo amplitude. In contrary, the effective range-angle
integration of the proposed method provides a high beam-
forming peak of target for the accurate parameter estimation.
It should be noted that the estimation errors of Case 3 are
much larger than other two cases. However, the closely-
spaced targets have little influence on the performance of ML
estimation, which is its distinct advantage. In addition, it is
found that the estimation errors in range and velocity are the
smallest when β is equal to 2. That is, a better estimation
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FIGURE 6. RMSE of parameter estimation in three cases: (a) range,
(b) angle and (c) velocity.

performance can be achieved by using a longer pulse subtrain
since the range and velocity estimations are inverse propor-
tional to β as shown in (21a) and (21b). However, a longer
observation time is required when choosing a large β, which
may be limited in the real application. Therefore, a trade-off
should be made between the estimation performance and the
observation time.

The detection performance of unresolved targets is also
tested. 100 trials are also run to calculate the correct

FIGURE 7. Correct detection probability of three cases versus SNR:
(a) Case 1, (b) Case 2 and (c) Case 3.

probability of detection Pc where β is set as 1.5, 1.75 and 2.
Note that, there are two 2-D HRRPs derived from the
designed short-long frequency pulse train. A successful
detection is counted when all targets are detected both in two
2-D HRRPs. Regarding the target detection by MDL, we set
the maximum value of target number as 4 for an accept-
able computationa cost. Fig. 7 shows the correct detection
probability of three cases versus SNR. It is observed that the
unresolved targets in three cases can be successfully detected
even at low SNR since the target echo is effectively integrated
in time and spatial domains. Obviously, the proposed method
outperfoms MDL detection because MDL detection requires
a high SNR especially in the case of unresolved targets.

VOLUME 7, 2019 129025



S. L. Wang et al.: Novel Scheme for Detection and Estimation of Unresolved Targets

TABLE 2. Average computational time.

The detection performance of Case 2 is the best and the detec-
tion performance of Case 3 is the worst. That is, the detection
performance has a deterioration when handling more targets
or closely-spaced targets. Moreover, the detection perfor-
mance of Case 3 has a improvement with β increasing. This
is mainly because that a long pulse subtrain results in a large
range shift which is beneficial to the detection for closely-
spaced targets.

Finally, we give the average computational times of
the proposed method and the baseline method in Table 2. The
algorithms are programmed in Matlab 2015 and run in the
platform with a 2.5-GHz Intel i5-7200U CPU. It is observed
that the computational time of the proposed method is much
lower than that of the baseline method. Moreover, it still
keeps around a low value even for more targets. The proposed
method can detect and measure the unresolved targets in real
time. In contrary, the combination of MDL and ML requires
a high computational cost which limits its application in
practice use. Thus, the proposed method outperforms the
baseline method in computational cost.

V. CONCLUSION
In this paper, a novel scheme to detect and measure the
unresolved targets is proposed for the phased array radar by
transmitting stepped-frequencywaveform.We design a short-
long stepped-frequency pulse train and use the range-angle
beamforming technique to derive two 2-D HRRPs. By com-
bining two 2-D HRRPs, each target can be detected success-
fully and targets’ parameters can be estimated accurately.
Some conclusions are drawn from the simulation results as
following. 1. The pulse train with large PRI is beneficial to
improve the performance of parameter estimation, but more
observation time is required. A trade-off between estimation
performance and observation time in the waveform design
is needed. 2. The performance of detection and parameter
estimation will get worse when targets are much closely-
spaced in range and velocity.

APPENDIX A
MATCHING FILTER OUTPUT OF STEPPED-FREQUENCY
LFM PULSE TRAIN
Inserting (1) into (3), the matching filter output is rewritten
as

Zn(t) = αe−j
2π
c fkndu

K−1∑
k=0

∫
∞

−∞

p
(
τ −

2R
c
+

2vτ
c
− kTr

)
· p∗(τ − t)e2π fk (τ−

2R
c +

2vτ
c )ej2π fk (τ−t)dτ

def
= αe−j

2π
c fkndu

K−1∑
k=0

zk (t) (26)

where zk (t) denotes the filter output of each pulse. Let
s = τ − 2R

c +
2vτ
c − kTr , zk (t) is expressed as

zk (t) = ej2π fk te−j2π fk
2R
c+2v ej2π fk

2kTr v
c+2v

·

∫
∞

−∞

p (s) p∗
[

c
c+2v

(
s+

2R
c
+kTr

)
−t
]
ej2π fk

2v
c+2v sds

(27)

In general, target’s velocity is more less than the light speed,
that is v� c. Then zk (t) can be approximately expressed as

zk (t) ≈ ej2π fk te−j2π fk
2R
c ej2π fk

2kTr v
c

·

∫
∞

−∞

p (s) p∗
[
s−

(
t −

2R
c
− kTr

)]
ej2π fk

2v
c sds

= χ

(
t −

2R
c
− kTr , fk

2v
c

)
ej2π fk te−j4π fk

R−kTr v
c (28)

where χ (t, fd ) =
∫
∞

−∞
p(τ )p∗(τ − t)ej2π fd dτ . Indeed,

|χ (t, fd )| is the ambiguity function of LFM waveform and
χ (t, fd ) is expressed as

χ (t, fd )=

∣∣∣∣ sin[π (fd + µt)(Tp − |t|)]Tpπ (fd + µt)

∣∣∣∣ ejπ [(fd−µt)(Tp−t)−µt2]
(29)

Here, we define φ(t) as the phase ofχ (t−2R/c−kTr , fk2v/c).
In the sequel, (26) is rewritten as

Zn(t) = α
K−1∑
k=0

∣∣∣∣χ (t − 2R
c
− kTr ,

2v
c
fk )

∣∣∣∣
× e−j

4π
c fk (R+

ndu
2 −kTr v)e−j2π fk t+φ(t) (30)

We use e−j2π fk t as the reference signal to demodulate the
filtered signal. After such demodulation processing, the base-
band signal is derived as

Z ′n(t) =α
′

K−1∑
k=0

∣∣∣∣χ (t−2Rc −kTr , 2vc fk )
∣∣∣∣e−j 4πc fk (R+ ndu

2 −kTr v) (31)

where α′ = αe−j
4π
c f0R+φ(t). The exponential term in (31) can

be rewritten as

e−j
4π
c fk (R+

ndu
2 −kTr v)

= e−j
4π
c f0Re−j

2π
c f0ndue−j

2π
c k(21fR−2f0Tr v+1fndu)

· ej
4π
c k

21f Tr v

def
= e−j

4π
c f0Re−jn2ue−jk(8R−9v+nξ2u)ejk

2ξ9v (32)

where 2 = 2π f0d/c 8 = 4π1f /c, 9 = 4πTr f0/c, and
ξ = f0/1f . Inserting (32) into (31), Z ′n(t) is rewritten as

Z ′n(t) = α
′

K−1∑
k=0

∣∣∣∣χ (t − 2R
c
− kTr ,

2v
c
fk )

∣∣∣∣
· e−jn2ue−jk(8R−9v+nξ2u)ejk

2ξ9v (33)
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APPENDIX B
APPROXIMATION OF (14)
It is observed from (15) that there are three phase terms
related to target range, angle and velocity respectively. How-
ever, it is difficult to derive the closed-form formulation due
to cross phase terms ϕ(u)m = −knξ2(u − ūm) and quadratic
phase term ϕ

(v)
m = k2ξ8v̄m.

Since the variation section of Rm, um and vm are all in
one resolution cell, we define R̄m = Rm − R0 = amR3dB,
ūm = um− u0 = bmu3dB and v̄m = vm− v0 = cmv3dB, where
am, bm and cm are the constants between −0.5 and 0.5. Then
we have ∣∣∣ϕ(u)m

∣∣∣ = |knξ2(u− bm1u)| ≤ knξ21u

= kn
1f
f0

2π f0d
c

c
f0Nd

= 2π
n
N
k1f
f0
≤ 2π

B
f0

(34)∣∣∣ϕ(v)m ∣∣∣ = ∣∣∣k2ξ8bm1v∣∣∣ ≤ k2ξ81v
= πbmk2

1f
f0

4π f0Tr
c

c
2f0KTr

= 2πbm
n
N
k1f
f0
≤ 2π

B
f0

(35)

As mentioned above, the synthetic bandwidth is much less
the carrier frequency which is B� f0. Thus, the phase terms
ϕ
(u)
m and ϕ(v)m can be ignored. Then (15) is rewritten as

O(R, u)≈
M∑
m=1

N−1∑
n=0

K−1∑
k=0

Ame−j[n2(ūm−u)+k8(R̄m−R)−k9 v̄m]

=

M∑
m=1

A′m
sin[N2(u− ūm)/2]
sin[2(u− ūm)/2]

·
sin[K8(R− R̄m +9/8v̄m)/2]

sin[8(R− R̄m +9/8v̄m)/2]
(36)

where A′m = Ame−j{
N−1
2 2(ūm−u)+K−1

2 [8(R̄m−R)−9 v̄m]}.
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